首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions.  相似文献   

2.
Deng Y  Ye J  Mi H 《Plant & cell physiology》2003,44(5):534-540
The expression and activity of type-1 NAD(P)H dehydrogenase (NDH-1) was compared between cells of Synechocystis PCC6803 grown in high (H-cells) and low (L-cells) CO(2) conditions. Western analysis indicated that L-cells contain higher amounts of the NDH-1 subunits, NdhH, NdhI and NdhK. An NADPH-specific subcomplex of NDH-1 showed higher NADPH-nitroblue tetrazolium oxidoreductase activity in L-cells. The activities of both NADPH-menadione oxidoreductase and light-dependent NADPH oxidation driven by photosystem I were much higher in L-cells than in H-cells. The initial rate of re-reduction of P700(+) following actinic light illumination in the presence of DCMU under background far-red light was enhanced in L-cells. In addition, rotenone, a specific inhibitor of NDH-1, suppressed the relative rate of post-illumination increase in Chl fluorescence of L-cells more than that of H-cells, suggesting that the involvement of NDH-1 in cyclic electron flow around photosystem I was enhanced by low CO(2). Taken together, these results suggest that NDH-1 complex and NDH-1-mediated cyclic electron transport are stimulated by low CO(2) and function in the acclimation of cyanobacteria to low CO(2).  相似文献   

3.
The cyanobacterial type I NAD(P)H dehydrogenase (NDH-1) complexes play a crucial role in a variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around photosystem I. Two types of NDH-1 complexes, NDH-1MS and NDH-1MS′, are involved in the CO2 uptake system. However, the composition and function of the complexes still remain largely unknown. Here, we found that deletion of ndhM caused inactivation of NDH-1-dependent cyclic electron transport around photosystem I and abolishment of CO2 uptake, resulting in a lethal phenotype under air CO2 condition. The mutation of NdhM abolished the accumulation of the hydrophilic subunits of the NDH-1, such as NdhH, NdhI, NdhJ, and NdhK, in the thylakoid membrane, resulting in disassembly of NDH-1MS and NDH-1MS′ as well as NDH-1L. In contrast, the accumulation of the hydrophobic subunits was not affected in the absence of NdhM. In the cytoplasm, the NDH-1 subcomplex assembly intermediates including NdhH and NdhK were seriously affected in the ΔndhM mutant but not in the NdhI-deleted mutant ΔndhI. In vitro protein interaction analysis demonstrated that NdhM interacts with NdhK, NdhH, NdhI, and NdhJ but not with other hydrophilic subunits of the NDH-1 complex. These results suggest that NdhM localizes in the hydrophilic subcomplex of NDH-1 complexes as a core subunit and is essential for the function of NDH-1MS and NDH-1MS′ involved in CO2 uptake in Synechocystis sp. strain PCC 6803.  相似文献   

4.
An NADPH-specific NDH-1 sub-complex was separated by native-polyacrylamide gel electrophoresis and detected by activity staining from the whole cell extracts of Synechocystis PCC6803. Low CO2 caused an increase in the activity of this sub-complex quickly, accompanied by an evident increase in the expression of NdhK and PSI-driven NADPH oxidation activity that can reflect the activity of NDH-1-mediated cyclic electron transport. During incubation with high CO2, the activities of NDH-1 sub-complex and PSI-driven NADPH oxidation as well as the protein level of NdhK slightly increased at the beginning, but decreased evidently in various degrees along with incubation time. These results suggest that CO2 concentration in vitro as a signal can control the activity of NDH-1 complex, and NDH-1 complex may in turn function in the regulation of CO2 uptake.  相似文献   

5.
Despite significant progress in clarifying the subunit compositions and functions of the multiple NADPH dehydrogenase (NDH‐1) complexes in cyanobacteria, the subunit maturation and assembly of their NDH‐1 complexes are poorly understood. By transformation of wild‐type cells with a transposon‐tagged library, we isolated three mutants of Synechocystis sp. PCC 6803 defective in NDH‐1‐mediated cyclic electron transfer and unable to grow under high light conditions. All the mutants were tagged in the same slr1097 gene, encoding an unknown protein that shares significant homology with the Arabidopsis protein chlororespiratory reduction 6 (CRR6). The slr1097 product was localized in the cytoplasm and was required for efficient assembly of NDH‐1 complexes. Analysis of the interaction of Slr1097 with 18 subunits of NDH‐1 complexes using a yeast two‐hybrid system indicated a strong interaction with NdhI but not with other Ndh subunits. Absence of Slr1097 resulted in a significant decrease of NdhI in the cytoplasm, but not of other Ndh subunits including NdhH, NdhK and NdhM; the decrease was more evident in the cytoplasm than in the thylakoid membranes. In the ?slr1097 mutant, NdhH, NdhI, NdhK and NdhM were hardly detectable in the NDH‐1M complex, whereas almost half the wild‐type levels of these subunits were present in NDH‐1L complex; similar results were observed in the NdhI‐less mutant. These results suggest that Slr1097 is involved in the maturation of NdhI, and that assembly of the NDH‐1M complex is strongly dependent on this factor. Maturation of NdhI appears not to be crucial to assembly of the NDH‐1L complex.  相似文献   

6.
The involvement of the internal rotenone-insensitive NADPH dehydrogenase on the inner surface of the inner mitochondrial membrane [NDin(NADPH)] in the oxidation of strictly NAD+-linked substrates by pea ( Pisum sativum L.) leaf mitochondria was measured. As estimated by the inhibition caused by 5 μ M diphenyleneiodonium (DPI) in the presence of rotenone to inhibit complex I, the activity of NDin(NADPH) during glycine oxidation (measured both as O2 uptake and as CO2 release) was 40–50 nmol mg−1 protein min−1. No significant activity of NDin(NADPH) could be detected during the oxidation of 2-oxoglutarate, another strictly NAD+-linked substrate; this was possibly due to its relatively low oxidation rate. Control experiments showed that, even at 125 μ M , DPI had no effect on the activity of glycine decarboxylase complex (GDC) and lipoamide dehydrogenase. The relative activity of complex I, NDin(NADPH), and NDin(NADH) during glycine oxidation, estimated using rotenone and DPI, differed depending on the pyridine nucleotide supply in the mitochondrial matrix. This was shown by loading the mitochondria with NAD+ and NADP+, both of which were taken up by the organelle. We conclude that the involvement of NADP turnover during glycine oxidation is not due to the direct production of NADPH by GDC but is an indirect result of this process. It probably occurs via the interconversion of NADH to NADPH by the two non-energy-linked transhydrogenase activities recently identified in plant mitochondria.  相似文献   

7.
Abstract The extent of recovery of nitrogenase activity of Gloeothece transferred from an atmosphere of O2 to air depended on the duration of exposure to O2. Activity recovered at increasing rates after up to 24 h exposure to O2 and a lag before detection of activity, present after short (1 h) exposure times, disappeared with longer exposures. Synthesis of nitrogenase de novo was implicated, since chloramphenicol, tetracycline, or repressive levels of NH+4, prevented recovery of activity. Specific radioimmunoassay of the rate of synthesis of the MoFe protein of nitrogenase under O2 correlated well with the activity measurements, and indicate that a shift from air to O2 only transiently represses nitrogenase synthesis.  相似文献   

8.
Aquaporins (AQPs) are water channels that allow cells to rapidly alter their membrane water permeability. A convenient model for studying AQP expression and activity regulation is Black Mexican Sweet (BMS) maize cultured cells. In an attempt to correlate membrane osmotic water permeability coefficient (Pf) with AQP gene expression, we first examined the expression pattern of 33 AQP genes using macro-array hybridization. We detected the expression of 18 different isoforms representing the four AQP subfamilies, i.e. eight plasma membrane (PIP), five tonoplast (TIP), three small basic (SIP) and two NOD26-like (NIP) AQPs. While the expression of most of these genes was constant throughout all growth phases, mRNA levels of ZmPIP1;3 , ZmPIP2;1 , ZmPIP2;2, ZmPIP2;4 and ZmPIP2;6 increased significantly during the logarithmic growth phase and the beginning of the stationary phase. The use of specific anti-ZmPIP antisera showed that the protein expression pattern correlated well with mRNA levels. Cell pressure probe and protoplast swelling measurements were then performed to determine the Pf. Interestingly, we found that the Pf were significantly increased at the end of the logarithmic growth phase and during the steady-state phase compared to the lag phase, demonstrating a positive correlation between AQP abundance in the plasma membrane and the cell Pf.  相似文献   

9.
Abstract Cells of Pseudomonas carboxydovorans from the exponential growth phase revealed the major portion (87%) of CO dehydrogenase attached to the inner aspect of the cytoplasmic membrane. In stationary cells only about half of the total amount of the enzyme remained membrane-bound, and a drop of the CO-oxidizing activity with O2 was observed. The CO-oxidizing activity with the unphysiological electron acceptor methylene blue, which does not need any contact of the enzyme with the membrane, always exceeded that with O2. Measurements of respiration rates of extracts with different electron donors in addition to CO suggested that the electron transport chain is not rate-limiting. It is concluded that the electron flow from CO to O2 in intact cells of P. carboxydovorans is controlled by the amount of CO dehydrogenase attached to a membrane-bound electron acceptor.  相似文献   

10.
Volatile organic compound (VOC) emissions from tobacco ( Nicotiana tabacum L. var. Bel W3) plants exposed to ozone (O3) were investigated using proton-transfer-reaction mass-spectrometry (PTR-MS) and gas chromatography mass-spectrometry (GC-MS) to find a quantitative reference for plants' responses to O3 stress. O3 exposures to illuminated plants induced post-exposure VOC emission bursts. The lag time for the onset of volatile C6 emissions produced within the octadecanoid pathway was found to be inversely proportional to O3 uptake, or more precisely, to the O3 flux density into the plants. In cases of short O3 pulses of identical duration the total amount of these emitted C6 VOC was related to the O3 flux density into the plants, and not to ozone concentrations or dose–response relationships such as AOT 40 values. Approximately one C6 product was emitted per five O3 molecules taken up by the plant. A threshold flux density of O3 inducing emissions of C6 products was found to be (1.6 ± 0.7) × 10−8 mol m−2 s−1.  相似文献   

11.
Abstract The effects of O2 tension, temperature, salt concentration and organic matter concentration on the growth and nitrifying activity of Nitrosomonas N3 isolated from Tay Estuary sediments have been investigated. Chemostat-grown cultures were able to grow and nitrify at dissolved O2 concentrations as low as 0.1 mg O2· 1−1 (cell population densities were 15% of those obtained in fully aerated cultures). This bacterium was sensitive to reduced temperatures as chemostat-grown cultures washed out at growth temperatures below 15°C, at dilution rates > 0.025 · h−1. Batch-grown cultures of Nitrosomonas N3 were used to study the effects of NaCl and complex organic matter concentration on nitrifying activity. Maximum rates of NH+4 oxidation were recorded at NaCl concentrations of 1% w/v, whilst tryptone soya broth (TSB), nutrient broth (NB), yeast extract broth (YEB) and peptone were inhibitory at concentrations > 10 mg · 1−1.  相似文献   

12.
Abstract The temperature profiles have been determined for O2 reduction by activating substrates for whole cells and cell extracts of the psychrophilic, obligately anaerobic bacterium, strain B6, belonging to the Bacteroidaceae. The profiles were similar whether the cells were grown at 15 or 1°C, and also for cells harvested in the exponential or stationary phase. The H2O producing pyruvate oxidase displayed in cell-free extracts a considerably higher activity than the H2O2 producing NADH and NADPH oxidases at all temperatures in the range 30–1°C, and characteristically makes up a larger proportion of the total O2 reduction capacity the lower the temperature. It thus seems that the O2 scavenging property of the pyruvate oxidase, postulated to be utilized in a defense mechanism against the detrimental effects of the H2O2 producing pyridine nucleotide oxidases, is particularly well adapted to function at the low temperatures of the Barents Sea, from which this obligately anaerobic organism originates.  相似文献   

13.
Ascorbic acid is a strong inhibitor of indole-3-acetic oxidation catalyzed by commercial horse-radish peroxidase. In the presence of excess ascorbic acid, the indole-acetic acid oxidation catalysis is apparently blocked. The activity of peroxidase for indoleacetic acid at pH 3.7 and 33°C, in the presence of 2,4-dichlorophenol and MnCl2 as promotors was measured by polarographic technique. The Km was 0.27 m M and the maximum velocity was 1.02 mmol O2 (mg protein)−1 min−1. Dixon plots lead to an apparent Ki of 1.25 (μ M for ascorbic acid and the inhibition was apparently competitive. Ascorbic acid, besides appearing to be a strong inhibitor of the IAA oxidase activity of peroxidase, seemed to protect IAA from total degradation. Addition of more than 5 μ M ascorbic acid produced both an exponential increase in the lag time before the onset of reaction and, at the end, an oxidation protection of 26 μ M IAA when 111 μ M IAA was present at the stawrt. The possibility of ascorbic acid-IAA auxin from endogenous oxidation in plants, is proposed.  相似文献   

14.
An open flow-through gas system was used to investigate the effect of plant age on nitrogenase activity in relation to root respiration (measured as CO2 release) and supra-ambient O2 levels in 24- to 51-day-old, nodulated Pisum sativum L. cv. Bodil. The effect of assaying plants repeatedly was also studied. The respiratory efficiency of nitrogenase [mol CO2 (mol C2H4)−1] and the relative decline in nitrogenase (EC 1.7.99.2) activity in response to introduction of C2H2 in the gas stream were unaffected by plant age. In contrast, the nitrogenase-linked respiration as a proportion of total root respiration increased with time. Accordingly, the specific respiration linked-to growth and maintenace of the noduled root system decreased with time. C2H2 reduction and root respiration were increased by supra-ambient O2 levels, but the tolerance to high O2 concentrations seemed to decrease with plant age. Repeated C2H2 assays on the same plants decreased their rate of growth and N accumulation: in addition, nitrogenase activity and root respiration were somewhat negatively affected. The results indicate that results from experiments with plants of different ages cannot always be directly compared, and that repeated C2H2 assays on the same plants should be applied with caution in physiological work.  相似文献   

15.
An open flow-through gas system was used to determine the effect of C2H2 and elevated O2 on acetylene reduction activity (ARA) and respiration of the intact, potted root system of Alnus incana (L.) Moench in symbiosis with Frankia Avcll or with a local source of Frankia . Both symbiotic systems responded to C2H2 by an immediate plateau range in ARA. The Plateau in ARA was in some cases followed by a decline of less extent than reported for many legumes. A concurrent decline in net respiration of the root system was on average 8% of the CO2 efflux prior to C2H2 introduction.
Respiration of the root systems in both symbioses responded to elevated oxygen levels in the 10 kPa C2H2 atmosphere by an increase of up to 17% of the net respiration prior to C2H2 introduction in 21 kPa O2. In contrast, the elevated oxygen levels resulted in an immediate drop in ARA followed by a minor increase to a stable level lower than that at the preceding, lower oxygen tension. The symbiosis with the local Frankia had lost all ARA when the partial pressure of O2 exceeded 50 kPa, whereas the symbiosis with Avcll still had some activity at 80 kPa O2. This difference in tolerance of elevated O2 clearly shows that the oxygen exclusion mechanisms may be controlled by the microsymbiont in Alnus-Frankia symbioses. The symbiotic systems recovered ARA to a similar extent when returned from elevated O2 levels to 21 kPa O2.  相似文献   

16.
The aim of this work was to examine the correspondence between apoplastic/symplastic antioxidant status and previously reported plant age-related shifts in the ozone (O3) resistance of Plantago major L. Seed-grown plants were fumigated in duplicate controlled environment chambers with charcoal/Purafil®-filtered air (CFA) or CFA plus 70 nmol mol−1 O3 for 7 h d−1 over a 42 d period. Measurements of stomatal conductance and antioxidants were made after 14, 28 and 42 d fumigation, on leaves at an equivalent stage of development (youngest fully expanded leaf, measured c . 9 d after emergence). Ozone exposure resulted in a similar decline in stomatal conductance across plant ages, indicating that increases in O3 resistance with plant age were mediated through changes in the tolerance of leaf tissue rather than enhanced pollutant exclusion. Leaf apoplastic washing fluid was found to contain 'unspecific' peroxidase, ascorbate peroxidase, superoxide dismutase and ascorbate, but not glutathione and the enzymes required to facilitate the regeneration of ascorbate from its oxidized forms. A weak induction in the activity of certain symplastic antioxidants was found after 14 d O3 fumigation, despite a lack of visible symptoms of injury, but shifts in symplastic antioxidant enzyme activity were not consistent with previously observed increases in resistance to O3 with plant age. By contrast, changes in 'unspecific' peroxidase activity and in the small pool of ascorbate in the leaf apoplast were found to accompany age-related shifts in O3 resistance. It is concluded that constituents of the leaf apoplast may constitute a potentially important front line defence against O3.  相似文献   

17.
Submitochondrial particles (SMP) were isolated from potato ( Solanum tuberosum L. cv. Bintje) tubers. The SMP were 91% inside-out and they were able to form a membrane potential, as monitored by oxonol VI, with succinate, NADH and NADPH. The pH dependence and kinetics of NADH and NADPH oxidation by these SMP was studied using three different electron acceptors – O2, duroquinone and ferricyanide. In addition, the SMP were solubilized, fractionated by non-denaturing polyacrylamide gel electrophoresis, and the gels were stained for NAD(P)H dehydrogenase activity and specificity at different pH using Nitro Blue Tetrazolium. From the results we conclude that there are at least two distinct NAD(P)H dehydrogenases on the inner surface of the inner membrane: (1) Complex 1 which oxidizes NADH and deamino-NADH in a rotenone-sensitive manner, (O2 as acceptor) with optimum activity at pH 8 and a very low Km(NADH) of 3 μ M . It also oxidizes NADPH and deamino-NADPH in a rotenone-sensitive manner, but with a pH optimum at pH 5.8 and a very high Km(NADPH) of more than 1 m M . This complex is found as a broad, diffuse band at the top of the gels. (2) A second dehydrogenase which oxidizes NADH in a rotenone-insensitive manner with optimum activity at pH 6.2 and a higher Km(NADH) of 14 μ M . It also oxidizes NADPH in a rotenone-insensitive manner with an activity optimum at pH 6.8 and low Km(NADPH) of 25 μ M . This dehydrogenase does not oxidize deamino-NAD(P)H. One of the sharp bands around the middle of the native gels may be caused by this dehydrogenase indicating that it has a relatively low molecular mass compared to Complex I. Several other NAD(P)H dehydrogenase bands were observed on the gels which we cannot yet assign.  相似文献   

18.
Rates of CO2 production and O2 consumption from aged disks of carrot ( Daucus carota L.) root tissues were measured for 4 h after they were transferred from 21% to 0, 1, 2, 4 or 8% O2 in gas mixtures. A transient peak in the rate of CO2 production started 5 to 7 min after transfer to 2% or lower O2 mixtures and peaked at 50 min. After the peaks in CO2 production from the 0, 1 and 2% O2 treatments and after the stable production from the 4 and 8% O2 treatments, the rate of CO2 production from all low O2 treatments started to decline at 50 min, reaching stable rates by 160 to 240 min. Concentrations of lactate and ethanol that were significantly higher than the 21% O2 controls had started to accumulate in disks between 10 and 50 min after exposure to atmospheres containing 2% or less O2. Production of CO2 started to increase 5 to 7 min after transfer to 0, 1 and 2% O2, while the initial decline and then rise in pH and the accumulation of ethanol did not occur until 30 min after the change in atmosphere. Ethanol accumulation paralleled the increase in pH; first at 0.4 μmol g−1 h−1 from 30 to 60 min as the pH shifted from 5.97 to 6.11, and then at 0.08 μmol g−1 h−1 from 60 to 100 min as the pH stablized around 6.12. The peak at 50 min in CO2 production roughly coincided with the shift from the rapid to the slow change in pH and ethanol accumulation.  相似文献   

19.
Growth of methanotrophs in methane and oxygen counter gradients   总被引:11,自引:0,他引:11  
Abstract A gel-stabilized system with counter gradients of CH4 and O2 was used to grow methanotrophs from wetland, agricultural and forest soils and lake sediment. Columns of semi-solid nitrate- or ammonium-minerai salts medium were continuously flushed at opposite ends with CH4 and O2 to create opposing concentration gradients of the two gases. Methanotrophs grew from all samples except forest soil, and were visible as thin bands after 5 to 15 days of incubation. The position of growth was CH4 and O2 concentration-dependent and occurred at the point of maximum possible CH4 oxidation, where both substrates were completely consumed. Evidence was obtained for denitrification and nitrification activities concomitant with CH4 oxidation. This approach may be useful to isolate methanotrophs with different CH4 and O2 requirements and to study their interactions with other groups of bacteria in nature.  相似文献   

20.
Changes in nodule growth and activity and in the concentrations of soluble N compounds in nodules, leaves and xylem sap under conditions of altered N nutrition in the actinorhizal plant Myrica gale L. are reported. Altering the N nutrition of symbiotic plants may alter the internal regulation of combined N which in turn may regulate nodule growth and activity. Flushing nodules daily with 100% O2 caused a decline in amide concentration and an increase in nodule growth although plants had recovered some nitrogenase activity within 4 h of exposure to O2. Samples of nodules, leaves and xylem sap were derivatized and amino acids identified and quantified using either reverse phase high performance liquid chromatography or gas chromatography-mass spectrometry in single ion monitoring mode. The ratio of asparagine in the nodules to that in the xylem was much higher in plants fed N (6.7 for NH+4-fed and 8.3 for NO3-fed plants) than for N2-fixing plants (2.5). Significant amounts of 15N added as 15NH+4 or 15NO3 accumulated in nodules following accumulation in the shoot which is consistent with the translocation of N to the nodules via the phloem. The uptake of 15NH+4 led to the synthesis and subsequent translocation of glutamine in the xylem sap. These results are discussed in terms of the feedback mechanisms that may regulate nitrogen fixation in Myrica root nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号