首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The semaphorin gene family contains a large number of secreted and transmembrane proteins; some function as repulsive and attractive cues of axon guidance during development. Here, we report cloning and characterization of zebrafish transmembrane semaphorin gene, semaphorin 6D (sema6D). Sema6D is expressed predominantly in the nervous system during embryogenesis, as determined by in situ hybridization. We also found that Sema6D binds Plexin-A1 in vitro, but not other Plexins. It induces the repulsion of dorsal root ganglion axons, but not sympathetic axons. Consequently, Sema6D might use Plexin-A1 as a receptor to repel specific types of axons during development.  相似文献   

2.
Identification of a member of mouse semaphorin family   总被引:4,自引:0,他引:4  
S. Inagaki  T. Furuyama  Y. Iwahashi   《FEBS letters》1995,370(3):269-272
Grasshopper semaphorin I (Sema I) and its related proteins, chick collapsin and mouse Sema III contribute to the axon guidance by their repellent actions [5,9,12]. We have identified a member of semaphorin gene family from the mouse brain and named it M-Sema F. The N-terminal encodes a semaphorin domain that is similar between Sema I–III [6] followed by a single putative immunoglobulin-like domain, a transmembrane domain, and a proline-rich intracellular domain. M-Sema F mRNA is expressed widely in the nervous tissues during development. These suggest that M-Sema F is a transmembrane member of the semaphorin family of the vertebrate which may function in the developing neuronal network.  相似文献   

3.
From the initial stages of axon outgrowth to the formation of a functioning synapse, neuronal growth cones continuously integrate and respond to multiple guidance cues. To investigate the role of semaphorins in the establishment of appropriate axon trajectories, we have characterized a novel secreted semaphorin in grasshopper, gSema 2a. Sema 2a is expressed in a gradient in the developing limb bud epithelium during Ti pioneer axon outgrowth. We demonstrate that Sema 2a acts as chemorepulsive guidance molecule critical for axon fasciculation and for determining both the initial direction and subsequent pathfinding events of the Ti axon projection. Interestingly, simultaneous perturbation of both secreted Sema 2a and transmembrane Sema I results in a broader range and increased incidence of abnormal Ti pioneer axon phenotypes, indicating that different semaphorin family members can provide functionally distinct guidance information to the same growth cone in vivo.  相似文献   

4.
Class 3 semaphorin acts as a guidance clue for both cell migration and nerve fiber projection. The signal of class 3 semaphorin travels via a receptor complex consisting of neuropilins and Plexin-A subfamily. Although it has been reported that class 3 semaphorin acts as a repellent for oligodendrocyte precursor cells (OPCs), which migrate actively during brain development, the expression of Plexin-A subfamily has not been reported in OPCs yet. Therefore, it is currently unclear how semaphorin signals can travel in OPCs. In the present study, the expression of Plexin-A4 (PlexA4) was first demonstrated in a newly established OPC line and OPCs in developing brain. In the OPC line, repulsion for process extension was caused by both Sema3A and Sema6A, and the effect of the semaphorins was diminished in cells expressing PlexA4 lacking the cytoplasmic domain. These results strongly suggest that PlexA4 expressed in OPCs acts as a mediator of semaphorin signals.  相似文献   

5.
Structure of the semaphorin-3A receptor binding module   总被引:4,自引:0,他引:4  
The semaphorins are a large group of extracellular proteins involved in a variety of processes during development, including neuronal migration and axon guidance. Their distinctive feature is a conserved 500 amino acid semaphorin domain, a ligand-receptor interaction module also present in plexins and scatter-factor receptors. We report the crystal structure of a secreted 65 kDa form of Semaphorin-3A (Sema3A), containing the full semaphorin domain. Unexpectedly, the semaphorin fold is a variation of the beta propeller topology. Analysis of the Sema3A structure and structure-based mutagenesis data identify the neuropilin binding site and suggest a potential plexin interaction site. Based on the structure, we present a model for the initiation of semaphorin signaling and discuss potential similarities with the signaling mechanisms of other beta propeller cell surface receptors, such as integrins and the LDL receptor.  相似文献   

6.
Chemorepulsion by semaphorins plays a critical role during the development of neuronal projections. Although semaphorin-induced chemoattraction has been reported in vitro, the contribution of this activity to axon pathfinding is still unclear. Using genetic and culture models, we provide evidence that both attraction and repulsion by Sema3B, a secreted semaphorin, are critical for the positioning of a major brain commissural projection, the anterior commissure (AC). NrCAM, an immunoglobulin superfamily adhesion molecule of the L1 subfamily, associates with neuropilin-2 and is a component of a receptor complex for Sema3B and Sema3F. Finally, we show that activation of the FAK/Src signaling cascade distinguishes Sema3B-mediated attractive from repulsive axonal responses of neurons forming the AC, revealing a mechanism underlying the dual activity of this guidance cue.  相似文献   

7.
Most of the currently available drugs for osteoporosis inhibit osteoclastic bone resorption; only a few drugs promote osteoblastic bone formation. It is thus becoming increasingly necessary to identify the factors that regulate bone formation. We found that osteoclasts express semaphorin 4D (Sema4D), previously shown to be an axon guidance molecule, which potently inhibits bone formation. The binding of Sema4D to its receptor Plexin-B1 on osteoblasts resulted in the activation of the small GTPase RhoA, which inhibits bone formation by suppressing insulin-like growth factor-1 (IGF-1) signaling and by modulating osteoblast motility. Sema4d-/- mice, Plxnb1-/- mice and mice expressing a dominant-negative RhoA specifically in osteoblasts showed an osteosclerotic phenotype due to augmented bone formation. Notably, Sema4D-specific antibody treatment markedly prevented bone loss in a model of postmenopausal osteoporosis. Thus, Sema4D has emerged as a new therapeutic target for the discovery and development of bone-increasing drugs.  相似文献   

8.
The semaphorin family consists of soluble and membrane-bound proteins that act as chemorepulsive factors in neuronal development, thereby playing a crucial role in axon guidance. Although they are expressed in a broad range of embryonic and adult tissues, their physiological role outside the nervous system remains to be determined. Recently, emerging evidence has suggested that several semaphorins function as part of the immune system. CD100/Sema4D is the first semaphorin family member for which a critical role in the immune response has been identified. CD100 is involved in several arms of the immune response, including humoral and cell-based immunity. This review will focus on our current understanding of the role of this immunoregulatory semaphorin.  相似文献   

9.
Neuropilins, secreted semaphorin coreceptors, are expressed in discrete populations of spinal motor neurons, suggesting they provide critical guidance information for the establishment of functional motor circuitry. We show here that motor axon growth and guidance are impaired in the absence of Sema3A-Npn-1 signaling. Motor axons enter the limb precociously, showing that Sema3A controls the timing of motor axon in-growth to the limb. Lateral motor column (LMC) motor axons within spinal nerves are defasciculated as they grow toward the limb and converge in the plexus region. Medial and lateral LMC motor axons show dorso-ventral guidance defects in the forelimb. In contrast, Sema3F-Npn-2 signaling guides the axons of a medial subset of LMC neurons to the ventral limb, but plays no major role in regulating their fasciculation. Thus, Sema3A-Npn-1 and Sema3F-Npn-2 signaling control distinct steps of motor axon growth and guidance during the formation of spinal motor connections.  相似文献   

10.

Background  

Although originally identified as embryonic axon guidance cues, semaphorins are now known to regulate multiple, distinct, processes crucial for neuronal network formation including axon growth and branching, dendritic morphology, and neuronal migration. Semaphorin7A (Sema7A), the only glycosylphosphatidylinositol-anchored semaphorin, promotes axon growth in vitro and is required for the proper growth of the mouse lateral olfactory tract in vivo. Sema7A has been postulated to signal through two unrelated receptors, an RGD-dependent α1β1-integrin and a member of the plexin family, plexinC1. β1-integrins underlie Sema7A-mediated axon growth and Sema7A function in the immune system. Sema7A-plexinC1 interactions have also been implicated in immune system function, but the neuronal role of this ligand-receptor pair remains to be explored. To gain further insight into the function(s) of Sema7A and plexinC1 during neural development, we present here a detailed analysis of Sema7A and plexinC1 expression in the developing rat nervous system.  相似文献   

11.
Semaphorins not only function in axon guidance during development but also contribute to various other biological processes. We have now examined the expression of semaphorin 3A (Sema3A) and its receptor components neuropilin 1 (Npn1) and plexin A (PlxA) during development of the mouse retina. Immunohistofluorescence analysis revealed that the expression patterns of Sema3A and Npn1 were similar during embryonic and postnatal development. The expression pattern of PlxA was also similar to those of Sema3A and Npn1 during embryonic and early postnatal (before eye opening) developments. However, the pattern of PlxA expression changed markedly after eye opening, with the expression disappearing from the optic nerve and increasing in intensity in the retinal pigment epithelium. Immunoprecipitation analysis showed that Sema3A interacted with PlxA in the retinal pigment epithelial cell line ARPE19 but not in the retinal ganglion cell line RGC5, whereas the opposite pattern of association was apparent for Sema3A and Npn1. Given that atmospheric oxygen is thought to play a role in the differentiation and maintenance of various ocular cell types, our results suggest that Sema3A-PlxA signalling activated by an effect of ambient oxygen on PlxA expression may contribute to differentiation of the retinal pigment epithelium. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Molecular basis of semaphorin-mediated axon guidance   总被引:10,自引:0,他引:10  
The semaphorin family of proteins constitute one of the major cues for axonal guidance. The prototypic member of this family is Sema3A, previously designated semD/III or collapsin-1. Sema3A acts as a diffusible, repulsive guidance cue in vivo for the peripheral projections of embryonic dorsal root ganglion neurons. Sema3A binds with high affinity to neuropilin-1 on growth cone filopodial tips. Although neuropilin-1 is required for Sema3A action, it is incapable of transmitting a Sema3A signal to the growth cone interior. Instead, the Sema3A/neuropilin-1 complex interacts with another transmembrane protein, plexin, on the surface of growth cones. Certain semaphorins, other than Sema3A, can bind directly to plexins. The intracellular domain of plexin is responsible for initiating the signal transduction cascade leading to growth cone collapse, axon repulsion, or growth cone turning. This intracellular cascade involves the monomeric G-protein, Rac1, and a family of neuronal proteins, the CRMPs. Rac1 is likely to be involved in semaphorin-induced rearrangements of the actin cytoskeleton, but how plexin controls Rac1 activity is not known. Vertebrate CRMPs are homologous to the Caenorhabditis elegans unc-33 protein, which is required for proper axon morphology in worms. CRMPs are essential for Sema3A-induced, neuropilin-plexin-mediated growth cone collapse, but the molecular interactions of growth cone CRMPs are not well defined. Mechanistic aspects of plexin-based signaling for semaphorin guidance cues may have implications for other axon guidance events and for the basis of growth cone motility.  相似文献   

14.
Plexins are receptors for axonal guidance molecules known as semaphorins. We recently reported that the semaphorin 4D (Sema4D) receptor, Plexin‐B1, induces axonal growth cone collapse by functioning as an R‐Ras GTPase activating protein (GAP). Here, we report that Plexin‐B1 shows GAP activity for M‐Ras, another member of the Ras family of GTPases. In cortical neurons, the expression of M‐Ras was upregulated during dendritic development. Knockdown of endogenous M‐Ras—but not R‐Ras—reduced dendritic outgrowth and branching, whereas overexpression of constitutively active M‐Ras, M‐Ras(Q71L), enhanced dendritic outgrowth and branching. Sema4D suppressed M‐Ras activity and reduced dendritic outgrowth and branching, but this reduction was blocked by M‐Ras(Q71L). M‐Ras(Q71L) stimulated extracellular signal‐regulated kinase (ERK) activation, inducing dendrite growth, whereas Sema4D suppressed ERK activity and down‐regulation of ERK was required for a Sema4D‐induced reduction of dendrite growth. Thus, we conclude that Plexin‐B1 is a dual functional GAP for R‐Ras and M‐Ras, remodelling axon and dendrite morphology, respectively.  相似文献   

15.
16.
The semaphorin gene family has been shown to play important roles in axonal guidance in both vertebrates and invertebrates. Both transmembrane (Sema1a, Sema1b, Sema5c) and secreted (Sema2a, Sema2b) forms of semaphorins exist in Drosophila. Two Sema receptors, plexins (Plex) A and B, have also been identified. Many questions remain concerning the axon guidance functions of the secreted semaphorins, including the identity of their receptors. We have used the well-characterized sensory system of the Drosophila embryo to address these problems. We find novel sensory axon defects in sema2a loss-of-function mutants in which particular axons misproject and follow inappropriate pathways to the CNS. plexB loss-of-function mutants show similar phenotypes to sema2a mutants and sema2a interacts genetically with plexB, supporting the hypothesis that Sema2a signals through PlexB receptors. Sema2a protein is expressed by larval oenocytes, a cluster of secretory cells in the lateral region of the embryo and the sema2a mutant phenotype can be rescued by driving Sema2a in these cells. Ablation of oenocytes results in sensory axon defects similar to the sema2a mutant phenotype. These data support a model in which Sema2a, while being secreted from oenocytes, acts in a highly localized fashion: It represses axon extension from the sensory neuron cell body, but only in regions in direct contact with oenocytes.  相似文献   

17.
The extracellular molecule semaphorin 3A (Sema3A) is proposed to be a negative guidance cue that participates in patterning DRG sensory axons in the developing chick spinal cord. During development Sema3A is first expressed throughout the spinal cord gray matter, but Sema3A expression later disappears from the dorsal horn, where small-caliber cutaneous afferents terminate. Sema3A expression remains in the ventral horn, where large-muscle proprioceptive afferents terminate. It has been proposed that temporal changes in the sensitivity of different classes of sensory afferents to Sema3A contribute to the different pathfinding of these sensory afferents. This study compared the expression of the semaphorin 3A receptor subunit, neuropilin-1, and the collapse response of growth cones to semaphorin 3A for NGF (cutaneous)- and NT3 (proprioceptive)-dependent sensory axons extended from E6-E10 chick embryos. Growth cones extended from E6 DRGs in NT3-containing medium expressed neuropilin-1 and collapsed in response to Sema3A. From E7 until E10 NT3-responsive growth cones expressed progressively lower levels of neuropilin-1, and were less sensitive to Sema3A. On the other hand, growth cones extended from DRGs in NGF-containing medium expressed progressively higher levels of neuropilin-1 and higher levels of collapse response to Sema3A over the period from E6-E10. Thus, developmental patterning of sensory terminals in the chick spinal cord may arise from changes in both Sema3A expression in the developing spinal cord and accompanying changes in neuronal expression of the Sema3A receptor subunit, neuropilin-1.  相似文献   

18.
Plexins are receptors for the axon guidance molecule semaphorins, and several lines of evidence suggest that Rho family small GTPases are implicated in the downstream signaling of Plexins. Recent studies have demonstrated that Plexin-B1 activates RhoA and induces growth cone collapse through Rho-specific guanine nucleotide exchange factor PDZ-RhoGEF. Here we show that Rnd1, a member of Rho family GTPases, directly interacted with the cytoplasmic domain of Plexin-B1. In COS-7 cells, coexpression of Rnd1 and Plexin-B1 induced cell contraction in response to semaphorin 4D (Sema4D), a ligand for Plexin-B1, whereas expression of Plexin-B1 alone or coexpression of Rnd1 and a Rnd1 interaction-defective mutant of Plexin-B1 did not. The Sema4D-induced contraction in Plexin-B1/Rnd1-expressing COS-7 cells was suppressed by dominant negative RhoA, a Rho-associated kinase inhibitor, a dominant negative form of PDZ-RhoGEF, or deletion of the carboxyl-terminal PDZ-RhoGEF-binding region of Plexin-B1, indicating that the PDZ-RhoGEF/RhoA/Rho-associated kinase pathway is involved in this morphological effect. We also found that Rnd1 promoted the interaction between Plexin-B1 and PDZ-RhoGEF and thereby dramatically potentiated the Plexin-B1-mediated RhoA activation. We propose that Rnd1 plays an important role in the regulation of Plexin-B1 signaling, leading to Rho activation during axon guidance and cell migration.  相似文献   

19.
The extracellular molecule semaphorin 3A (Sema3A) is proposed to be a negative guidance cue that participates in patterning DRG sensory axons in the developing chick spinal cord. During development Sema3A is first expressed throughout the spinal cord gray matter, but Sema3A expression later disappears from the dorsal horn, where small‐caliber cutaneous afferents terminate. Sema3A expression remains in the ventral horn, where large‐muscle proprioceptive afferents terminate. It has been proposed that temporal changes in the sensitivity of different classes of sensory afferents to Sema3A contribute to the different pathfinding of these sensory afferents. This study compared the expression of the semaphorin 3A receptor subunit, neuropilin‐1, and the collapse response of growth cones to semaphorin 3A for NGF (cutaneous)‐ and NT3 (proprioceptive)‐dependent sensory axons extended from E6‐E10 chick embryos. Growth cones extended from E6 DRGs in NT3‐containing medium expressed neuropilin‐1 and collapsed in response to Sema3A. From E7 until E10 NT3‐responsive growth cones expressed progressively lower levels of neuropilin‐1, and were less sensitive to Sema3A. On the other hand, growth cones extended from DRGs in NGF‐containing medium expressed progressively higher levels of neuropilin‐1 and higher levels of collapse response to Sema3A over the period from E6–E10. Thus, developmental patterning of sensory terminals in the chick spinal cord may arise from changes in both Sema3A expression in the developing spinal cord and accompanying changes in neuronal expression of the Sema3A receptor subunit, neuropilin‐1. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 43–53, 2002  相似文献   

20.
The response of neuronal growth cones to axon guidance cues depends on the developmental context in which these cues are encountered. We show here that the transmembrane protein semaphorin 5A (Sema5A) is a bifunctional guidance cue exerting both attractive and inhibitory effects on developing axons of the fasciculus retroflexus, a diencephalon fiber tract associated with limbic function. The thrombospondin repeats of Sema5A physically interact with the glycosaminoglycan portion of both chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPGs). CSPGs function as precisely localized extrinsic cues that convert Sema5A from an attractive to an inhibitory guidance cue. Therefore, glycosaminoglycan bound guidance cues provide a molecular mechanism for CSPG-mediated inhibition of axonal extension. Further, axonal HSPGs are required for Sema5A-mediated attraction, suggesting that HSPGs are components of functional Sema5A receptors. Thus, neuronal responses to Sema5A are proteoglycan dependent and interpreted according to the biological context in which this membrane bound guidance cue is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号