首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sensors for the simultaneous determinations of sucrose and glucose, lactose and glucose, and starch and glucose were prepared by a combination of the enzyme system shown below and an oxygen electrode: The mechanism for separating the substrates with the proposed sensors is based on the time lag arising from reaction and diffusion. Invertase, beta-galactosidase, amyloglucosidase, mutarotase, and glucose oxidase were covalently immobilized on triacetyl cellulose membranes containing 1,8-diamino-4-aminomethyloctane. A glucose oxidase membrane, mutarotase membrane, three sheets of triacetyl cellulose membranes, and invertase, or beta-galactosidase or amyloglucosidase membrane were placed in that order on the tip of the oxygen electrode. Calibration curves for sucrose, lactose, and starch were linear up to 40 mM, 60-180 mM, and 10%, respectively. The simultaneous determination of sucrose and glucose, lactose and glucose, and starch and glucose was possible when the amount of glucose coexised was in the range of 2-16% sucrose, 2.8-8.3% lactose, or 0.1-1% starch. The relative errors were +/-4% for sucrose and +/-3% for lactose in 100 assays. The starch sensor was reused only five times. Each enzyme membrane was fairly stable for more than 10 days.  相似文献   

2.
3.
Summary Chromium functions in maintaining normal glucose tolerance primarily by regulating insulin action. In the presence of optimal amounts of biologically active chromium, much lower amounts of insulin are required. Glucose intolerance, related to insufficient dietary chromium, appears to be widespread. Improved chromium nutrition leads to improved sugar metabolism in hypoglycemics, hyperglycemics, and diabetics.  相似文献   

4.
Glucose tolerance tests performed on 12 patients within 15 hours of myocardial infarction and repeated two to four weeks later showed failure of insulin secretion, hyperglycaemia, glucose intolerance, and high free fatty acid levels. More pronounced changes were found in patients with cardiogenic shock. These findings suggest that the therapeutic use of potassium, glucose, and insulin should be re-evaluated.  相似文献   

5.
Isolated pancreatic islets exposed to 100 mM acetazolamide (AZM) and low glucose concentration exhibited increased insulin release, whereas those subjected to AZM and high glucose concentration exhibited decreased secretion of insulin. A slight transient hyperglycaemia was found 24 h after administration of 1.5 g/kg b.wt. of AZM to fed mice, whereas no such response was seen in starved mice. The serum insulin concentration was increased in the 24 h after AZM injection. Pretreatment with AZM caused decreased glucose tolerance and protection against alloxan toxicity. Inhibited carbonic anhydrase activity and ionic alterations might have played a role in the development of these effects of AZM in mice.  相似文献   

6.
Rise in rectal temperature (Tre) and survival time was determined on exposure to 38°C in adult normoglycemic and diabetic (streptozotocin treated) rats and 1 h following glucose feeding or insulin administration or both, and in young rats with and without glucose feeding or insulin treatment. The heat tolerance of adult animals treated with streptozotocin and insulin plus glucose and of adult and young animals treated with glucose feeding or insulin was less than that of their respective normoglycemic controls. The rectal temperature on exposure to heat in the treated animals was significantly higher than that of controls in the adult, but not in young rats. Exposure to heat of the normoglycemic and glucose-fed animals resulted in a rise in blood glucose in the adults and a fall in the young. The already raised blood glucose level in the streptozotocin-treated animals rose further on exposure to heat. The rate of recovery of the blood glucose was not significantly altered by exposure of the animals to heat 60 min after administration of insulin or insulin plus glucose.  相似文献   

7.
Summary Gerbils were divided, on the basis of body weight, into obese (>80 gms) and lean (<80 gms) groups. Fasting blood glucose estimations on all 31 gerbils, and glucose tolerance tests on 9 lean and 6 obese animals, were carried out. All lean and some obese gerbils were normoglycaemic and other obese were hyperglycaemic. All obese gerbils exhibited glucose intolerance. General morphological studies were untertaken as follows: (i) assessment of mesenteric fat deposits, (ii) measurement of anterior abdominal wall thickness, (iii) ratio of animal length to width at specified loci (index of shape). The degree of obesity was less than previously reported in this species though blood glucose abnormality was comparable. The index of animal shape showed a strong correlation with body weight. The following kinds of histological observation were made on pancreases from 4 lean and 4 obese gerbils: (i) % islet representation, (ii) islet size distribution, (iii) -cell granularity, (iv) islet vascularity, (v) islet/duct association, (vi) proportions of - and D-cells, (vii) glycogen deposition in islet and duct cells. The pancreases of obese gerbils contained a higher proportion of islet tissue than those of lean due to generally larger islets: this hyperplasia was mainly attributable to -cell proliferation. Many obese gerbil islets exhibited hyperaemia and -cell degranulation. There was no evidence of glycogen depositon.  相似文献   

8.
Fall in rectal temperature (Tre) and survival time was determined on exposure to–20°C in adult normoglycemic and diabetic (streptozotocin treated) rats and 1 h following glucose feeding or insulin administration or both and on exposure to–10°C in young rats with and without glucose feeding. The susceptibility to frostbite was determined by exposure of the limbs to freezing mixture of–19°C or–23°C. The rate of fall of Tre was less and the survival time more in glucose and insulin plus glucose treated animals. On the other hand, the rate of fall of Tre was more and the survival time less, in dia betic and insulin-treated animals. The rectal temperature at which the animal died was the same in the control and the treated animals. The susceptibility to frost bite was more in insulin treated and diabetic animals and less in glucose-fed animals. Exposure to cold during the second h after glucose or glucose plus insulin injection did not alter the blood glucose from that obtained at room temperature. In insulin-treated animals the rate of rise of blood glucose during the second h was much higher at low temperature than at room temperature. The rise in blood glucose in diabetic animals was much higher than in normoglycemic animals exposed to cold.  相似文献   

9.
An indicator dilution technique with 22Na+ as the intravascular marker was used to measure unidirectional transport of d-[6-3H]glucose from blood into the isolated, perfused dog brain. 18 compounds which are structurally related to glucose were tested for their ability to inhibit glucose transport. The data suggest that no single hydroxyl group is absolutely required for glucose transport, but rather that glucose binding to the carrier probably occurs through hydrogen bonding at several sites (hydroxyls on carbons 1, 3, 4 and 6). In addition, α-d-glucose has higher affinity for the carrier than does β-d-glucose.A separate series of experiments demonstrated that phlorizin and phloretin are competitive inhibitors of glucose transport into brain; however, phloretin is partially competitive and inhibits at lower concentrations than does phlorizin. Inhibition by phlorizin and phloretin is mutually competitive, indicating that these compounds compete for binding to the glucose carrier. Comparison with the results reported in the literature for similar studies using the human erythrocyte demonstrates a fundamental similarity between glucose transport systems in the blood-brain barrier and erythrocyte.  相似文献   

10.
The pyrolytic behavior of inulin, a (2 → 1)-linked fructofuranan, is described. Parallel investigations of the pyrolysis of glucose and of fructose were conducted to supplement the inulin results and to aid comparison with previous results from glucans. Effects of neutral and basic additives are emphasized. As with glucans, the addition of such additives (especially basic) increases the yields of the one-, two-, and three-carbon products (as well as of hexosaccharinolactones), while generally decreasing the yields of anhydro sugar and furan derivatives. The former products include glycoaldehyde, acetol, dihydroxyacetone, acetic acid, formic acid, and lactic acid. Mechanistic speculations are made regarding the origins of these compounds, as well as of furan derivatives and saccharinic acid lactones. Parallels with alkaline degradation are considered.  相似文献   

11.
Reports in the literature have shown that acute or chronic zinc administration may cause hyperglycemia, with a fall in serum or insular insulin occurring in experimental animals. On the other hand, under conditions of both acute and chronic hyperglycemia, an increase, a decrease, or a normal level of blood zinc has been observed in studies conducted on humans. Thus, the objective of the investigation described here was to determine the relationship existing among zinc, glucose, and insulin under acute conditions. Thirty-six subjects of both sexes (mean age, 23 yr) were tested at 7:00A.M. after a 12-h fast. Two antecubital veins of both forearms were punctured and maintained with physiological saline. Three experiments were performed in which zinc was administered orally, and hypertonic glucose and tolbutamid were administered intravenously. Blood samples were then collected over a period ranging from 93 to 240 min after the basal times of −30 and 0 min. Hyperzincemia did not cause changes in plasma glucose or insulin either in the absence of or during perfusion of glucose. Hyperglycemia, hypoglycemia, and hyperinsulinemia did not modify serum zinc levels. These results demonstrate that acute zinc administration did not change carbohydrate metabolism and that sudden variations in glucose and insulin levels did not modify the serum profile of zinc.  相似文献   

12.
13.
Changes in the cellular metabolism assessed by the variability of oxygen consumption (VO(2) ) and carbon dioxide production (VCO(2) ) as well as the association of serum glucose and insulin to energy spectral density (ESD) of VO(2) and VCO(2) were evaluated. Ten nonglucose intolerant and 10 glucose intolerant subjects, aged 21-70 years, were included. Glucose and insulin concentrations and VO(2) and VCO(2) records were collected every 10 min during 3 h. ESD of VO(2) and VCO(2) was estimated and associated with glucose and insulin concentrations. Statistical significance in glucose levels, insulin, and ESD of VO(2) and VCO(2) among nonglucose intolerant subjects and glucose and insulin among glucose intolerance subjects at postload glucose (PLG) state compared with basal state was found. Moreover, glucose was significantly higher in glucose intolerance subjects than nonglucose intolerant subjects for basal and PLG states. These results show an increment in ESD of VO(2) and VCO(2) at PLG state among nonglucose intolerant subjects and suggest that their measurement may be a key indicator of the variability of cellular metabolic activity and contribute to confirm disturbances in glucose metabolism.  相似文献   

14.
Glucose uptake is autoregulated in a variety of cell types and it is thought that glucose transport is the major step that is subjected to control by sugar availability. Here, we examined the effect of high glucose concentrations on the rate of glucose uptake by human ECV-304 umbilical vein-derived endothelial cells. A rise in the glucose concentration in the medium led a dose-dependent decrease in the rate of 2-deoxyglucose uptake. The effect of high glucose was independent of protein synthesis and the time-course analysis indicated that it was relatively slow. The effect was not due to inhibition of glucose transport since neither the expression nor the subcellular distribution of the major glucose transporter GLUT1, nor the rate of 3-O-methylglucose uptake was affected. The total in vitro assayed hexokinase activity and the expression of hexokinase-I were similar in cells treated or not with high concentrations of glucose. In contrast, exposure of cells to a high glucose concentration caused a marked decrease in phosphorylated 2-deoxyglucose/free 2-deoxyglucose ratio. This suggests the existence of alterations in the rate of in vivo glucose phosphorylation in response to high glucose. In summary, we conclude that ECV304 human endothelial cells reduce glucose utilization in response to enhanced levels of glucose in the medium by inhibiting the rate of glucose phosphorylation, rather than by blocking glucose transport. This suggests a novel metabolic effect of high glucose on cellular glucose utilization.  相似文献   

15.
16.
M R Sierks  K Bock  S Refn  B Svensson 《Biochemistry》1992,31(37):8972-8977
The specificity constants, kcat/KM, were determined for glucose oxidase and glucose dehydrogenase using deoxy-D-glucose derivatives and for glucoamylase using deoxy-D-maltose derivatives as substrates. Transition-state interactions between the substrate intermediates and the enzymes were characterized by the observed kcat/Km values and found to be very similar. The binding energy contributions of individual sugar hydroxyl groups in the enzyme/substrate complexes were calculated using the relationship delta(delta G) = -RT ln [(kcat/KM)deoxy/(kcat/KM)hydroxyl] for the series of analogues. The activity of all three enzymes was found to depend heavily on the 4- and 6-OH groups (4'- and 6'-OH in maltose), where changes in binding energies from 10 to 18 kJ/mol suggested strong hydrogen bonds between the enzymes and these substrate OH groups. The 3-OH (3'-OH in maltose) was involved in weaker interactions, while the 2-OH (2'-OH in maltose) had a very small if any role in transition-state binding. The three enzyme-substrate transition-state interactions were compared using linear free energy relationships (Withers, S. G., & Rupitz, K. (1990) Biochemistry 29, 6405-6409) in which the set of kcat/KM values obtained with substrate analogues for one enzyme is plotted against the corresponding values for a second enzyme. The high linear correlation coefficients (rho) obtained, 0.916, 0.958, and 0.981, indicate significant similarity in transition-state interactions, although the three enzymes lack overall sequence homology.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
The aims of this study were to evaluate the effects of dietary glucose supplementation on gastric emptying (GE) of both glucose and fat, postprandial blood glucose homeostasis, and appetite in eight older subjects (4 males, 4 females, aged 65--84 yr). GE of a drink (15 ml olive oil and 33 g glucose dissolved in 185 ml water), blood glucose, insulin, gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and appetite (diet diaries, visual analog scales, and food intake at a buffet meal consumed after the GE study) were evaluated twice, after 10 days on a standard or a glucose-supplemented diet (70 g glucose 3 times a day). Glucose supplementation accelerated GE of glucose (P < 0.05), but not oil; there was a trend for an increase in GIP (at 15 min, P = 0.06), no change in GLP-1, an earlier insulin peak (P < 0.01), and a subsequent reduction in blood glucose (at 75 min, P < 0.01). Glucose supplementation had no effect on food intake during each diet so that energy intake was greater (P < 0.001) during the glucose-supplemented diet. Appetite ratings and energy intake at the buffet meal were not different. We conclude that, in older subjects, glucose supplementation 1) accelerates GE of glucose, but not fat; 2) modifies postprandial blood glucose homeostasis; and 3) increases energy intake.  相似文献   

19.
The pathway of glucose metabolism in Pseudomonas aeruginosa was regulated by the availability of glucose and related compounds. On changing from an ammonium limitation to a glucose limitation, the organism responded by adjusting its metabolism substantially from the extracellular direct oxidative pathway to the intracellular phosphorylative route. This change was achieved by repression of the transport systems for gluconate and 2-oxogluconate and of the associated enzymes for 2-oxogluconate metabolism and gluconate kinase, while increasing the levels of glucose transport, hexokinase and glucose 6-phosphate dehydrogenase. The role of gluconate, produced by the action of glucose dehydrogenase, as a major inhibitory factor for glucose transport, and the possible significance of these regulatory mechanisms to the organism in its natural environment, are discussed.  相似文献   

20.
Recent studies indicate an important role of the kidney in postprandial glucose homeostasis in normal humans. To determine its role in the abnormal postprandial glucose metabolism in type 2 diabetes mellitus (T2DM), we used a combination of the dual-isotope technique and net balance measurements across kidney and skeletal muscle in 10 subjects with T2DM and 10 age-, weight-, and sex-matched nondiabetic volunteers after ingestion of 75 g of glucose. Over the 4.5-h postprandial period, diabetic subjects had increased mean blood glucose levels (14.1 +/- 1.1 vs. 6.2 +/- 0.2 mM, P < 0.001) and increased systemic glucose appearance (100.0 +/- 6.3 vs. 70.0 +/- 3.3 g, P < 0.001). The latter was mainly due to approximately 23 g greater endogenous glucose release (39.8 +/- 5.9 vs. 17.0 +/- 1.8 g, P < 0.002), since systemic appearance of the ingested glucose was increased by only approximately 7 g (60.2 +/- 1.4 vs. 53.0 +/- 2.2 g, P < 0.02). Approximately 40% of the diabetic subjects' increased endogenous glucose release was due to increased renal glucose release (19.6 +/- 3.1 vs. 10.6 +/- 2.4 g, P < 0.05). Postprandial systemic tissue glucose uptake was also increased in the diabetic subjects (82.3 +/- 4.7 vs. 69.8 +/- 3.5 g, P < 0.05), and its distribution was altered; renal glucose uptake was increased (21.0 +/- 3.5 vs. 9.8 +/- 2.3 g, P < 0.03), whereas muscle glucose uptake was normal (18.5 +/- 1.8 vs. 25.9 +/- 3.3 g, P = 0.16). We conclude that, in T2DM, 1) both liver and kidney contribute to postprandial overproduction of glucose, and 2) postprandial renal glucose uptake is increased, resulting in a shift in the relative importance of muscle and kidney for glucose disposal. The latter may provide an explanation for the renal glycogen accumulation characteristic of diabetes mellitus as well as a mechanism by which hyperglycemia may lead to diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号