首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In many lipid-containing systems (intact membranes, lipid-water and proteinlipid-water phases) the hydrocarbon chains are known to undergo a reversible temperature-dependent transition between a highly disordered (type α) and a partly ordered (type β) conformation; in the β conformation the chains, stiff and all parallel, are packed with rotational disorder according to a two-dimensional hexagonal lattice. This work describes an X-ray diffraction and freeze-fracturing electron microscope study of the phases involved in this conformational transition. Several lipid-water systems were studied: mitochondrial lipids; phosphatidic acid, synthetic lecithin; hen egg lecithin. The conformational transition is found to be a complex phenomenon dependent upon the chemical composition of the lipids, the amount of water and temperature. When the lipid is a pure chemical species the transition involves two phases; one with all the chains in the α conformation the other with all the chains in the β conformation. If the chains are heterogeneous, then from the onset of the transition from type α, they segregate into regions with different conformation, presumably according to their length and degree of saturation. One of the phases (Lαβ) consists of regularly stacked lipid lamellae, each of which is a disordered mosaic of two types of domains; one with the chains in the α, the other in the β conformation. In another phase (Lγ) each lipid lamella is formed by one monolayer of type α and one of type β, joined by their apolar faces. Two other phases (Pγ and Pαβ) display two-dimensional lattices, and consist of lipid lamellae distorted by wave-like ripples, with an ordered segregation of domains in the α and in the β conformation. The number and the structure of the phases involved in the conformational transition are strongly dependent upon the heterogeneity of the hydrocarbon chains and upon the charge and hydration of the polar groups. The results of this study have a bearing on the conformation of the chains in membranes, and on the possible biological significance of conformational transitions.  相似文献   

3.
An analysis of the paramagnetic resonance spectra of spin labels in the lipidic region of lecithin-water lamellar phases as a function of phase water content has been carried out. The observed variation of the local organization and mobility of the lipids is consonant with previous results obtained from solute diffusion measurements. The previously observed sudden changes of solute diffusion for hydration of 9 and 18 molecules water per lecithin molecule are compared with the concomitant sudden changes as seen by ESR spectroscopy. The results also indicate that there is a gradient of fluidity across the lipid leaflets which are therefore not homogeneous to diffusing molecules.  相似文献   

4.
5.
6.
The conformational properties of isolated unbranched hydrocarbon polyunsaturated molecules of cis-C18:4 and cis-C18:5 under theta-conditions (T = 298 K) were studied using Monte Carlo simulations. The conformations were generated by a computer (the continuum model was used; the energy of nonbonded interactions and torsion and electrostatic terms were taken into account). A molecule-fixed coordinate system with the axes along inertia tensor eigenvectors of each molecule conformation (principal axes of inertia) were used for the calculations. C-H and C-C bond orientation distribution functions rho and ordering parameters S with respect to the maximum molecule span axis were calculated. It was shown that the presence of five methylene-interrupted cis double bonds in C18 chain has a maximum effect on the intramolecular ordering properties of the molecule. The widths of function rho CH for pentaenes differed significantly from those of other C18-chains: the widths of function rho for all CH2-groups were nearly twice as large as that for C-H-bonds flanking the double bonds C=C, and roughly constant along the chain sequence. The mean magnitudes of magnitudes of SCH in the molecule decreased when unsaturation increased.  相似文献   

7.
The longitudinal diffusion of a homologous series of monoamides through lecithin-water lamellar phases with aqueous channel widths of 16–27 Å has been studied. The diffusion coefficients relative to water of the hydrophilic amides, formamide and acetamide, depend logarithmically on solute molar volume, as previously demonstrated in human red cells. Aqueous diffusion of amides in red-cell membranes is similar to that in a lecithin-water phase of aqueous channel width less than 16 Å, the smallest channel width used. Partition coefficients of the lipophilic amides, valeramide and isovaleramide, between lecithin vesicles and water are 1.64 and 1.15 at 20 °C. These data enabled us to compute a valeramide diffusion coefficient of 6.5 · 10−7cm2 · s−1 at 20 °C in the lipid region of a lamellar phase containing 30% water about one order of magnitude greater than the diffusion coefficient of spin-labelled analogs of phosphatidylcholine. The discrimination between the permeability coefficients of valeramide and isovaleramide is more than twice as great in the human red cell as between lipid diffusion coefficients in a phase containing 8% water. This suggests that the lipid region of the human red cell is more highly organized than lipid in the lecithin-water lamellar phase.  相似文献   

8.
Utilizing three biocompatible components, a series of novel cationic lipids has been chemically synthesized and tested for their gene-transferring capabilities in 293 transformed kidney cells and B16BL6 mouse melanoma cells. The synthesized cationic lipids consisting of a core of lysine and aspartic acid with hydrocarbon chains of varied length were assigned the acronyms DLKD (O,O'-dilauryl N-lysylaspartate), DMKD (O,O'-dimyristyl N-lysylaspartate), DPKD (O,O'-dipalmityl N-lysylaspartate), and DSKD (O,O'-distearyl N-lysylaspartate). The gene-transferring capabilities of these cationic lipids were found to be dependent on the hydrocarbon chain length. Under similar experimental conditions, the order of gene transfection efficiency was DMKD > DLKD > DPKD > DSKD. Addition of cholesterol or dioleoyl phosphatidylethanolamine (DOPE) as a colipid did not change this order. Colipid addition affected the transfection efficiency positively or negatively depending on the length of the cationic lipid acyl chain. On the whole, the length of the hydrophobic carbon chain was a major factor governing the gene-transferring capabilities of this series of cationic lipids. The observed differences in transfection efficiency may be due to differing binding affinities to DNA molecules as well as differences in the surface charge potential of the liposome-DNA complexes (lipoplexes) in the aqueous environment.  相似文献   

9.
10.
11.
The cell-wall-less bacterium Acholeplasma laidlawii A-EF22 synthesizes eight glycerolipids. Some of them form lamellar phases, whereas others are able to form normal or reversed nonlamellar phases. In this study we examined the phase properties of total lipid extracts with limiting average acyl chain lengths of 15 and 19 carbon atoms. The temperature at which these extracts formed reversed hexagonal (HII) phases differed by 5-10 degreesC when the water contents were 20-30 wt%. Thus the cells adjust the ratio between lamellar-forming and nonlamellar-forming lipids to the acyl chain lengths. Because short acyl chains generally increase the potential of lipids to form bilayers, it was judged interesting to determine which of the A. laidlawii A lipids are able to form reversed nonlamellar phases with short acyl chains. The two candidates with this ability are monoacyldiglucosyldiacylglycerol (MADGlcDAG) and monoglucosyldiacylglycerol. The average acyl chain lengths were 14.7 and 15.1 carbon atoms, and the degrees of acyl chain unsaturation were 32 and 46 mol%, respectively. The only liquid crystalline phase formed by MADGlcDAG is an HII phase. Monoglucosyldiacylglycerol forms reversed cubic (Ia3d) and HII phases at high temperatures. Thus, even when the organism is grown with short fatty acids, it synthesizes two lipids that have the capacity to maintain the nonlamellar tendency of the lipid bilayer. MADGlcDAG in particular contributes very powerfully to this tendency.  相似文献   

12.
We describe in this work the structure and polymorphism of a variety of lipids extracted from Sulfolobus solfataricus, an extreme thermoacidophilic archaebacterium growing at about 85 °C and pH 2. These lipids are quite different from the usual fatty acid lipids of eukaryotes and prokaryotes: each molecule consists of two C40 ω-ω′ biphytanyl residues (with 0 to 4 cyclopentane groups per residue), ether linked at both ends to two (variably substituted) glycerol or nonitol groups. Four lipid preparations were studied; the total and the polar lipid extracts, and two hydrolytic fractions, the symmetric glycerol dialkyl glycerol tetraether and the asymmetric glycerol dialkyl nonitol tetraether, as a function of water content and temperature, using X-ray scattering techniques. The main conclusions from the study of the four lipid preparations can be summarized as follows. (1) As with other lipids, a remarkable number and variety of phases are observed over a temperature-concentration range close to “physiological” conditions. The possibility is discussed that this polymorphism reflects a fundamental property of lipids, closely related to their physiological rôle. (2) As in other lipids, two types of chain conformations are observed: a disordered one (type α) at high temperature; at lower temperature, a more ordered packing of stiff chains, all parallel to each other (type β′). At temperatures and degrees of hydration approaching the conditions prevailing in the living cell, the conformation is of type α. (3) In all the phases with chains in the α conformation, the unsubstituted glycerol headgroups, whose concentration is high in these lipids, segregate in the hydrocarbon matrix, away from the other polar groups. This property may have interesting biological consequences: for example, the chains of a fraction of the bipolar lipid molecules can span hydrocarbon gaps as wide as 75 Å. (4) Two cubic phases are observed in the total and the polar lipid extracts, which display a remarkable degree of metastability, most unusual in lipid phase transitions involving structures with chains in the α conformation. This phenomenon can be explained by the interplay of the physical structure of the cubic phases (the two contain two intertwined and unconnected three-dimensional networks of rods) and the chemical structure of the lipid molecules: the two headgroups of most molecules being anchored on each of the two networks of rods, the migration of the lipid molecules is hindered by the two independent diffusion processes and by the entanglement of the chains. The possibility is discussed that this phenomenon may reflect an evolutionary response to a challenge of the natural habitat of these archaebacteria.  相似文献   

13.
14.
The main glycophospholipid of Thermoplasma acidophilum, grown at 39 degrees C, is composed of a di-isopranol-2,3-glycerotetraether. It has been characterized in hydrated systems by calorimetry. Unlike its equivalent grown at 59 degrees C, it shows complex phase properties, which include at least three different phases, (1) a liquid-analogue state (C), which is stable above 20 degrees C, (2) a metastable solid-analogue state (A) formed by supercooling of the liquid-analogue state (C) and (3) a stable solid-analogue state (B), which is slowly formed and may include a close chain packing of lipids and a network of hydrogen bonds between the headgroups. A high fraction of acyclic isopranol chains seems to be a prerequisite for the formation of state (B). A phase diagram, displaying the observed states and the transitions between them is proposed.  相似文献   

15.
This review summarizes results of our recent solid-state NMR investigations on polyunsaturated 18:0-22:6n3-PC/PE/PS and 18:0-22:5n6-PC bilayers. Data on structure and dynamics of the polyunsaturated docosahexaenoyl (DHAn3, 22:6n3) and docosapentaenoyl chains (DPAn6, 22:5n6), investigated at physiological conditions, are reported. Lipid–protein interaction was studied on reconstituted bilayers containing the G-protein coupled membrane receptor (GPCR) rhodopsin as well as on rod outer segment (ROS) disk membranes prepared from bovine retinas. Results reveal surprisingly rapid conformational transitions of polyunsaturated chains and existence of weakly specific interactions of DHAn3 with spatially distinct sites on rhodopsin.  相似文献   

16.
Nonbilayer phases of membrane lipids   总被引:7,自引:0,他引:7  
Numerous liquid crystalline biomembrane lipids are known to exhibit non-lamellar phases characterized by curvature of their component lipid monolayers. An understanding of the phase stability of these systems begins with analysis of the energy of bending the monolayers, the interactions which lead to the bending energy, and the geometrical constraints which lead to competing energy terms which arise when the monolayers are bent and packed onto lattices with different structures. Diffraction and other techniques suitable for probing lipid phase structure are described. A phenomenological model is reviewed which successfully explains many of the qualitative features of lipid mesomorphic phase behavior. A key result of this model is that lipid bilayer compositions which are close to the non-lamellar phase boundaries of their phase diagrams are characterized by a frustrated elastic stress which may modulate the activity of imbedded membrane proteins and which may provide a rationale for the prevalence of non-lamellar-tending lipid species in biomembrane bilayers. Areas in need of future research are discussed.  相似文献   

17.
Lipid polymorphism and hydrocarbon order   总被引:4,自引:0,他引:4  
The use of 2H nuclear magnetic resonance for the characterization of the polymorphic behavior of lipids is illustrated. Different lipid phase preferences may be expected to influence the orientational order and its variation along the acyl chains. Several results are presented to support that view. An increase of motional freedom and a redistribution of the order along the acyl chains are observed during the lamellar-to-hexagonal phase transition, showing that the order profile is sensitive to the lipid phase symmetry. In addition, if the preferences for nonlamellar phases are not expressed explicitly, the presence of "nonbilayer" lipids constrained in bilayer environment induces increased hydrocarbon order. This suggests that order parameters of the acyl chains and lipid polymorphic tendencies are intimately related.  相似文献   

18.
Raman spectra of dihexadecylphosphatidic acid (DHPA) and of dimyristoylphosphatidylcholine (DMPC) and its longer chain homologues have been obtained as a function of temperature in order to study the conformational order of the hydrocarbon chains in lipid bilayers. The frequency of the longitudinal acoustical (LA) vibration band is evaluated in terms of the length of all-trans chain segments. In the ordered phase, the chains are found to be overwhelmingly in the all-trans conformation. In the fluid phase, definite all-trans segments occur predominantly, the length of which coincides with the extension of the order parameter plateau known from deuterium magnetic resonance (DMR). The frequency of the skeletal optical (SO) trans vibration band leads to the same result, if evaluated under the assumption of vibrational decoupling by gauche bands in the fluid phase, thus lending support to this assumption. The intensity of this band determined from the band area increases linearly with chain length in the ordered phase and is independent of chain length in the fluid phase. Evaluating the intensity for the length of all-trans segments, the same result for the chain conformation is obtained as derived from the frequencies, with the additional information that the length of the all-trans segments in the fluid phase does not vary with chain length.  相似文献   

19.
The hydrocarbon chain packing of fully hydrated phosphatidylethanolamine multilayers is investigated by X-ray diffraction. An analysis of the wide angle reflections (short spacings) as a function of temperature indicates that, apart from the well-known ordered-disordered lipid phase transition, a second transition takes place at lower temperatures. This transition, which is in the present paper referred to as the pretransition, is characterized by a transformation of the hydrocarbon chain packing. A first model for the chain lattice is presented, which gives rise to the expectation that similar pretransitions might be found with other phospholipids.  相似文献   

20.
The tilt angle of the hydrocarbon chains to the planes of a dipalmitoryl lecithin single bilayer and multilayers were estimated by the asymmetry of the electron diffraction patterns of respective hydrated specimens. The chains in a single bilayer were found to be perpendicular to the bilayer plane, whereas the chains in the multilayers were found to be tilted with respect to the normal of the plane. Thermal analysis data also supported this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号