首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Study of barley endonucleases and alpha-amylase genes   总被引:1,自引:0,他引:1  
We have identified an endonuclease(s) that preferentially cleaves the internucleosomal linker regions in the aleurone chromatin producing mono- and oligonucleosomes. This enzyme(s) has been designated as a "linker"-specific nuclease(s). This nuclease does not require divalent cations for activity, and therefore it is not the "Ca2+-Mg2+-DNase" found in mammalian cells. The linker-specific nuclease activity is not detectable in the dry aleurone tissue and in the tissue treated with 0.5 mM cordycepin. The endonuclease activity of the aleurone tissue incubated with gibberellic acid is higher than the level of this endonuclease in tissue treated with abscisic acid or water alone. Nuclei isolated from embryos have lower levels of endonuclease activities compared to those from aleurone tissue. Digestion of the nuclei from embryos with micrococcal nuclease revealed the subunit structure of chromatin. In Southern blots of the HindIII digests of DNA from embryos, five DNA bands hybridized to a nick-translated alpha-amylase cDNA clone. In similar autoradiograms with aleurone DNA, particular bands are less visible, notably in the DNA isolated from the tissue treated with gibberellic acid. This is the first report of the presence of a linker-specific nuclease activity in plant cells.  相似文献   

3.
Previous attempts to measure cytoplasmic Ca2+ in plant cells using the new generation of fluorescent probes, indo-1 and fura-2, have been unsuccessful. We investigated the use of indo-1 and fura-2 to measure cytoplasmic Ca2+ in barley aleurone protoplasts and found that indo-1 could be successfully used when it was loaded into protoplasts in the Ca2+-sensitive form. The acetoxymethyl esters of both dyes accumulated in aleurone protoplasts, but fura-2 was sequestered in the vacuole and indo-1 was not adequately hydrolyzed. We developed a non-disruptive method for loading the Ca2+-sensitive form of indo-1 into aleurone protoplasts in mildly acidic solutions. Using this approach, protoplasts accumulate indo-1 in a pH-dependent manner. The accumulated dye is Ca2+-sensitive, it is not sequestered in vacuoles or the endomembrane system, and it is not rapidly secreted. Fluorescence from indo-1 in individual cells was quenched by Mn2+ in the presence of digitonin. We estimate the cytoplasmic Ca2+ concentration in aleurone protoplasts to be approximately 250 nM. The Ca2+ ionophore, ionomycin does not induce changes in the fluorescence of protoplasts loaded with indo-1, but fluorescence changes could be induced by changes in extracellular Ca2+ in the presence of digitonin. We conclude that the strategy of loading indo-1 at acidic pH provides a useful means of measuring cytoplasmic Ca2+ in the barley aleurone that may also be applicable to other types of plant cells.  相似文献   

4.
5.
Studies into the molecules underlying plant signal transduction events continue to reveal the involvement of highly conserved factors such as Ca2+, calmodulin, cyclic GMP and phospholipases in a remarkably diverse array of physiological processes. The hormonal response systems in the aleurone cells of the cereal grain and in the stomatal guard cell are beginning to reveal how diversity of response can be hard wired into these cells despite the use of these common signalling intermediates. In both the aleurone and the guard cell ABA signalling operates through the action of phospholipase D and alterations in a Ca2+-dependent signalling system. The role of phospholipase D is highly analogous in these two divergent cell types, perhaps reflecting the closeness of this enzyme to a conserved ABA receptor. However, specificity in response becomes evident in elements downstream from PLD, such as in the Ca2+ signalling system. For example, ABA has opposite effects on cytoplasmic Ca2+ in the aleurone and guard cell. Combining the Ca2+-dependent signalling activities in networks with parallel regulatory activities such as cyclic GMP appears to underlie the flexible regulatory systems that are the hallmark of plant cell function.  相似文献   

6.
7.
Changes in cytoplasmic Ca2+ levels are involved in the regulation of several plant genes. However, to our knowledge, no regions of genes or specific cis elements have been shown to be involved in the regulation of plant gene expression by cytosolic Ca2+ signaling. The maize (Zea mays) gene cab-m1, which encodes a light-harvesting chlorophyll a/b-binding apoprotein, is positively photoregulated in mesophyll cells (MC) but not in bundle-sheath cells (BSC). This gene is highly preferentially expressed in maize MC versus BSC. In situ transient expression assays have revealed that exposure of tissues to ethyleneglycol-bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA), which chelates Ca2+, blocks the photostimulation of cab-m1 full promoter (-1026 to + 14) activity in MC of leaf segments of dark-grown maize seedlings. EGTA has no effect on expression in BSC. These results suggest that light-induced elevation of the cytosolic Ca2+ concentration in MC is required for the enhancement of cab-m1 expression in MC. Deletion of the sequence from -1026 to -360 completely abolished Ca2+ responsiveness of cab-m1 expression in MC. On the other hand, a 54-bp fragment in the 5' flanking region (-953 to -899 relative to the translation start site) conferred Ca2+ responsiveness on a -359 core promoter: reporter gene, suggesting that Ca2+ signaling is mediated via specific sequences in this short fragment. Furthermore, possible involvement of Ca(2+)-calmodulin in the signal transduction chain for regulating cab-m1 expression was suggested by the results of inhibitor experiments.  相似文献   

8.
Many plant ion channels have been identified, but little is known about how these transporters are regulated. We have investigated the regulation of a slow vacuolar (SV) ion channel in the tonoplast of barley aleurone storage protein vacuoles (SPV) using the patch-clamp technique. SPV were isolated from barley aleurone protoplasts incubated with CaCl2 in the presence or absence of gibberellic acid (GA) or abscisic acid (ABA). A slowly activating, voltage-dependent ion channel was identified in the SPV membrane. Mean channel conductance was 26 pS when 100 mM KCl was on both sides of the membrane, and reversal potential measurements indicated that most of the current was carried by K+. Treatment of protoplasts with GA3 increased whole-vacuole current density compared to SPV isolated from ABA- or CaCl2-treated cells. The opening of the SV channel was sensitive to cytosolic free Ca2+ concentration ([Ca2+]i) between 600 nM and 100 [mu]M, with higher [Ca2+]i resulting in a greater probability of channel opening. SV channel activity was reduced greater than 90% by the calmodulin (CaM) inhibitors W7 and trifluoperazine, suggesting that Ca2+ activates endogenous CaM tightly associated with the membrane. Exogenous CaM partially reversed the inhibitory effects of W7 on SV channel opening. CaM also sensitized the SV channel to Ca2+. In the presence of ~3.5 [mu]M CaM, specific current increased by approximately threefold at 2.5 [mu]M Ca2+ and by more than 13-fold at 10 [mu]M Ca2+. Since [Ca2+]i and the level of CaM increase in barley aleurone cells following exposure to GA, we suggest that Ca2+ and CaM act as signal transduction elements mediating hormone-induced changes in ion channel activity.  相似文献   

9.
Numerous biological assays and pharmacological studies on various higher plant tissues have led to the suggestion that voltage-dependent plasma membrane Ca2+ channels play prominent roles in initiating signal transduction processes during plant growth and development. However, to date no direct evidence has been obtained for the existence of such depolarization-activated Ca2+ channels in the plasma membrane of higher plant cells. Carrot suspension cells (Daucus carota L.) provide a well-suited system to determine whether voltage-dependent Ca2+ channels are present in the plasma membrane of higher plants and to characterize the properties of putative Ca2+ channels. It is known that both depolarization, caused by raising extracellular K+, and exposure to fungal toxins or oligogalacturonides induce Ca2+ influx into carrot cells. By direct application of patch-clamp techniques to isolated carrot protoplasts, we show here that depolarization of the plasma membrane positive to -135 mV activates Ca(2+)-permeable channels. These voltage-dependent ion channels were more permeable to Ca2+ than K+, while displaying large permeabilities to Ba2+ and Mg2+ ions. Ca(2+)-permeable channels showed slow and reversible inactivation. The single-channel conductance was 13 pS in 40 mM CaCl2. These data provide direct evidence for the existence of voltage-dependent Ca2+ channels in the plasma membrane of a higher plant cell and point to physiological mechanisms for plant Ca2+ channel regulation. The depolarization-activated Ca(2+)-permeable channels identified here could constitute a regulated pathway for Ca2+ influx in response to physiologically occurring stimulus-induced depolarizations in higher plant cells.  相似文献   

10.
Human T cell agar colonies can be grown under PHA stimulation from either mature T cells or their E rosette-negative (E-), OKT3- peripheral blood and bone marrow precursors. Colonies comprise a majority of mature E+, OKT3+ cells and a minor (5 to 10%) population of immature E-, T3-, T8-, T4-, DR+, T10+, RFB1+ cells, which upon replating in subculture, can generate secondary colonies of OKT3+, E+, OKT4+, OKT8+ cells. Secondary colony formation can serve as a test for growth requirement of colony precursors, because it depends on the presence of both PHA and a colony-promoting activity (CPA) recovered in PHA-stimulated B + null or T + adherent cell supernatants. CPA production by B + null cells was not affected by their treatment with OKT3 or D66 (T11-like) monoclonal antibodies (MAB) + complement but was abolished by an anti-HLA-DR MAB + complement. However, B cells sorted by panning with the same anti-HLA-DR MAB did not release CPA, demonstrating the requirement of both B cells and null cells for CPA production. Neither IL 2 nor IL 1 could account for B + null cell-derived CPA.  相似文献   

11.
A Na+/K+/Cl- cotransport pathway has been examined in the HT29 human colonic adenocarcinoma cell line using 86Rb as the K congener. Ouabain-resistant bumetanide-sensitive (OR-BS) K+ influx in attached HT29 cells was 17.9 +/- 0.9 nmol/min per mg protein at 25 degrees C. The identity of this pathway as a Na+/K+/Cl- cotransporter has been deduced from the following findings: (a) OR-BS K+ influx ceased if the external Cl- (Cl-o) was replaced by NO3- or the external Na+ (Na+o) by choline; (b) neither OR-BS 24Na+ nor 36Cl- influx was detectable in the absence of external K+ (K+o); and (c) concomitant measurements of 86Rb+, 22Na+, and 36Cl- influx indicated that the stoichiometry of the cotransport system approached a ratio of 1N+:1K+:2Cl-. In addition, OR-BS K+ influx was exquisitely sensitive to cellular ATP levels. Depletion of the normal ATP content of 35-40 nmol/mg protein to 10-15 nmol/mg protein, a concentration at which the ouabain-sensitive K+ influx was unaffected, completely abolished K+ cotransport. OR-BS K+ influx was slightly reduced by the divalent cations Ca2+, Ba2+, Mg2+ and Mn2+. Although changes in cell volume, whether shrinking or swelling, did not influence OR-BS K+ influx, ouabain-sensitive K+ influx was activated by cell swelling. As in T84 cells, we found that the OR-BS K+ influx in HT29 cells was stimulated by exogenous cyclic AMP analogues and by augmented cyclic AMP content in response to vasoactive intestinal peptide, forskolin, norepinephrine and forskolin or prostaglandin E1.  相似文献   

12.
This study was undertaken to characterize interactions among human T cell subpopulations involved in the generation of suppressor T cells specific for a soluble antigen. Purified PPD-primed Leu-3+ cells, when co-cultured for 7 days with fresh autologous Leu-2+ cells, induced differentiation of Leu-2+ but not Leu-3+ cells into specific suppressor T cells, which subsequently inhibited the proliferative response of fresh Leu-3+ cells to PPD but not to tetanus toxoid or allogeneic non-T cells. The PPD-specific suppressor effect of activated Leu-2+ cells was not due to altered kinetics of the PPD response and also extended to the secondary response of PPD-primed Leu-3+ cells. Furthermore, only those Leu-2+ cells that lacked the 9.3 marker, an antigen present on the majority of T cells including the precursors of cytotoxic T cells, differentiated into suppressor T cells. To analyze the inducer population, fresh Leu-3+ cells were separated into Leu-3+,8- and Leu-3+,8+ subpopulations with anti-Leu-8 monoclonal antibody, activated with PPD, and then were examined for inducer function. Although both Leu-3+,8- and Leu-3+,8+ cells proliferated in response to PPD and upon activation expressed comparable amounts of HLA-DR (Ia) antigens, the Leu-3+,8+ subpopulation alone induced Leu-2+ cells to become suppressor-effectors in the absence of PPD-pulsed autologous non-T cells. Once activated, however, Leu-2+ suppressor cells inhibited the PPD response of both Leu-3+,8- and Leu-3+,8+ cells. These results indicate that antigen-primed Leu-3+,8+ inducer cells can directly activate Leu-2+, 9.3- precursors of antigen-specific suppressor T cells in the absence of antigen-pulsed autologous non-T cells.  相似文献   

13.
Using physical techniques, circular dichroism and intrinsic and extrinsic fluorescence, the binding of divalent cations to soluble protein kinase C and their effects on protein conformation were analyzed. The enzyme copurifies with a significant concentration of endogenous Ca2+ as measured by atomic absorption spectrophotometry, however, this Ca2+ was insufficient to support enzyme activity. Intrinsic tryptophan fluorescence quenching occurred upon addition to the soluble enzyme of the divalent cations, Zn2+, Mg2+, Ca2+ or Mn2+, which was irreversible and unaffected by monovalent cations (0.5 M NaCl). Far ultraviolet (200-250 nm) circular dichroism spectra provided estimations of secondary structure and demonstrated that the purified enzyme is rich in alpha-helices (42%) suggesting a rather rigid structure. At Ca2+ or Mg2+ concentrations similar to those used for fluorescence quenching, the enzyme undergoes a conformational transition (42-24% alpha-helix, 31-54% random structures) with no significant change in beta-sheet structures (22-26%). Maximal effects on 1 microM enzyme were obtained at 200 microM Ca2+ or 100 microM Mg2+, the divalent cation binding having a higher affinity for Mg2+ than for Ca2+. The Ca2(+)-induced transition was time-dependent, while Mg2+ effects were immediate. In addition, there was no observed energy transfer for protein kinase C with the fluorescent Ca2(+)-binding site probe, terbium(III). This study suggests that divalent cation-induced changes in soluble protein kinase C structure may be an important step in in vitro analyses that has not yet been detected by standard biochemical enzymatic assays.  相似文献   

14.
alpha-Amylases (EC 3.2.1.1) secreted by the aleurone layer of barley grains are Ca2+-containing metalloenzymes. We studied the effect of Ca2+ on the activity and structure of the two major groups of aleurone alpha-amylase by incubating affinity purified enzyme in solutions containing Ca2+ from pCa 4 to 7. Both groups of isoforms required one atom of Ca2+/molecule of enzyme as determined by isotope exchange, but the two groups differed by more than 10-fold in their affinity for Ca2+. Both groups of alpha-amylase were irreversibly inactivated by incubation in low Ca2+ (pCa 7). This inactivation was not due to changes in primary structure, as measured by molecular weight, but appeared to be the result of changes in secondary and tertiary structure as indicated by circular dichroism spectra, serology, lability in the presence of protease, and fluorescence spectra. Analysis of the predicted secondary structure of barley aleurone alpha-amylase indicates that the Ca2+-binding region of barley amylases is structurally similar to that of mammalian alpha-amylases. Our data indicate that micromolar levels of Ca2+ are required to stabilize the structure of barley alpha-amylases in the endoplasmic reticulum of the aleurone layer where these enzymes are synthesized.  相似文献   

15.
用GAs处理禾谷类糊粉细胞原生质体后,可以诱导α_淀粉酶的合成与分泌。ABA抑制GAs的诱导作用并可刺激ABA诱导蛋白的产生。GAs和ABA的受体位于质膜上。最近的研究表明:G蛋白、cGMP、Ca2+和钙调素、三磷酸肌醇(IP3)及蛋白质磷酸酶(PP1和PP2A)都不同程度的参与了GA响应的信号传导过程。已克隆出一些可在转录水平上调节GA诱导基因的顺反子,并证明它们在禾谷类糊粉细胞中的GA响应事件中起至关重要的作用。有证据表明GA在α 淀粉酶的转录后水平的调节上也有作用。  相似文献   

16.
Cytoplasmic calcium stimulates exocytosis in a plant secretory cell   总被引:1,自引:0,他引:1       下载免费PDF全文
Although exocytosis is likely to occur in plant cells, the control of this process is the subject of speculation, as no direct measurements of vesicle fusion to the plasma membrane have been made. We used the patch clamp technique to monitor the secretory activity of single aleurone protoplasts by measuring membrane capacitance (Cm), while dialyzing the cytosol with different Ca2+ containing solutions. Secretory activity increased with [Ca2+]i ~ 1 μM. This demonstrates directly the existence of exocytosis in plant cells, and suggests that both plant and animal cells share common mechanisms (cytosolic Ca2+) for the control of exocytotic secretion.  相似文献   

17.
Cornejo  M. J.  Platt-aloia  K. A.  Thomson  W. W.  Jones  R. L. 《Protoplasma》1988,146(2-3):157-165
Summary Freeze-fracture electron microscopy was used to study changes in the endomembrane system of barley (Hordeum vulgare L. cv. Himalaya) aleurone protoplasts. Protoplasts were used for this study because their response to calcium and the plant hormone gibberellic acid (Ga3) can be monitored prior to rapid freezing of cells for electron microscopy. Protoplasts incubated in Ga3 plus Ca2+ secrete elevated levels of a-amylase relative to cells incubated in Ga3 or Ca2+ alone. The endoplasmic reticulum (ER) and Golgi apparatus of protoplasts incubated in Ga3 plus Ca2+ undergo changes that are well correlated with the synthesis and secretion of a-amylase. The ER, which appears as short, single sheets of membrane in Ca2+-and Ga3-treated protoplasts, exists as a series of long fenestrated stacks of membranes following incubation in Ga3 plus Ca2+. The Golgi apparatus is also more highly developed in protoplasts treated with Ga3 plus Ca2+. This organelle is larger and has more vesicles associated with its periphery in protoplasts that actively secrete a-amylase. Evidence that the Golgi apparatus participates in a-amylase secretion is also provided by experiments with the ionophore monensin, which causes pronounced swelling of Golgi cisternae and inhibits the secretion of a-amylase. We interpret these observations as showing that the ER and Golgi apparatus of barley aleurone participate in the intracellular transport and secretion of a-amylase. The plasmalemma (PF face) of barley aleurone protoplasts shows a high density of intramembranous particles (IMPs) which, in general, are evenly distributed. Occasionally, ordered arrays of IMPs are observed, possibly resulting fro m osmotic stress. after 48 hours the plasmalemma of some Ga3-treated protoplasts show particle-free areas considered to be indications of senescence.abbreviations ER endoplasmic reticulum - Ga3 gibberellic acid - IEF isoelectric focusing - IMP intramembranous particle - PF protoplasmic fracture - PL plasmalemma  相似文献   

18.
Gibberellic Acid Induces Vacuolar Acidification in Barley Aleurone   总被引:4,自引:0,他引:4       下载免费PDF全文
Swanson SJ  Jones RL 《The Plant cell》1996,8(12):2211-2221
The roles of gibberellic acid (GA3) and abscisic acid (ABA) in the regulation of vacuolar pH (pHv) in aleurone cells of barley were investigated using the pH-sensitive fluorescent dye 2[prime],7[prime]-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). BCECF accumulated in vacuoles of aleurone cells, but sequestration of the dye did not affect its sensitivity to pH. BCECF-loaded aleurone cells retained their ability to respond to both GA3 and ABA. The pHv of freshly isolated aleurone cells is 6.6, but after incubation in GA3, the pHv fell to 5.8. The pHv of cells not incubated in hormones or in the presence of ABA showed little or no acidification. The aleurone tonoplast contains both vacuolar ATPase and vacuolar pyrophosphatase, but the levels of pump proteins were not affected by incubation in the presence or absence of hormones. We conclude that GA3 affects the pHv in aleurone cells by altering the activities of tonoplast H+ pumps but not the amounts of pump proteins.  相似文献   

19.
Gibberellins: regulating genes and germination   总被引:13,自引:1,他引:13  
  相似文献   

20.
Plant and fungal calmodulin: Ca2+-dependent regulation of plant NAD kinase   总被引:3,自引:0,他引:3  
Although little is known about the role(s) of second messengers, including free Ca2+, in plant cells there has been increasing evidence for a role for Ca2+ in metabolic regulation in plants. The recent demonstration that the Ca2+-binding protein, calmodulin exists in extracts of higher plants and basidiomycete fungi provides a basis for understanding Ca2+-dependent metabolic regulation in plant cells. In this review we summarize the similarities and differences of plant, fungal and mammalian calmodulin. We also discuss the known in vitro functions of calmodulin in higher plants. A Ca2+-calmodulin-dependent NAD kinase has been purified to homogeneity from extracts of pea seedlings and shown to be absolutely dependent upon calmodulin and microM levels of free Ca2+ for activity. The available evidence suggest that this Ca2+-calmodulin-dependent NAD kinase is the major form of plant NAD kinase and that this regulatory enzyme is localized in the chloroplast. A model is presented which predicts that the rate of photosynthesis is regulated by a receptor-mediated change in the level of chloroplastic free Ca2+ upon illumination. Free Ca2+, acting as a second messenger, forms a Ca2+-calmodulin complex thus converting calmodulin to its active conformation. This Ca2+-calmodulin complex then activates chloroplastic NAD kinase resulting in an increased NADP/NAD ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号