首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulated sorting of proteins within the trans-Golgi network (TGN)/endosomal system is a key determinant of their biological activity in vivo. For example, the endoprotease furin activates of a wide range of proproteins in multiple compartments within the TGN/endosomal system. Phosphorylation of its cytosolic domain by casein kinase II (CKII) promotes the localization of furin to the TGN and early endosomes whereas dephosphorylation is required for efficient transport between these compartments (Jones, B.G., L. Thomas, S.S. Molloy, C.D. Thulin, M.D. Fry, K.A. Walsh, and G. Thomas. 1995. EMBO [Eur. Mol. Biol. Organ.] J. 14:5869–5883). Here we show that phosphorylated furin molecules internalized from the cell surface are retained in a local cycling loop between early endosomes and the plasma membrane. This cycling loop requires the phosphorylation state-dependent furin-sorting protein PACS-1, and mirrors the trafficking pathway described recently for the TGN localization of furin (Wan, L., S.S. Molloy, L. Thomas, G. Liu, Y. Xiang, S.L. Ryback, and G. Thomas. 1998. Cell. 94:205–216). We also demonstrate a novel role for protein phosphatase 2A (PP2A) in regulating protein localization in the TGN/endosomal system. Using baculovirus recombinants expressing individual PP2A subunits, we show that the dephosphorylation of furin in vitro requires heterotrimeric phosphatase containing B family regulatory subunits. The importance of this PP2A isoform in directing the routing of furin from early endosomes to the TGN was established using SV-40 small t antigen as a diagnostic tool in vivo. The role of both CKII and PP2A in controlling multiple sorting steps in the TGN/endosomal system indicates that the distribution of itinerant membrane proteins may be acutely regulated via signal transduction pathways.  相似文献   

2.
Furin is a subtilisin-related endoprotease which processes a wide range of bioactive proteins. Furin is concentrated in the trans-Golgi network (TGN), where proteolytic activation of many precursor proteins takes place. A significant fraction of furin, however, cycles among the TGN, the plasma membrane, and endosomes, indicating that the accumulation in the TGN reflects a dynamic localization process. The cytosolic domain of furin is necessary and sufficient for TGN localization, and two signals are responsible for retrieval of furin to the TGN. A tyrosine-based (YKGL) motif mediates internalization of furin from the cell surface into endosomes. An acidic cluster that is part of two casein kinase II phosphorylation sites (SDSEEDE) is then responsible for retrieval of furin from endosomes to the TGN. In addition, the acidic EEDE sequence also mediates endocytic activity. Here, we analyzed the sorting of furin in polarized epithelial cells. We show that furin is delivered to the basolateral surface of MDCK cells, from where a significant fraction of the protein can return to the TGN. A phenylalanine-isoleucine motif together with the acidic EEDE cluster is required for basolateral sorting and constitutes a novel signal regulating intracellular traffic of furin.  相似文献   

3.
Prior studies on receptor recycling through late endosomes and the TGN have suggested that such traffic may be largely limited to specialized proteins that reside in these organelles. We present evidence that efficient recycling along this pathway is functionally important for nonresident proteins. P-selectin, a transmembrane cell adhesion protein involved in inflammation, is sorted from recycling cell surface receptors (e.g., low density lipoprotein [LDL] receptor) in endosomes, and is transported from the cell surface to the TGN with a half-time of 20-25 min, six to seven times faster than LDL receptor. Native P-selectin colocalizes with LDL, which is efficiently transported to lysosomes, for 20 min after internalization, but a deletion mutant deficient in endosomal sorting activity rapidly separates from the LDL pathway. Thus, P-selectin is sorted from LDL receptor in early endosomes, driving P-selectin rapidly into late endosomes. P-selectin then recycles to the TGN as efficiently as other receptors. Thus, the primary effect of early endosomal sorting of P-selectin is its rapid delivery to the TGN, with rapid turnover in lysosomes a secondary effect of frequent passage through late endosomes. This endosomal sorting event provides a mechanism for efficiently recycling secretory granule membrane proteins and, more generally, for downregulating cell surface receptors.  相似文献   

4.
The mammalian proprotein convertases (PCs) are a family of secretory pathway enzymes that catalyze the endoproteolytic maturation of peptide hormones and many bioactive proteins. Two PCs, furin and PC6B, are broadly expressed and share very similar cleavage site specificities, suggesting that they may be functionally redundant. However, germline knockout studies show that they are not. Here we report the distinct subcellular localization of PC6B and identify the sorting information within its cytoplasmic domain (cd). We show that in neuroendocrine cells, PC6B is localized to a paranuclear, brefeldin A-dispersible, BaCl(2)-responsive post-Golgi network (TGN) compartment distinct from furin and TGN38. The 88-amino acid PC6B-cd contains sorting information sufficient to direct reporter proteins to the same compartment as full-length PC6B. Mutational analysis indicates that endocytosis is predominantly directed by a canonical tyrosine-based motif (Tyr(1802)GluLysLeu). Truncation and sufficiency studies reveal that two clusters of acidic amino acids (ACs) within the PC6B-cd contain differential sorting information. The membrane-proximal AC (AC1) directs TGN localization and interacts with the TGN sorting protein PACS-1. The membrane-distal AC (AC2) promotes a localization characteristic of the full-length PC6B-cd. Our results demonstrate that AC motifs can target proteins to distinct TGN/endosomal compartments and indicate that the AC-mediated localization of PC6B and furin contribute to their distinct roles in vivo.  相似文献   

5.
Wisner TW  Johnson DC 《Journal of virology》2004,78(21):11519-11535
Herpes simplex virus (HSV) and other alphaherpesviruses assemble enveloped virions in the trans-Golgi network (TGN) or endosomes. Enveloped particles are formed when capsids bud into TGN/endosomes and virus particles are subsequently ferried to the plasma membrane in TGN-derived vesicles. Little is known about the last stages of virus egress from the TGN/endosomes to cell surfaces except that the HSV directs transport of nascent virions to specific cell surface domains, i.e., epithelial cell junctions. Previously, we showed that HSV glycoprotein gE/gI accumulates extensively in the TGN at early times after infection and also when expressed without other viral proteins. At late times of infection, gE/gI and a cellular membrane protein, TGN46, were redistributed from the TGN to epithelial cell junctions. We show here that gE/gI and a second glycoprotein, gB, TGN46, and another cellular protein, carboxypeptidase D, all moved to cell junctions after infection with an HSV mutant unable to produce cytoplasmic capsids. This redistribution did not involve L particles. In contrast to TGN membrane proteins, several cellular proteins that normally adhere to the cytoplasmic face of TGN, Golgi, and endosomal membranes remained primarily dispersed throughout the cytoplasm. Therefore, cellular and viral membrane TGN proteins move to cell junctions at late times of HSV infection when the production of enveloped particles is blocked. This is consistent with the hypothesis that there are late HSV proteins that reorganize or redistribute TGN/endosomal compartments to promote virus egress and cell-to-cell spread.  相似文献   

6.
R E Chapman  S Munro 《The EMBO journal》1994,13(10):2305-2312
TGN38 is a protein of unknown function located in the trans-Golgi network (TGN) of mammalian cells. Its intracellular distribution is maintained by it being continuously retrieved from the plasma membrane. In this paper we show that when cells are treated with agents such as chloroquine which neutralize acidic organelles, the movement of TGN38 along the endocytic pathway is blocked. The same effect is observed with a second TGN protein, the protease furin. We show that the cytoplasmic tail of furin is sufficient to confer a chloroquine-sensitive TGN localization on a heterologous protein. These results imply that the internal pH of endosomes affects sorting processes mediated by signals in the cytoplasmic portion of proteins and have implications for the role of acidification in endosomal function.  相似文献   

7.
The predominant intracellular localization of the eukaryotic subtilisin-like endoprotease furin is the trans-Golgi network (TGN), but a small fraction is also found on the cell surface. Furin on the cell surface is internalized and delivered to the TGN. The identification of three endocytosis motifs, a tyrosine (YKGL(765)) motif, a leucine-isoleucine (LI(760)) motif, and a phenylalanine (Phe(790)) signal, in the furin cytoplasmic domain suggested that endocytosis of furin occurs via an AP-2/clathrin-dependent pathway. Since little is known about proteins containing multiple sorting components in their cytoplasmic domain, the combination of diverse internalization signals in the furin tail raised the question of their individual role. Here we present data showing that the furin tail interacts with the medium (micro2) subunit of the AP-2 plasma membrane-specific adaptor complex in vitro and that this interaction primarily depends on recognition of the tyrosine-based sorting signal and to less extent on the leucine-isoleucine motif. We further provide evidence that the three endocytosis signals are of different functional importance for furin internalization and retrieval to the TGN in vivo, with the tyrosine-based motif being the major determinant, followed by the phenylalanine signal, whereas the leucine-isoleucine motif is only a minor component. Finally, we report that phosphorylation of the furin tail by casein kinase II is not only important for efficient interaction with micro2 and internalization from the plasma membrane but also determines fast retrieval of the protein from the plasma membrane to the TGN.  相似文献   

8.
Furin is a transmembrane protein that cycles between the plasma membrane, endosomes, and the trans-Golgi network, maintaining a predominant distribution in the latter. It has been shown previously that Tac-furin, a chimeric protein expressing the extracellular and transmembrane domains of the interleukin-2 receptor alpha chain (Tac) and the cytoplasmic domain of furin, is delivered from the plasma membrane to the TGN through late endosomes, bypassing the endocytic recycling compartment. Tac-furin also recycles in a loop between the TGN and late endosomes. Localization of furin to the TGN is modulated by a six-amino acid acidic cluster that contains two phosphorylatable serines (SDSEED). We investigated the role of these serines in the trafficking of Tac-furin by using a mutant chimera in which the SDS sequence was replaced by the nonphosphorylatable sequence ADA (Tac-furin/ADA). Although the mutant construct is internalized and delivered to the TGN, both the postendocytic trafficking and the steady-state distribution were found to differ from the wild-type. In contrast with Tac-furin, Tac-furin/ADA does not enter late endosomes after being internalized. Instead, it traffics with transferrin to the endocytic recycling compartment, and from there it is delivered to the TGN. As with Tac-furin, Tac-furin/ADA is sorted from the TGN into late endosomes at steady state, but its retrieval from the late endosomes to the TGN is inhibited. These results suggest that serine phosphorylation plays an important role in at least two steps of Tac-furin trafficking, acting as an active sorting signal that mediates the selective sorting of Tac-furin into late endosomes after internalization, as well as its retrieval from late endosomes back to the TGN.  相似文献   

9.
The ubiquitin proteasome system is central to the regulation of a number of intracellular sorting pathways in mammalian cells including quality control at the endoplasmic reticulum and the internalization and endosomal sorting of cell surface receptors. Here we describe that RNF126, an E3 ubiquitin ligase, is involved in the sorting of the cation-independent mannose 6-phosphate receptor (CI-MPR). In cells transiently depleted of RNF126, the CI-MPR is dispersed into Rab4 positive endosomes and the efficiency of retrograde sorting is delayed. Furthermore, the stable knockdown of RNF126 leads to the lysosomal degradation of CI-MPR and missorting of cathepsin D. RNF126 specifically regulates the sorting of the CI-MPR as other cargo that follow the retrograde sorting route including the cholera toxin, furin and TGN38 are unaffected in the absence of RNF126. Lastly we show that the RING finger domain of RNF126 is required to rescue the decrease in CI-MPR levels, suggesting that the ubiquitin ligase activity of RNF126 is required for CI-MPR sorting. Together, our data indicate that the ubiquitin ligase RNF126 has a role in the retrograde sorting of the CI-MPR  相似文献   

10.
Newly synthesized membrane proteins are sorted in the trans-Golgi network (TGN) on the basis of sorting signals carried in their cytoplasmic domains and delivered to their final destinations in the secretory and endocytic pathways. Although previous studies have suggested the involvement of early endosomes in the biosynthetic pathway of transmembrane proteins, the precise trafficking routes followed by the newly synthesized plasma membrane proteins, such as transferrin receptors (TfRs), after exit from the TGN remain unclear. In this report, first, we demonstrated the advantages of photoactivating PA-GFP, a variant of the Aequorea victoria green fluorescent protein (GFP), with multiphoton laser light rather than single-photon laser light, in terms of photoactivation efficiency and spatial resolution. We then applied the multiphoton photoactivation technique to selectively photoactivate the TfR tagged with PA-GFP (PA-GFP-TfR) at the TGN, and monitored the movement of the photoactivated PA-GFP-TfR in live cells. We observed that the PA-GFP-TfR photoactivated at the TGN are transported to the Tfn(+)EEA1(+) endosomal compartments after exiting the TGN. These data support the notion that early endosomes can serve as a sorting station for not only internalized plasma membrane proteins in the endocytic pathway but also newly synthesized membrane proteins in the post-Golgi secretory pathway.  相似文献   

11.
Membrane-associated RING-CH (MARCH) is a recently identified member of the mammalian E3 ubiquitin ligase family, some members of which down-regulate the expression of immune recognition molecules. Here, we have identified MARCH-II, which is ubiquitously expressed and localized to endosomal vesicles and the plasma membrane. Immunoprecipitation and in vitro binding studies established that MARCH-II directly associates with syntaxin 6. Overexpression of MARCH-II resulted in redistribution of syntaxin 6 as well as some syntaxin-6-interacting soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) into the MARCH-II-positive vesicles. In addition, the retrograde transport of TGN38 and a chimeric version of furin to trans-Golgi network (TGN) was perturbed--without affecting the endocytic degradative and biosynthetic secretory pathways--similar to effects caused by a syntaxin 6 mutant lacking the transmembrane domain. MARCH-II overexpression markedly reduced the cell surface expression of transferrin (Tf) receptor and Tf uptake and interfered with delivery of internalized Tf to perinuclear recycling endosomes. Depletion of MARCH-II by small interfering RNA perturbed the TGN localization of syntaxin 6 and TGN38/46. MARCH-II is thus likely a regulator of trafficking between the TGN and endosomes, which is a novel function for the MARCH family.  相似文献   

12.
The exchange of proteins and lipids between the trans-Golgi network (TGN) and the endosomal system requires multiple cellular machines, whose activities are coordinated in space and time to generate pleomorphic, tubulo-vesicular carriers that deliver their content to their target compartments. These machines and their associated protein networks are recruited and/or activated on specific membrane domains where they select proteins and lipids into carriers, contribute to deform/elongate and partition membrane domains using the mechanical forces generated by actin polymerization or movement along microtubules. The coordinated action of these protein networks contributes to regulate the dynamic state of multiple receptors recycling between the cell surface, endosomes and the TGN, to maintain cell homeostasis as exemplified by the biogenesis of lysosomes and related organelles, and to establish/maintain cell polarity. The dynamic assembly and disassembly of these protein networks mediating the exchange of membrane domains between the TGN and endosomes regulates cell-cell signalling and thus the development of multi-cellular organisms. Somatic mutations in single network components lead to changes in transport dynamics that may contribute to pathological modifications underlying several human diseases such as mental retardation.  相似文献   

13.
Abstract

The exchange of proteins and lipids between the trans-Golgi network (TGN) and the endosomal system requires multiple cellular machines, whose activities are coordinated in space and time to generate pleomorphic, tubulo-vesicular carriers that deliver their content to their target compartments. These machines and their associated protein networks are recruited and/or activated on specific membrane domains where they select proteins and lipids into carriers, contribute to deform/elongate and partition membrane domains using the mechanical forces generated by actin polymerization or movement along microtubules. The coordinated action of these protein networks contributes to regulate the dynamic state of multiple receptors recycling between the cell surface, endosomes and the TGN, to maintain cell homeostasis as exemplified by the biogenesis of lysosomes and related organelles, and to establish/maintain cell polarity. The dynamic assembly and disassembly of these protein networks mediating the exchange of membrane domains between the TGN and endosomes regulates cell-cell signalling and thus the development of multi-cellular organisms. Somatic mutations in single network components lead to changes in transport dynamics that may contribute to pathological modifications underlying several human diseases such as mental retardation.  相似文献   

14.
The mammalian endopeptidase furin is a type 1 integral membrane protein that is predominantly localized to the TGN and is degraded in lysosomes with a t1/2 = 2–4 h. Whereas the localization of furin to the TGN is largely mediated by sorting signals in the cytosolic tail of the protein, we show here that targeting of furin to lysosomes is a function of the luminal domain of the protein. Inhibition of lysosomal degradation results in the accumulation of high molecular weight aggregates of furin; aggregation is also dependent on the luminal domain of furin. Temperature and pharmacologic manipulations suggest that furin aggregation occurs in the TGN and thus precedes delivery to lysosomes. These findings are consistent with a model in which furin becomes progressively aggregated in the TGN, an event that leads to its transport to lysosomes. Our observations indicate that changes in the aggregation state of luminal domains can be potent determinants of biosynthetic targeting to lysosomes and suggest the possible existence of quality control mechanisms for disposal of aggregated proteins in compartments of the secretory pathway other than the endoplasmic reticulum.  相似文献   

15.
The cation-independent mannose-6-phosphate receptor (CI-MPR) follows a highly regulated sorting itinerary to deliver hydrolases from the trans-Golgi network (TGN) to lysosomes. Cycling of CI-MPR between the TGN and early endosomes is mediated by GGA3, which directs TGN export, and PACS-1, which directs endosome-to-TGN retrieval. Despite executing opposing sorting steps, GGA3 and PACS-1 bind to an overlapping CI-MPR trafficking motif and their sorting activity is controlled by the CK2 phosphorylation of their respective autoregulatory domains. However, how CK2 coordinates these opposing roles is unknown. We report a CK2-activated phosphorylation cascade controlling PACS-1- and GGA3-mediated CI-MPR sorting. PACS-1 links GGA3 to CK2, forming a multimeric complex required for CI-MPR sorting. PACS-1-bound CK2 stimulates GGA3 phosphorylation, releasing GGA3 from CI-MPR and early endosomes. Bound CK2 also phosphorylates PACS-1Ser(278), promoting binding of PACS-1 to CI-MPR to retrieve the receptor to the TGN. Our results identify a CK2-controlled cascade regulating hydrolase trafficking and sorting of itinerant proteins in the TGN/endosomal system.  相似文献   

16.
The endosomal network is an organized array of intracellular, membranous compartments that function as sorting sites for endosomal and biosynthetic cargo. The fate of endocytic cargo is reliant upon interactions with a number of molecularly distinct sorting complexes, which tightly control the relationship between sorting of their respective cargo and the physical process of membrane re-scuplturing required for the formation of transport carries. One such complex, retromer, mediates retrograde transport from endosomes to the trans-Golgi network (TGN). Disregulation of retromer has been implicated in a host of disease states including late-onset Alzheimer's. Rather than give a broad overview of retromer biology, here we aim to outline the recent advances in understanding this complex, focussing on the involvement of both clathrin and the cytoskeleton in retromer function.  相似文献   

17.
Return of cell surface glycoproteins to compartments of the secretory pathway has been examined in HepG2 cells comparing return to the trans- Golgi network (TGN), the trans/medial- and cis-Golgi. Transport to these sites was studied by example of the transferrin receptor (TfR) and the serine peptidase dipeptidylpeptidase IV (DPPIV) after labeling these proteins with the N-hydroxysulfosuccinimide ester of biotin on the cell surface. This experimental design allowed to distinguish between glycoproteins that return to these biosynthetic compartments from the cell surface and newly synthesized glycoproteins that pass these compartments during biosynthesis en route to the surface. Reentry to the TGN was measured in that surface glycoproteins were desialylated with neuraminidase and were monitored for resialylation during recycling. Return to the trans-Golgi was traced measuring the transfer of [3H]fucose residues to recycling surface proteins by fucosyltransferases. To study return to the cis-Golgi, surface proteins were metabolically labeled in the presence of the mannosidase I inhibitor deoxymannojirimycin (dMM). As a result surface proteins retained N-glycans of the oligomannosidic type. Return to the site of mannosidase I in the medial/cis-Golgi was measured monitoring conversion of these glycans to those of the complex type after washout of dMM. Our data demonstrate that DPPIV does return from the cell surface not only to the TGN, but also to the trans-Golgi thus linking the endocytic to the secretory pathway. In contrast, no reentry to sites of mannosidase I could be detected indicating that the early secretory pathway is not or is only at insignificant rates accessible to recycling DPPIV. In contrast to DPPIV, TfR was very efficiently sorted from endosomes to the cell surface and did not return to the TGN or to other biosynthetic compartments in detectable amounts, indicating that individual surface proteins are subject to different sorting mechanisms or sorting efficiencies during recycling.  相似文献   

18.
Endosomal sorting is essential for cell homeostasis. Proteins targeted for degradation are retained in the maturing endosome vacuole while others are recycled to the cell surface or sorted to the biosynthetic pathway via tubular transport carriers. Sorting nexin (SNX) proteins containing a BAR (for Bin-Amphiphysin-Rvs) domain are key regulators of phosphoinositide-mediated, tubular-based endosomal sorting, but how such sorting is co-ordinated with endosomal maturation is not known. Here, using well-defined Rab GTPases as endosomal compartment markers, we have analyzed the localization of SNX1 [endosome-to-trans-Golgi network (TGN) transport as part of the SNX-BAR-retromer complex], SNX4 (cargo-recycling from endosomes to the plasma membrane) and SNX8 (endosomes-to-TGN trafficking in a retromer-independent manner). We show that these SNX-BARs are primarily localized to early endosomes, but display the highest frequency of tubule formation at the moment of early-to-late endosome transition: the Rab5-to-Rab7 switch. Perturbing this switch shifts SNX-BAR tubulation to early endosomes, resulting in SNX1-decorated tubules that lack retromer components VPS26 and VPS35, suggesting that both early and late endosomal characteristics of the endosome are important for SNX-BAR-retromer-tubule formation. We also establish that SNX4, but not SNX1 and SNX8, is associated with the Rab11-recycling endosomes and that a high frequency of SNX4-mediated tubule formation is observed as endosomes undergo Rab4-to-Rab11 transition. Our study therefore provides evidence for fine-tuning between the processes of endosomal maturation and the formation of endosomal tubules. As tubulation is required for SNX1-, SNX4- and SNX8-mediated sorting, these data reveal a previously unrecognized co-ordination between maturation and tubular-based sorting.  相似文献   

19.
In animals, sorting of membrane proteins following their internalization from the plasma membrane (PM) by endocytosis occurs through a series of different endosomal compartments. In plants, how and where these sorting events take place is still poorly understood and our current view of the endocytic pathway still largely relies on analogies made from the animal system. However, extensive differences seem to exist between animal and plant endosomal functions, as exemplified by the role of the trans-Golgi network (TGN) as an early endosomal compartment in plants or the functional diversification of conserved sorting complexes. By using the Arabidopsis root tip as a reference model, we and other have begun to shed light on the complexity of the plant endocytic pathways. Notably, we have recently characterized the functions of an endosomal compartment, the SNX1-endosomes, also referred to as the prevacuolar compartment (PVC) or multivesicular bodies (MVB), in the sorting of different cargo proteins, including two related auxin-efflux carriers, PIN1 and PIN2. We have shown that routing decisions take place at this endosomal level, such as the sorting of PIN2 toward the lytic vacuole for degradation or PIN1 toward the PM for recycling.Key Words: Arabidopsis, intracellular trafficking, endocytic recycling, endosomes, MVB, PVC, VPS29, SNX, PIN, cell polarity  相似文献   

20.
A Alconada  U Bauer    B Hoflack 《The EMBO journal》1996,15(22):6096-6110
We have studied the intracellular trafficking of the envelope glycoprotein I (gpI) of the varicella-zoster virus, a human herpes virus whose assembly is believed to occur in the trans-Golgi network (TGN) and/or in endocytic compartments. When expressed in HeLa cells in the absence of additional virally encoded factors, this type-I membrane protein localizes to the TGN and cycles between this compartment and the cell surface. The expression of gpI promotes the recruitment of the AP-1 Golgi-specific assembly proteins onto TGN membranes, strongly suggesting that gpI, like the mannose 6-phosphate receptors, can leave the TGN in clathrin-coated vesicles for subsequent transport to endosomes. Its return from the cell surface to the TGN also occurs through endosomes. The transfer of the gpI cytoplasmic domain onto a reporter molecule shows that this domain is sufficient to confer TGN localization. Mutational analysis of this domain indicates that proper subcellular localization and cycling of gpI depend on two different determinants, a tyrosine-containing tetrapeptide related to endocytosis sorting signals and a cluster of acidic amino acids containing casein kinase II phosphorylatable residues. Thus, the VZV gpI and the mannose 6-phosphate receptors, albeit localized in different intracellular compartments at steady-state, follow similar trafficking pathways and share similar sorting mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号