首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activation of pituitary angiotensin (ANG II) type 1 receptors (AT1) mobilizes intracellular Ca2+, resulting in increased prolactin secretion. We first assessed desensitization of AT1 receptors by testing ANG II-induced intracellular Ca2+ concentration ([Ca2+](i)) response in rat anterior pituitary cells. A period as short as 1 min with 10(-7) M ANG II was effective in producing desensitization (remaining response was 66.8 +/- 2.1% of nondesensitized cells). Desensitization was a concentration-related event (EC(50): 1.1 nM). Although partial recovery was obtained 15 min after removal of ANG II, full response could not be achieved even after 4 h (77.6 +/- 2.4%). Experiments with 5 x 10(-7) M ionomycin indicated that intracellular Ca2+ stores of desensitized cells had already recovered when desensitization was still significant. The thyrotropin-releasing hormone (TRH)-induced intracellular Ca2+ peak was attenuated in the ANG II-pretreated group. ANG II pretreatment also desensitized ANG II- and TRH-induced inositol phosphate generation (72.8 +/- 3.5 and 69.6 +/- 6.1%, respectively, for inositol triphosphate) and prolactin secretion (53.4 +/- 2.3 and 65.1 +/- 7.2%), effects independent of PKC activation. We conclude that, in pituitary cells, inositol triphosphate formation, [Ca2+](i) mobilization, and prolactin release in response to ANG II undergo rapid, long-lasting, homologous and heterologous desensitization.  相似文献   

2.
Control of growth hormone (GH) and prolactin (PRL) release was investigated in hypophysial stalk-transected (HST) and stalk-intact pigs by determining the effects of analogs of GH-releasing factors (GHRF), somatostatin (SRIF), arginine, thyrotropin-releasing hormone, alpha-methyl-rho-tyrosine, and haloperidol. HST and control gilts were challenged with intravenous injections of human pancreatic GHRF(1-40)OH, thyrotropin-releasing hormone, and analogs of rat hypothalamic GHRF. HST animals remained acutely responsive to GHRF by releasing 2-fold greater quantities of GH than seen in controls. This occurred in spite of a 38% reduction in pituitary gland weight and a 32 and 55% decrease in GH concentration and total content. During SRIF infusion, GH remained at similar basal concentrations in HST and control gilts, but increased immediately after stopping SRIF infusion only in the controls. Releasable pituitary GH appears to accumulate during SRIF infusion. GHRF given during SRIF infusion caused a 2-fold greater release of GH than seen in animals receiving only GHRF. Arginine increased (P less than 0.05) GH release in controls, but not in HST gilts, which suggests that it acts through the central nervous system. Basal PRL concentrations were greater (P less than 0.05) in HST gilts than in control gilts. TRH acutely elevated circulating PRL (P less than 0.001) in HST gilts, suggesting that it acts directly on the pituitary gland. Haloperidol, a dopamine receptor antagonist, increased circulating PRL in controls but not in HST animals. alpha-Methyl-rho-tyrosine did not consistently increase circulating PRL, however, suggesting that it did not sufficiently alter turnover rate of the tyrosine hydroxylase pool. The results indicate that the isolated pituitary after HST remains acutely responsive to hypothalamic releasing and inhibiting factors for both GH and PRL release in the pig.  相似文献   

3.
We investigated the action of bisphenol A (BPA) on cellular GH release and content, cell number, GHmRNA expression, and concentrations of cellular cyclic AMP ([cAMP]c) and calcium ion ([Ca2+]c) in primary cultured ovine anterior pituitary cells. The following results were found: (1) BPA as well as nonylphenol (NP) at 10(-6) to 10(-3) M significantly and concentration-dependently suppressed basal and GHRH-stimulated GH release, and the cellular GH content, (2) BPA suppressed the cell number in a time- and concentration-dependent manner, (3) 10(-4)M BPA suppressed GHmRNA expression to 68% of control (BPA-free), and abolished GHRH (10(-8) M)-induced increases in [cAMP]c and [Ca2+]c. From these findings we conclude that BPA possesses a suppressing action on GH synthesis and release, and this suppressing action is probably related to impairment of cellular signal transduction systems in ovine anterior pituitary cells.  相似文献   

4.
The release of growth hormone-releasing factor (GHRF) from rat hypothalamus was investigated in vitro. After 60 min preincubation the released GHRF from sliced rat hypothalamic fragments during 60 min incubation was detected by a highly specific and sensitive radioimmunoassay for rat GHRF. The release of GHRF was Ca2+-dependent and enhanced by high concentration of K+. Insulin-like growth factor-1 (IGF-1) significantly decreased GHRF release to 65% and 84% of the control at concentrations of 10(-8) M and 10(-7) M, respectively. These results suggest that this in vitro system is useful for the investigation of the mechanism of GHRF release from the hypothalamus and that IGF-1 is probably involved in the feedback inhibition of growth hormone secretion by attenuating GHRF release from the hypothalamus besides countering the effect of GHRF on the pituitary.  相似文献   

5.
The effects of RU 486 on the modulation of LH release by progesterone were investigated in cultured anterior pituitary cells from ovariectomized adult female rats. The inhibitory effect of progesterone on LH secretion was demonstrable in estrogen-treated pituitary cells, in which addition of 10(-6) M progesterone to cells cultured in the presence of 10(-9) M estradiol for 52 h reduced the LH response to GnRH (10(-11) to 10(-7) M). When RU 486 was superimposed upon such combined treatment with estradiol and progesterone, the suppressive effect of progesterone on GnRH-induced LH release was completely abolished. The converse (facilitatory) effect of progesterone on LH secretion was observed in pituitary cells pretreated with 10(-9) M estradiol for 48 h and then with 10(-6) M progesterone for 4 h. When RU 486 was added together with progesterone during the 4 h treatment period, the facilitatory effect of progesterone was blocked and LH release fell to below the corresponding control value. The direct effect of RU 486 on LH secretion in the absence of exogenous progesterone was evaluated in cells cultured in the absence or presence of 10(-9) M estradiol and then treated for 4 to 24 h with increasing concentrations of RU 486 (10(-12) to 10(-5) M) and stimulated with GnRH (10(-9) M) during the last 3 h of incubation. In estrogen-deficient cultures, 4 h exposure to RU 486 concentrations of 10(-6) M and above decreased the LH response to GnRH by up to 50%. In cultures pretreated with 10(-9) M estradiol, GnRH-stimulated LH responses was inhibited by much lower RU 486 concentrations, of 10(-9) M and above. After 24 h of incubation the effects of RU 486 were similar in control and estradiol-pretreated pituitary cell cultures. Thus, RU 486 alone has a significant inhibitory effect on LH secretion that is enhanced in the presence of estrogen. The antiprogestin is also a potent antagonist of both the inhibitory and the facilitatory actions of progesterone upon pituitary gonadotropin release in vitro.  相似文献   

6.
The vasoactive intestinal polypeptide (VIP) receptor was characterized on the GH3 rat pituitary tumor cell line using competitive binding studies with peptides having sequence homology with VIP. Further studies investigated receptor coupling to the adenylate cyclase complex by measurement of cAMP levels. Finally, the molecular weight of the receptor was estimated by affinity labeling techniques. Studies using 125I-VIP and unlabeled competing peptides revealed a single class of high affinity binding sites with a dissociation constant (KD) of 17 +/- 2 nM (mean +/- S.E.M.) for VIP, 275 +/- 46 nM for peptide histidine isoleucine (PHI), and 1380 +/- 800 nM for human pancreatic growth hormone releasing factor (GHRF). VIP and PHI each stimulated intracellular cAMP accumulation in a dose-dependent manner; both peptides demonstrated synergism with forskolin. In contrast, GHRF neither stimulated accumulation of cAMP nor demonstrated synergism with forskolin. VIP plus PHI (1 microM each) caused no significant increase in cAMP over either VIP or PHI alone, implying that the two peptides act through the same receptor. Covalent crosslinking of 125I-VIP to its binding site using either disuccinimidyl suberate (DSS) or ethylene glycol bis(succinimidyl succinate) (EGS) was followed by SDS-PAGE and autoradiography. The result is consistent with an Mr 47 000 VIP-binding subunit comprising or being associated with the VIP receptor of GH3 pituitary tumor cells.  相似文献   

7.
The effect of thyrotrophin releasing hormone (TRH) or human pancreatic growth hormone releasing factor (hpGRF) on growth hormone (GH) release was studied in both dwarf and normal Rhode Island Red chickens with a similar genotype except for a sex-linked dw gene. Both TRH (10 micrograms/kg) and hpGRF (20 micrograms/kg) injections stimulated plasma GH release within 15 min in young and adult chickens. The increase in GH release was higher in young cockerels than that in adult chickens. The age-related decline in the response to TRH stimulation was observed in both strains, while hpGRF was a still potent GH-releaser in adult chickens. The maximal and long acting response was observed in young dwarf chickens, suggesting differences in GH pools releasable by TRH and GRF in the anterior pituitary gland. The pituitary gland was stimulated directly by perifusion with hpGRF (1 microgram/ml and 10 micrograms/ml) or TRH (1 microgram/ml). Repeated perifusion of GRF at 40 min intervals blunted further increase in GH release, but successive perifusion with TRH stimulated GH release. The results suggest the possibility that desensitization to the effects of hpGRF occurs in vitro and that the extent of response depends on the number of receptors for hpGRF or TRH and/or the amount of GH stored in the pituitary gland.  相似文献   

8.
Prolonged exposure of A-10 cells to Arginine Vasopressin (AVP) resulted in the following responses: (a) loss of vasopressin receptors from the cell surface (30-40%), (b) increased basal levels of inositol and inositol monophosphate, (c) decreased inositol di- and trisphosphate production and decreased intracellular calcium release in response to a second challenge with AVP, (d) attenuation of AVP-mediated inhibition of isoproterenol-stimulated cAMP and ANF-stimulated cGMP accumulation and (e) attenuation of thrombin and ATP-mediated increase in inositol di- and trisphosphate accumulation and intracellular calcium release. All the above responses depended on the time of exposure of the cells to AVP with the responses being attenuated as early as 5-10 min of exposure to AVP. The desensitization also depended on the concentration of AVP used with 50% of maximal desensitization for each response being observed at 5 nM of AVP. This concentration of AVP corresponded well with the Kd of vasopressin for binding to these sites. Desensitization of protein kinase C (PKC) by prolonged exposure of the cells to PDBu or addition of the PKC inhibitor staurosporine during pretreatment with AVP did not prevent AVP-mediated desensitization, suggesting that PKC may not be involved in AVP-mediated desensitization in smooth muscle cells. It is concluded that AVP induced both homologous and heterologous desensitization of phosphatidylinositol turnover and calcium release in smooth muscle cells. The desensitization processes did not appear to be mediated by protein kinase C. The possibility that the locus of the heterologous desensitization may be at the level of substrates such as PI, PIP and PIP2 is discussed.  相似文献   

9.
The effect of cholecystokinin octapeptide (CCK-8) on the release of growth hormone (GH) in rats was studied in vivo and in vitro. Intravenous injection of 5 micrograms/100 g BW of CCK-8 resulted in significant increase in the plasma GH level after 10 and 20 min. CCK-8 at concentrations of 10(-11)M to 10(-7)M also caused dose-dependent stimulation of GH release from dispersed cells of rat anterior pituitary. On the other hand, somatostatin (SRIF) inhibited GH release from dispersed cells of rat anterior pituitary in a dose-related manner at concentrations of 10(-7)M to 10(-9)M. Release of GH from the cells was increased by addition of K+ at high concentration (50 mM) in a Ca++-dependent manner. Addition of 10(-3)M verapamil to the incubation medium inhibited CCK-8-induced GH release from the cells. Addition of SRIF (10(-7)M) to the incubation medium inhibited GH release from the cells induced by CCK-8 or high K+ (50 mM). These results indicate that CCK-8 acts directly on the anterior pituitary cells to stimulate GH release and that calcium ion is involved in the mechanism of this effect.  相似文献   

10.
Desensitization of vasopressin V2 receptor-mediated adenylate cyclase was studied in canine kidney cell line, MDCK cells. Overnight treatment of MDCK cells with arginine vasopressin (AVP) resulted in a loss of vasopressin receptors and an inhibition of cAMP accumulation in response to AVP. Both the loss of receptor and reduction in cAMP accumulation were time- and AVP concentration-dependent. Desensitization was selective for AVP because cAMP formation in response to isoproterenol, prostaglandin E1 (PGE1) and forskolin was not affected by AVP pre-treatment. Pre-treatment of MDCK cells with phorbol dibutyrate (PDBu) also caused a dose-dependent inhibition of AVP mediated cAMP accumulation, but not of isoproterenol-, PGE1- and forskolin-induced cAMP accumulation. PDBu pre-treatment did not cause loss of vasopressin receptors. Instead, the affinity for vasopressin was changed by PDBu treatment. Pre-treatment of the cells with pertussis toxin (PT) had no effect on the desensitization and downregulation of vasopressin (V2) receptors, suggesting that the desensitization may not be mediated by pertussis toxin sensitive G-protein. Our data suggest that pre-treatment of MDCK cells with AVP or PDBu caused desensitization of AVP-mediated cAMP accumulation and that downregulation of V2 receptors required agonist occupancy of the receptors, whereas the affinity of the receptors was changed by phorbol ester treatment.  相似文献   

11.
The presence of 50 mM nicotinamide together with 100 milliunits/ml of TSH in the incubation medium prevented the decline in human thyroid cell cAMP from maximum, stimulated levels (15-30 min) that occurs when the cells are exposed to TSH alone. Nicotinamide in the absence of TSH did not increase thyroid cell cAMP content. TSH desensitization, and its prevention by nicotinamide, occurred in the presence or absence of 3-isobutyl-methylxanthine. 1-Methyl nicotinamide and N'-methyl nicotinamide similarly prevented TSH desensitization. Recovery from TSH desensitization was prolonged and incomplete after 72 h. The presence of 50 mM nicotinamide hastened recovery from desensitization. Desensitization of the cAMP response to 10(6) M prostaglandin E1 and 1 mM adenosine was unaffected by nicotinamide. Other inhibitors of poly(ADP-ribose) polymerase activity, 5-bromouridine, 5-bromo-2'-deoxyuridine, and thymidine (all at 50 mM) completely or partially prevented TSH desensitization. Pyridoxine (50 mM) similarly prevented this phenomenon. As with dog thyroid cells, 10(-4) M cycloheximide blocked TSH desensitization. The combination of 10(-4) M cycloheximide and 50 mM nicotinamide had a synergistic effect in augmenting the thyroid cell cAMP response to TSH stimulation.  相似文献   

12.
GH3 cells can be used effectively to study the in vitro mechanism of action of GRF. In these cells, there is a time and concentration-dependent release of cAMP into the medium. Rat hypothalamic GRF, (rGRF) is 7 to 10 fold more active than human hypothalamic GRF (hGRF). VIP, a peptide which is structurally homologous to GRF, stimulates cAMP efflux in GH3 cells, with a higher affinity than hGRF or rGRF. We propose that in contradistinction to the normal rat pituitary, the stimulation of cAMP release by GRF in GH3 cells occurs via activation of VIP-preferring receptors and that GRF (rGRF in particular) behaves as a partial VIP agonist.  相似文献   

13.
Stimulation of protein kinase C (PKC) by phorbol ester (PMA) was reported previously to increase total binding of the peptide in whole rat pituitary cells. The effect could be obtained in cells from intact, not from spayed animals, suggesting a different level of spontaneous phosphorylation in both conditions. In the present work, endogenous PKC was desensitized in pituitary cells sampled from intact or 3 weeks castrated male rats and maintained in primary culture. Desensitization was induced by overnight incubation with 1 microM PMA. The maximum number of plasma membrane LHRH receptors (Bmax) present on cells from in intact animals was higher (+ 98 +/- 9%) when binding was performed at 0.5 degrees C instead of 21 degrees C as already observed in non PKC-desensitized cells. PMA (100 nM) was ineffective to increase Bmax, suggesting effectiveness of enzyme desensitization. In contrast, ionomycin 1 microM increased Bmax (53 +/- 10%). This increment was inhibited by W7, a calmodulin inhibitor, with an IC50 = 1 +/- 0.35 10(-6) M. No temperature dependency of the Bmax was observed in cells from castrated rats as already shown in the absence of PKC desensitization. Under these conditions, a Bmax decrease of 34 +/- 6% and 36.5 +/- 7.5% respectively was observed in the presence of H7, a PKC inhibitor, or of W7 (IC50 = 1 +/- 0.5 10(-5) M and IC50 = 0.8 +/- 0.2 10(-6) M). We conclude that a Ca2+ calmodulin dependent protein kinase rather than PKC itself is responsible for unmasking LHRH receptors.  相似文献   

14.
Biochemical analysis of desensitization of mouse mast cells   总被引:1,自引:0,他引:1  
Biochemical mechanisms of desensitization were explored by using peritoneal mouse mast cells saturated with monoclonal mouse IgE anti-DNP antibody. It was found that a 1-min incubation of the sensitized cells with 0.01 micrograms/ml DNP-HSA in the absence of Ca2+ was sufficient to desensitize the cells completely. The treated cells failed to release a detectable amount of histamine upon incubation with an optimal concentration (0.1 to 1.0 micrograms/ml) of DNP-HSA and Ca2+. Determination of the number of antigen molecules bound to mast cells revealed that only a small (less than 10%) fraction of cell-bound IgE antibody molecules reacted with desensitizing antigen, and that desensitized cells and untreated (sensitized) cells could bind comparable amounts of antigen upon incubation with rechallenging antigen. However, the binding of antigen molecules to desensitized cells failed to induce any of the early biochemical events, i.e., phospholipid methylation, cAMP rise, and 45Ca uptake, as well as histamine release. It was also found that intracellular cAMP levels in desensitized cells were comparable to those in sensitized cells. Desensitization by a suboptimal concentration of DNP-HSA was prevented by inhibitors of methyltransferases, such as 3-deaza adenosine plus L-homocysteine thiolactone. Sensitized cells pretreated with 0.01 micrograms/ml DNP-HSA in the absence of Ca2+ and in the presence of the methyltransferase inhibitors responded to an optimal concentration of antigen for histamine release when they were rechallenged in the presence of Ca2+. Inhibition of desensitization by methyltransferase inhibitors was reversed by the addition of S-adenosyl-L-methionine to the system. The results indicated that the activation of methyltransferases, induced by receptor bridging, is involved in the process of desensitization. Desensitization was inhibited by reversible inhibitors of serine proteases, such as p-aminobenzamidine, indole, and synthesized substrates of rat mast cell proteases. It was also found that diisopropylfluorophosphate (DFP), an irreversible inhibitor of serine proteases, completely blocked desensitization at the concentration of 10 to 40 nM. This concentration of DFP did not affect the antigen-induced histamine release, whereas 100- to 1000-fold higher concentrations of DFP did inhibit histamine release. The results suggest that serine proteases are involved in both the induction of histamine release and desensitization, and that the protease involved in desensitization is distinct from that involved in triggering histamine release.  相似文献   

15.
The effect of dexamethasone on the release of ACTH, GH, PRL, LH and TSH was studied in monolayer cultures of rat pituitary cells in 4-hour incubation. With or without the addition of rat hypothalamic extract, the release of GH was significantly inhibited by dexamethasone at concentrations higher than 10(-9) M, although less remarkably than that of ACTH. Intracellular ACTH and GH were unchanged. PRL, LH and TSH were not affected. These results indicate that dexamethasone, when exerted for 4 hours, suppressed the release of GH as well as ACTH, at least in part, at the pituitary level.  相似文献   

16.
Human pancreatic growth hormone releasing factor (hpGHRF(1-40] stimulates the release of growth hormone in normal subjects and some patients with growth hormone deficiency. A study comparing the shorter chain amidated analogue hpGHRF(1-29) with an equivalent dose of hpGHRF(1-40) in seven normal subjects showed no significant difference in growth hormone response between the two preparations. Six patients with prolactinomas were also tested; these patients had received megavoltage radiotherapy previously but had developed growth hormone deficiency as shown by insulin induced hypoglycaemia. In all six patients 200 micrograms hpGHRF(1-40) or hpGHRF(1-29)NH2 produced an increase in the serum growth hormone concentration. These data suggest that hpGHRF(1-29)NH2 may be useful for testing the readily releasable pool of growth hormone in the pituitary and that cases of hypothalamo-pituitary irradiation resulting in growth hormone deficiency may be due to failure of synthesis or delivery of endogenous GHRF from the hypothalamus to pituitary cells.  相似文献   

17.
The present study was aimed at investigating whether PACAP stimulates accumulation of cAMP, as well as hormonal secretion of homogeneous populations of pituitary proopiomelanocortin (POMC) cells, namely melanotrophs and AtT-20 corticotrophs. PACAP was shown to enhance cAMP accumulation in a dose-dependent fashion in both cell types (with EC50 values of approx. 10(-10) M) and elicited additive increases of cAMP production with CRF in melanotrophs, but not in corticotrophs. PACAP also stimulated dose-dependently the secretion of alpha-MSH and ACTH, with EC50 concentrations of about 10(-9) M. In melanotrophs, bromocriptine significantly depressed PACAP-induced cAMP formation and blunted by more than 90% stimulated alpha-MSH release. This study shows that (1) pituitary POMC cells did respond to PACAP by enhancing cAMP accumulation and elevating hormone secretion as well; (2) the effect of PACAP was additive with CRF on cAMP production in melanotrophs, but not in corticotrophs, while there was no additivity on peptide output from both cell types; (3) activation of dopamine receptors in melanotrophs dampened both cAMP formation and peptide secretion. These findings are consistent with PACAP playing a possible hypophysiotropic role in the regulation of pituitary POMC cell activity.  相似文献   

18.
cAMP induces the activation and subsequent desensitization of adenylate cyclase in Dictyostelium discoideum. cAMP also induces down-regulation of surface cAMP receptors. Desensitization of adenylate cyclase is composed of a rapidly reversible component (adaptation) and a slowly reversible component related to down-regulation of surface cAMP receptors (Van Haastert, P.J.M. (1987) J. Biol. Chem. 262, 7700-7704). The agonistic and antagonistic activities of the cAMP derivative adenosine 3',5'-monophosphorothioate ((Rp)-cAMPS) for these responses were investigated. (Rp)-cAMPS competes with cAMP for binding to different receptor forms with an apparent Ki = 5 microM. (Rp)-cAMPS does not activate adenylate cyclase and antagonizes the cAMP-induced activation with an apparent Ki = 5 microM. (Rp)-cAMPS induces down-regulation of surface cAMP receptors with EC50 = 5 microM. (Rp)-cAMPS induces desensitization of adenylate cyclase, which is not rapidly reversible. These results indicate that desensitization of adenylate cyclase by (Rp)-cAMPS is due to down-regulation of surface cAMP receptors and not to adaptation. We conclude that down-regulation of surface cAMP receptors does not require their activation or modification involved in adaptation.  相似文献   

19.
Abstract: Homologous receptor desensitization is an important regulatory response to continuous activation by agonist that involves the uncoupling of a receptor from its G protein. When human retinoblastoma Y-79 cells expressing corticotropin-releasing factor (CRF) receptors were preincubated with CRF for 10 min-4 h, a time-dependent reduction in both the peak and sensitivity of CRF-stimulated intracellular cyclic AMP (cAMP) accumulation developed with a t 1/2 of 38 min and an EC50 of 6–7 n M CRF. CRF receptor desensitization was slowly reversible after a 4-h CRF preincubation with a t 1/2 of 13 h and a full restoration of cAMP responsiveness to CRF at 24 h following the removal of 10 n M CRF. Because the ability of vasoactive intestinal peptide, forskolin, or (−)-isoproterenol to stimulate cAMP accumulation was not diminished in Y-79 cells desensitized with 10 n M CRF, the observed desensitization was considered to be a specific homologous action of CRF. CRF receptor desensitization was markedly attenuated by CRF receptor antagonists, which alone did not produce any appreciable reduction in CRF-stimulated cAMP accumulation. Although recent reports have demonstrated a rapid decline in steady-state levels of CRF receptor type 1 (CRF-R1) mRNA in anterior pituitary cells during several hours of exposure to CRF, there was no observed reduction in CRF-R1 mRNA levels when Y-79 cells were preincubated with 10 n M CRF for 10 min-24 h despite a rapid time- and concentration-dependent loss of CRF receptors from the retinoblastoma cell surface.  相似文献   

20.
The objective of the present study was to quantify the absolute hormone release from individual porcine pituitary cells incubated on polyvinylidene difluoride (PVDF) transfer membranes (cell-blot assay). After immunoperoxidase staining, growth hormone (GH) release from isolated somatotrope cells appeared like a colored zone of secretion surrounding the cell. Optical densities of these secretion zones were quantitated by computerized image analysis and translated into picograms by means of an appropriate standard curve. As a prior step, the staining method and the optimal immunocytochemical conditions were selected by applying purified porcine growth hormone (pGH) to the transfer membranes. The avidin-biotin-peroxidase nickel-intensified (ABC-Ni) method produced a better resolution than the peroxide-anti-peroxidase (PAP) method, although both techniques were similar with regard to background, sensitivity, and range of quantitation. The amount of GH released from single porcine somatotropes was highly heterogeneous, although the cells were treated under the same conditions. Moreover, this fact was consistent with the stimulation of the average release of GH by GH-releasing factor (GHRF) but not by GHRF+somatostatin (SRIF). Our results confirm the availability of the recently developed cell-blot assay and support the concept of functional heterogeneity in anterior pituitary cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号