首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zusammenfassung Die Aorta des Kaninchens wurde elektronenmikroskopisch untersucht. Die Ergebnisse wurden mit den elektronenmikroskopischen Befunden anderer Autoren an der Rattenaorta und eigenen Befunden an der Schweineaorta verglichen. Ähnlich wie die Rattenaorta und im Gegensatz zur Schweineaorta zeigt die Kaninchenaorta in einigen Konstruktionsmerkmalen bedeutsame Unterschiede gegenüber der menschlichen Aorta, soweit deren Konstruktion auf Grund lichtmikroskopischer Untersuchungen bekannt ist.Die Intima besteht aus einem porenfreien, durch stark untereinander verzahnte Einzelzellen gebildeten Endothel und einer schmalen subendothelialen Intima. Diese enthält, eingebettet in eine Grundsubstanz, ein lockeres, wenig organisiert erscheinendes kollagen-elastisches Fasergeflecht und einige sog. Langhanszellen. Die letzteren stellen die für den Stoffwechsel der subendothelialen Intima verantwortlichen Fibrozyten dar; sie sind zugleich in ihrer Eigenschaft als ruhende Mesenchymzellen auch als die Stammzellen einer eventuellen zellulären Reaktion auf einen die Intima treffenden Reiz aufzufassen.Die Media ist von der Intima durch eine voll ausgebildete Lamina elastica interna getrennt. Diese innerste elastische Lamelle bildet ein geschlossenes, homogen gebautes Rohr mit nur wenigen Fenstern.Die übrigen Medialamellen sind teils homogene Rohrwandstücke, teils zusammengesetzt aus elastischen Bändern; ihre Konstruktion steht zwischen der der Rattenaorta, welche lediglich homogene Platten besitzt, und der der Schweineaorta, deren elastische Lamellen hochorganisierte Fasersysteme darstellen. Die Mediamuskelzellen finden sich auch beim Kaninchen als eine Sonderform glatter Muskulatur. Als einzige in der Media enthaltene Zellform sind sie über ihre kontraktilen Funktionen hinaus mit den Funktionen eines Fibroblasten ausgestattet und für den Stoffwechsel der Mediagrundsubstanz und deren faseriger Differenzierungen verantwortlich.Im Interlamellärraum finden sich außer den Muskelzellen, die seinen größten Teil einnehmen, auch kollagene und elastische Fasern und eine Grundsubstanz. Eine strenge Organisation des interlamellären Fasergeflechtes wie in der Schweineaorta ist beim Kaninchen nicht festzustellen.Der Benninghoffsche Spannapparat wird auch in der Kaninchenaorta durch eine Kontinuität von muskulären und elastischen Mediaelementen verkörpert. Diese Kontinuität findet ihren Ausdruck unter anderem im gleichen Steigungswinkel von 30° gegenüber der Horizontalschnittebene, den die Muskelzellen und die Bänder der inhomogen gebauten elastischen Medialamellen einhalten.Die weniger komplizierte Organisation der Lamellen und des interlamellären Fasergeflechtes, der steilere Ansatzwinkel der Muskelzellen an den elastischen Lamellen und vor allem die ausgeprägte Lamina elastica interna unterscheiden die Kaninchenaorta deutlich von der Schweineaorta und lassen Anklänge an die Bauweise muskulärer Arterien erkennen. Die Kaninchenaorta steht dabei entsprechend ihrer Größe zwischen der Rattenaorta und der Schweineaorta.Das Vorhandensein einer Lamina elastica interna mit nur relativ kleinen Fensterungen, die gegenüber der Schweineaorta deutlich geringere Durchströmbarkeit der elastischen Medialamellen und das Fehlen von Vasa vasorum deuten auf eine gegenüber den Aorten größerer Tiere weniger komplizierte Ernährung der Aortenwand hin.Rückschlüsse aus experimentell an der Kaninchen- oder Rattenaorta erhobenen Befunden auf Vorgänge an der Aorta größerer Säuger und vor allem des Menschen sind aus diesen Gründen nur mit Vorbehalt möglich.Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

2.
Zusammenfassung 1. Die Feinstruktur verschiedener Entwicklungs-Stadien von Oocyten mariner Teleosteer wurde elektronenmikroskopisch untersucht.2. Das überwiegende Strukturelement sind Membranen und Membransysteme.3. Die primäre Oocytenmembran im engeren Sinne ist eine typische Zellmembran, die sich nicht von anderen Zellmembranen unterscheidet.4. In jungen Entwicklungsstadien ist der Kontakt zwischen Oocyten und Follikel besonders eng. Die Oocytenmembran und der Interzellularraum verschwinden in engbegrenzten Bereichen.5. Die Oocytenmembran bildet Mikrovilli, die entweder gleichmäßig über die Eizell-Oberfläche verteilt sind oder in Gruppen zusammenstehen.6. Außerhalb der Oocyte wird zwischen den Mikrovilli eine homogene Substanz angelagert und damit die Bildung der Corticalschichten eingeleitet.7. Die Eirinde (Cortex) besteht aus zwei Schichten. Die äußere kann leistenförmige Erhebungen tragen, aus der inneren können sich fibrilläre Bündel differenzieren, die die Hülle enorm verstärken. Die Verbindung nach außen wird durch Radialkanäle aufrechterhalten, die sich erst kurz vor der Eiablage durch Verquellung der Fibrillenbündel schließen.8. Die Kernhülle besteht aus einer äußeren und einer inneren Membran, dazwischen liegt die perinucleäre Zisterne. Poren sind häufig, annulusartige Strukturen seltener.9. Die Kerne vergrößern während des Wachstums der Oocyten ihre Oberfläche durch Ausbuchtungen, in denen gewöhnlich ein Nucleolus liegt. Nucleolarmaterial wird an das Cytoplasma abgegeben.10. Von der Kernhülle schnüren sich Vesikel in das Cytoplasma ab, die sich in jungen Oocyten zu Membransäckchen formieren. Die Membransäckchen umgrenzen größere, weitgehend geschlossene Bezirke im Plasma, in denen unter Beteiligung von Mitochondrien Dotter gebildet wird. Sie wandern dann nach außen und zerfallen unter der Zellmembran in Vesikel.11. Ergastoplasma findet sich reichlich in den Zellen des Follikelepithels, kaum in der Oocyte selbst.12. Mitochondrien treten zuerst in Kernnähe auf, später erfüllen sie das Cytoplasma. Die Form ihrer Innenstrukturen ist variabel.13. Durch konzentrische Umgruppierung der Innenstrukturen gehen aus den Mitochondrien vielschichtig-membranöse Körper hervor, die in älteren Oocyten enge topographische Beziehung zu dem spärlich vorhandenen Ergastoplasma haben.14. Die Mitochondrien geben nach Umordnung ihrer Innenstrukturen langgestreckte, schmale Vesikel an das Cytoplasma ab. Damit wird nicht nur membranöses Material geliefert, es öffnet sich auch eine direkte Verbindung vom inneren Chondrioplasma zum Cytoplasma.15. Das diffus aus dem Kern austretende Material wird — wenigstens zum Teil — in den Hohlkehlen aufgewundener Mitochondrien konzentriert.16. Die in den Mitochondrien nachgewiesenen osmiophilen Partikel sind nicht Zentren der Dotterbildung (wie vielleicht beiRana).17. Zwei Wege der Dotterbildung werden unterschieden: frei im Cytoplasma oder innerhalb membranumschlossener Bezirke. Im Cytoplasma entsteht vor allem Lipoid-Dotter, innerhalb von Membranen Eiweißdotter.18. Der Dotterkern der Fischoocyten ist einfach granulär ohne weiteren Strukturinhalt. Er besteht aus Kernmaterial, das sich in einem mittleren Cytoplasmabereich vielleicht unter Mithilfe von Mitochondrien gesammelt hat und zur Zellperipherie wandert, wobei sich der Komplex wieder auflöst.19. Die Dalton-Komplexe bestehen aus 4 bis 5 flachen Zisternen, die nach den Seiten Vesikel abschnüren.20. Vesikel verschiedenster Herkunft übernehmen einen Teil des Stofftransportes in der Eizelle und als Pinocytose-Vesikel auch den Austausch zwischen Follikelzellen und Oocyte.21. Ribosomen treten im Cytoplasma der Oocyte erst dann auf, wenn Nucleolarsubstanz den Kern verlassen hat.22. Der zur Oocyte gehörende Follikel besteht aus dem Follikelepithel, der Basalmembran und der Theca folliculi.23. Der Interzellularraum zwischen Oocyte und Follikelepithel wird durch Einlagerung vor allem von Mucopolysacchariden zur Zona pellucida.24. Bei der Ovulation trennt sich die Oocyte entlang der Basalmembran vom Follikel.25. Die Barriere zwischen Blut und Oocyte besteht aus mindestens fünf Schichten.26. Eine klare Definition der Strukturen zwischen Oberflächenepithel und Oocytenplasma wird angestrebt.27. Die als Ultrafilter dienende Basalmembran ist in artspezifischer Weise ein- oder vielschichtig.28. Demersale Eier sind widerstandsfähig durch dicke Hüllschichten. Planktische Eier sind leichter gebaut, weichen in Einzelheiten der Konstruktion aber bei verschiedenen Arten voneinander ab.29. Das Differenzierungsgeschehen ist Ausdruck der der Eizelle innewohnenden oogenetischen Potenz.30. Nur die gemeinsame Betrachtung von Struktur und Funktion vermag zum vollen Verständnis der in der Oocyte ablaufenden Vorgänge zu führen.
On the ultrastructure of the oocytes of marine teleosts
The fine structure of various stages of development of oocytes of several marine teleosts was studied by electron microscope. The primary membrane of the oocyte represents a typical cell membrane. The contact between the oocyte and the follicle is particularly close in early stages. The membrane of the oocyte and the intercellular space disappear in closely restricted areas. Outside the oocyte a homogeneous substance is applied between the microvilli introducing the forming of the cortical layers. The cortex consists of two layers: the outer one may bear ledge-like elevations; the inner one may form bundles of fibrils, which strengthen the cortex. During growth of the oocyte the surface of the nucleus is enlarged by indentations in which a nucleolus is almost always located. Nucleolar material is supplied to the cytoplasm. Mitochondria first appear near the nucleus; later they fill up the cytoplasm. Through concentrical regrouping of their inner structure, the mitochondria are transformed into multi-layered, membranous bodies which have a close topographical relation to the sparse ergastoplasm. After regrouping of their inner structures, the mitochondria detach small elongated vesicles into the cytoplasm. In this way, not only membranous material is delivered but also an immediate contact between the inner chondrioplasm and the cytoplasm is reached. There are two ways of yolk production: in the unconfined cytoplasm (lipid yolk) and within certain areas surrounded by membranes (protein yolk). The yolk nucleus of teleost oocytes is granulous and bears no other elements of structure. The intercellular space between the oocyte and the follicular epithelium is transformed into zona pellucida by storing of special mucopolysaccharides. During ovulation the oocyte is separated from the follicle along the basement membrane. The barrier between blood and the oocyte consists of at least 5 layers. The basement membrane, which serves as ultra filter, has one or more layers, depending on the species. The high resistance of demersal eggs is related to their thick cortical layers. Planktontic eggs are of more delicate structure, the details of their construction, however, vary among species.


Habilitationsschrift zur Erlangung der venia legendi an der Naturwissenschaftlichen Fakultät der Justus Liebig-Universität Gießen.  相似文献   

3.
Zusammenfassung Die Melanocyten der Haarwurzeln unterscheiden sich durch ihren Feinbau deutlich von den benachbarten Matrixzellen. Sie sind sehr viel reicher an Zellstrukturen und besitzen vor allem einen wohlausgebildeten Golgi-Apprat mit zahlreichen Vesikeln. Dasselbe gilt auch für die unpigmentierten Melanocyten der Albinos. Die Melanocyten in den jungen Haarwurzeln schwarzer Kaninchen enthalten neben voll ausgefärbten reifen Pigmentgrana stets schwächer pigmentierte Frühstadien, die eine deutliche Innenstruktur aufweisen.Das Schwarzrussen-Kaninchen besitzt in den Haarwurzeln seiner weißen Haare ebenfalls Melanocyten, die zahlreiche ungefärbte Propigmentgrana mit einer zarten Innenstruktur enthalten. Durch Unterkühlung der Jungtiere lassen sich hier alle Übergänge von den farblosen Grana zu voll ausgefärbten Pigmentkörnern experimentell herbeiführen und elektronenoptisch verfolgen.Die Propigmentgrana entstehen als kleine Bläschen im Golgi-Feld der Melanocyten. Sie sind länglich oval und besitzen eine einfache Hüllmembran. In ihrem Innern entsteht zunächst eine feine gefaltete Membran, die im Längsschnitt parallel und im Querschnitt spiralig erscheint. Auf diese Membran, die allem Anschein nach aus Eiweiß besteht, schlägt sich bei der experimentellen Kälteschwärzung in zunehmendem Maße Pigment nieder. Die so entstehenden Melaninkörner und ihre Frühstadien sehen genauso aus wie bei den schwarzen Alaska-Kaninchen.Die Melanocyten der Albino-Kaninchen gleichen denjenigen der nicht unterkühlten Russen-Kaninchen, nur sind hier die Propigmentgrana kleiner und lassen sich nicht durch Kälteeinwirkung ausfärben.Die Haarwurzeln der weißen Fellbezirke des Holländer-Kaninchens und diejenigen des Weißen Wieners enthalten keine Melanocyten.Die Abgabe des fertigen Pigments an die jungen Haarzellen erfolgt offenbar dadurch, daß die eingedrungenen Melanocytenausläufer im Plasma der Haarzellen zerfallen. Auch die ungefärbten Grana der Melanocyten des nicht unterkühlten Russen-Kaninchens und des Albinos werden an die Haarzellen abgegeben.Die Anregung zu diesen Untersuchungen gab Herr Prof. Dr. R. danneel. Ihm, Herrn Prof. Dr. K.E. Wohlfarth-Bottermann, Herrn Dozent Dr. E. Lubnow und Herrn Dozent Dr. N. Weissenfels verdanke ich viele Ratschläge und manche technische Unterstützung.  相似文献   

4.
Zusammenfassung Der Erregungsverlauf im Ocellus und im Ocellusnerven sowie die entsprechenden Kennlinien und Kenndaten werden verglichen.Die bisher an anderen Insekten gewonnenen elektrophysiologischen Ergebnisse über die Form der Elektroretinogramme der Ocellen sind mit denen der vorliegenden Arbeit vergleichbar.Der Begriff der physiologischen Komponente wird definiert.Die langsamen Spannungsschwankungen des Elektroretinogramms und die Nervenimpulse sind zwei physiologische Komponenten der Summenableitung aus dem Ocellusnerven.Aus den Kenntnissen über Bau und Elektrophysiologie der Ocellen ergibt sich zusammengefaßt folgendes Bild von den Eigenschaften und der Leistungsfähigkeit dieser Sinnesorgane: Die Ocellen sind phasischtonische Rezeptoren, die alle drei Parameter elektromagnetischer Schwingungen, die Beleuchtungsstärke, die Wellenlänge und die Dauer der Einwirkung dieser Schwingungen percipieren und das Zentralnervensystem darüber informieren können. Ein Bildsehen schließen die optischen Eigenschaften des dioptrischen Apparates aus. Mit der schnellen Adaptation ist bei den Ocellen gut fliegender Insekten wie bei den Facettenaugen (Autrum 1950) ein hohes zeitliches Auflösungsvermögen verbunden. Entsprechend den phasischen Eigenschaften (Erregungsspitze) sind die Ocellen zur empfindlichen Registrierung von Helligkeitsänderungen besonders geeignet. Dieser Umstand läßt es geraten erscheinen, bei künftigen Verhaltensversuchen nicht, wie frühere Autoren eine stationäre Belichtung, sondern kurz aufeinanderfolgende Helligkeitsänderungen (Flimmerlicht) zu verwenden. Daneben liefern aber die Ocellen auch eine Information über absolute Helligkeiten, und zwar durch die stationäre Entladung, deren Frequenz im Dunkeln am größten ist und mit zunehmender Beleuchtungsstärke abnimmt.Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

5.
Zusammenfassung Die Region des Nucleus supraopticus der Maus wurde elektronenmikroskopisch untersucht. Folgende Ergebnisse wurden erzielt:Die neurosekretorischen Zellen sind durch einen stark entwickelten Golgi-Apparat und durch osmiophile Granula in seiner Lumina charakterisiert. Die Ansammlungen dieser Granula entsprechen wahrscheinlich den lichtmikroskopisch sichtbaren Neurosekretgranula.Die Granula sind elliptoid bis ovoid gestaltet und durch eine zarte Grenzmembran gegen das Neuroplasma abgegrenzt. Man kann zwei Arten von Granula, kleinere (1. Typ) und größere (2. Typ), unterscheiden. Die kleineren Granula besitzen Durchmesser von 1000–2000 Å. Zwischen ihrem Zentrum und ihrer Grenzmembran befindet sich meistens eine helle Zone. Die größeren Granula haben Durchmesser von 4000–6000 Å; ihr Inhalt wird von der Grenzmembran eng umschlossen. Zwischen beiden Granula besteht kein Übergang. Außer diesen osmiophilen Granula sieht man im Golgi-Feld multivesicular bodies, wenn auch in geringer Zahl.Die kleineren Granula sind ähnlich strukturiert und geformt wie die Golgi-Granula. Vermutlich stehen beide Gebilde zueinander in inniger genetischer Beziehung. Es konnte nicht entschieden werden, ob die größeren Granula (2. Typ) aus multivesicular bodies oder aus anderen Organellen hervorgehen.In den neurosekretorischen Zellen treten vorwiegend kugelige oder stabförmige Mitochondrien auf. Sie kommen im Perikaryon und im Fortsatz vor, sind jedoch im Golgi-Feld besonders reichlich angehäuft. Der Zelleib — ausgenommen das Golgi-Feld — ist mit Ergastoplasma gefüllt, dessen sackartig erweiterte Räume keine Sekretgranula enthalten.In seltenen Fällen treten Zentralkörperchen im Golgi-Feld und im peripheren Teil des Zelleibes auf. Im Neuroplasma des Fortsatzes befinden sich kleine osmiophile Granula mit Durchmesser 1000 Å bis zu 2000 Å. Sie ähneln den im Hinterlappen vorkommenden Elementargranula (Bargmann), andererseits den Granula des 1. Typs. Dagegen sind die den Granula des 2. Typs vergleichbaren Gebilde im Neuroplasma des Fortsatzes niemals zu finden.Die Kapillaren im Kerngebiet sind von einer Basalmembran umgeben, deren Dicke etwa 700 Å beträgt. An der Außenfläche der Basalmembran setzen die neurosekretorischen Zellen und ihre Fortsätze unmittelbar an. Eine poröse Bauweise des Endothels wurde nicht nachgewiesen.In den auf der Basalmembran fußenden Nervenendigungen sind keine oder nur wenige Sekretgranula festzustellen. Die Hauptaufgabe der Kapillaren des Kerngebietes dürfte daher nicht in der Aufnahme des Neurosekrets bestehen.  相似文献   

6.
Zusammenfassung Alle folgenden Angaben beziehen sich auf Formica rufa L., die Rote Waldameise, und sind nur unter Vorbehalt auf andere Insektenarten übertragbar.Die Ameisen benützen zur optischen Richtungsorientierung künstliche Lichtquellen, die Sonne oder den Mond.Eine distinkte Lichtquelle kann als Orientierungsmarke durch einen diffusen Lichtschein ersetzt werden.Mit Hilfe einer Polarisationsfolie läßt sich nachweisen, daß sich die Ameisen sowohl nach der Schwingungsrichtung des blauen Himmelslichtes als auch nach der Schwingungsrichtung des Folienlichtes orientieren können.Die Orientierung nach Landmarken, wie Häusern und Bäumen, spielt eine große Rolle und ist bei bewölktem Himmel wahrscheinlich die einzige optische Orientierungsmöglichkeit.Werden Himmels- und Landmarken in Konkurrenz gesetzt, dann läuft die Ameise in einer Kompromißrichtung.Ameisen reagieren in Neststimmung vorwiegend negativ und in Exkursionsstimmung vorwiegend positiv phototaktisch.Es wird eine Methode angegeben, mit der durch Vergleich von Dreherregungen die Stärke der phototaktischen Drehreaktionen gemessen werden kann.Bei gleich großer Ablenkung vom orientierten Lauf sind die geotaktischen und die phototaktischen Dreherregungen (Drehtendenzen) quantitativ gleich.Die phototaktischen Dreherregungen (Drehtendenzen) sind helligkeitsunabhängig, ändern sich jedoch mit dem Einfallswinkel des Lichtes.Aus den experimentellen Befunden wird geschlossen, daß sich am zentralnervösen Funktionsgefüge der negativen (positiven) Phototaxis mindestens drei nervöse Instanzen (Mechanismen) beteiligen: Das Integrationszentrum, das Lagezentrum und der Koordinationsmechanismus der Beinbewegung.Wichtige Vorgänge beim Übergang von der positiven und negativen Phototaxis zur menotaktischen Hin- und Rückwegorientierung sind orientierungsfreie Suchschleifen und Lernprozesse, die zur Ermittlung der Luftlinienrichtung führen.Diese Lernprozesse finden sowohl auf dem Hin- als auch auf dem Rückweg statt.Die Ermittlung der Luftlinienrichtung geschieht über die Auswertung (Integration) der optischen Reizfolge, die kinästhetische Reizfolge ist dafür wahrscheinlich völlig bedeutungslos.Mit Hilfe der Kompensationstheorie werden eine Reihe von Reaktionen sich menotaktisch orientierender Ameisen kausal erklärt.Die Ameise kann sich eine Laufrichtung in bezug auf eine Lichtquelle mindestens 5 Tage lang merken.Die Ameise kann sich mit Hilfe von Landmarken an mindestens vier verschiedenen Plätzen im Gelände je eine bestimmte Laufrichtung merken.Erinnerungsbilder von Himmels- und Landmarken werden im Gedächtnis der Ameisen unabhängig voneinander aufbewahrt, die Erinnerungsbilder der Himmelsmarken dagegen sind im Gedächtnis der Ameisen aneinandergekoppelt.Die Ameisen haben die Fähigkeit, die Wanderung der Sonne bei der Richtungsorientierung mit einzuberechnen.  相似文献   

7.
Zusammenfassung Das Epithel des mittleren Abschnittes des Nasenseptums der Ratte ist gestuft hochprismatisch; es enthält 4 Zelltypen: Flimmerzellen, indifferente Zellen, Becherzellen und Ersatzzellen.Der Bau der Flimmerhaare entspricht im Prinzip dem weit verbreiteten Bauschema dieser Strukturen. Bisher wenig beachtete Details sind: eine kornartige Verdichtung an der Spitze; ein quergestreifter lateraler Sporn am Basalknötchen, der hypothetisch mit der Richtung des Flimmerschlages in Zusammenhang gebracht wird. Wurzelfäden (rootlets) im Sinne Fawcetts fehlen. Eine Präzision des Terminus rootlet im Sinne von Wurzelfäden wird vorgeschlagen.In indifferenten und Flimmerzellen wurden mitunter sehr viele Centriolen im apikalen Cytoplasma und in der oberflächlichen Grenzzone der Zellen dargestellt; ebenso Übergangsformen dieser Strukturen zu Basalknötchen inkomplett und komplett ausgebildeter Flimmerhaare.Zahlreiche Pinocytosevakuolen sprechen für eine starke Resorptionstätigkeit dieser Zellen. Auch die dünnen Cytoplasmahüllen der Flimmerhaare scheinen sich durch Ausbildung von Pinocytosevakuolen an dieser Funktion zu beteiligen. Flimmer- und indifferente Zellen weisen im übrigen ähnliche Cytoplasmastrukturen auf. An ihrer Oberfläche finden sich besonders lange Cytoplasmafortsätze für die die Bezeichnung Cytofila zur Abgrenzung gegen die viel kürzeren Mikrovilli vorgeschlagen wird.Die Strukturen der Becherzellen sind in der Regel wesentlich dichter; ihre basalen Teile sind baumwurzelartig verzweigt und in die Nachbarzellen eingesenkt; diese innige Verbindung könnte der Aufnahme resorbierter Flüssigkeit dienen. Nicht alle basalen Fortsätze erreichen die Zellbasis.Intrazelluläre Cysten verschiedener, von der Oberfläche gegen die Basis zunehmender Größe enthalten in ihrer Oberfläche Mikrovilli, Cytofila und Flimmerhaare, im Lumen Zelldetritus und undefinierbare amorphe Massen. Im Gegensatz zu den Interpretationen Miháliks wird auf Grund der eigenen Befunde am Nasenepithel der Ratte der Zusammenhang zwischen der Genese des oberflächlichen Flimmersaumes und derartigen Cysten in Frage gestellt. Möglicherweise handelt es sich dabei um pathologische Vorgänge.  相似文献   

8.
Zusammenfassung Die Feinstruktur der neurosekretorischen Nervenzellen und der Gliazellen im Cerebralganglion des Regenwurmes (Lumbricus terrstris) wurde untersucht.Die Nervenzellen zeigen verschiedenartige Erscheinungsformen. Einzelne sind mit reifen Neurosekretgranula (Durchmesser von rund 280 m) gefüllt (Speicherzellen). In anderen dominieren leere Vesikel, oder das Ergastoplasma nimmt die ganze Zelle ein. In einzelnen Fällen erweitern sich die Ergastoplasmacysternen sackartig, so daß die Zelle ein vakuolisiertes Aussehen gewinnt. Der für ein Sekret charakteristische Stoff wird zuerst in den flachen Cysternen des Golgi-Apparates und in den Golgi-Vesikeln der entleerten Zellen gefunden. Daraus kann geschlossen werden, daß der Golgi-Apparat in enger Beziehung zur Sekretbildung steht. In einigen Zellen werden reife Sekretgranula im Interzellularraum zwischen den Fortsätzen der Glia- und Nervenzellen beobachtet.Charakteristisch für die Gliazellen sind ein gut entwickelter Golgi-Apparat, Stützfilamente und einzelne Vesikelreihen. Letztere stehen vermutlich mit der Pinocytose und Phagocytose in Zusammenhang. Oft kommen in den Gliazellen — aber in geringer Menge auch in den Nervenzellen — große, dunkle Körper (Durchmesser 0,5–2,5 ) mit feinkörnigem, homogenem oder lamellärem Inhalt vor. Anscheinend bestehen zwischen diesen Körpern und den Gliamitochondrien Übergangsformen.Erweiterungen des Interzellularraumes an isolierten Abschnitten stehen aller Wahrscheinlichkeit nach mit der Entleerung des Sekretes in Verbindung. In ihnen ist ein blasser, fein präzipitierter Stoff zu finden. Die Wand der Kapillaren wkd von einer feinen Basalmembran und einer Myoendothelzellschicht gebildet. Oft sind zwischen benachbarten Endothelzellen und zwischen ihnen und der Basalmembran kleine homogene, dunkle Gebilde mit verwaschenem Umriß zu beobachten, die vielleicht mit der Entleerung der Sekretgranula in die Kapillaren in Zusammenhang stehen.  相似文献   

9.
Zusammenfassung Kleine Filmpacks mit Kernemulsionen wurden auf den Gemini-Flügen von den Astronauten direkt auf dem Körper unter dem Raumanzug getragen. Die Auswertung der Bahnspuren in Ilford-G.5 und -K.2-Emulsionspaaren erlaubte eine genaue Bestimmung von Fluß und Energieverlustspektrum und damit der Dosis der Protonenstrahlung, der die Gemini-Kapsel im Flug durch die Südatlantische Anomalie des Strahlengürtels ausgesetzt war. Trotz der starken Vorfilterung in der Kapselwand und anderen Materialien in der Kapsel erweist sich die Strahlung am Meßort in der Emulsion noch als sehr weich. Mehr als 40% der örtlichen Dosis in der Emulsion ist von Protonen einer Reichweite von weniger als 1 mm Gewebe erzeugt. Als Folge dieser spektralen Zusammensetzung ergeben sich große Unterschiede im Strahlenspiegel in der Kapsel, die selbst im gleichen Filmblatt über Abstände von Millimetern sich noch geltend machen. Die Dosen an je drei Meßstellen direkt an den Astronauten auf dem 14tägigen Gemini-Flug GT-VII variieren von 159 bis 233 millirad. Der Elektronen- und Gammauntergrund erscheint sehr gering, wurde aber nicht im einzelnen bestimmt. Der Dosisbeitrag von schweren Kernen wurde durch Schätzung der Atomnummer mit Hilfe einer Vergleichsskala größenordnungsmäßig bestimmt und ergab sich als kleiner als 10 millirad. Es erscheint außerordentlich schwierig, die wahre Strahlenbelastung und die höchstzulässige Dosis für Ganzkörperbestrahlungen in solch bizarren Strahlenfeldern, wie sie sich aus den Messungen ergeben, festzulegen.Die in dieser Arbeit mitgeteilten Messungen wurden im Auftrage des Manned Spacecraft Center der National Aeronautics and Space Administration der USA durchgeführt. Die geäußerten Ansichten sind ausschließlich die des Verfassers und stellen keine offizielle Verlaut barung des Auftraggebers dar.  相似文献   

10.
Zusammenfassung In der Kaninchenepidermis läßt sich elektronenmikroskopisch eine polare Differenzierung der Zellen des Str. germinativum nachweisen: Die Mitochondrien liegen vorwiegend basal, der Golgi-Apparat stets supranukleär.Die Tonofibrillen, die das gesamte Zellinnere durchziehen, sind in bestimmten Bereichen der als Doppelmembran ausgebildeten Zellwand verankert. Die Membranen benachbarter Zellen sind an diesen Ansatzstellen der Tonofibrillen durch eine Kittsubstanz miteinander verbunden und bilden so die sog. Kontaktzonen (= Bizzozerosche Knötchen oder Desmosome), denen offenbar ähnliche Strukturen an der basalen Zellgrenze entsprechen.Die Zellwände der unteren Epidermisschichten sind stark eingebuchtet und ineinander verzahnt. Zwischen den Kontaktzonen liegen jeweils die vor allem für das Str. spinosum typischen Interzellularlücken. Mit zunehmender Verhornung werden in den oberen Schichten die Zellgrenzen begradigt, die Interzellularlücken verschwinden, die Kontaktzonen ordnen sich parallel zur Epidermisoberfläche an und werden im Str. corneum fast vollständig aufgelöst.Der Zellkern macht im Str. granulosum charakteristische Veränderungen durch, die vermutlich mit der Bildung des Keratohyalins im Zusammenhang stehen.Mitochondrien bleiben bis ins Str. granulosum, der Golgi-Apparat nur bis zum oberen Str. spinosum nachweisbar. Beide Zellkomponenten verlieren bereits im unteren Str. spinosum ihre polare Anordnung.Im Str. germinativum liegen vereinzelt helle Zellen, die meist dendritische Fortsätze bilden. Ihr Cytoplasma wird von einem ausgeprägten endoplasmatischen Reticulum durchzogen und enthält keine Tonofibrillen; dementsprechend finden sich an der Zellmembran keine Kontaktzonen. Auf Grund ihrer Lage und Struktur lassen sich diese Zellen als unpigmentierte Melanoblasten deuten.  相似文献   

11.
Zusammenfassung Es wurde über die Acridinorange-Vitalfluorochromierung des Mäuseasciteskarzinoms unter besonderer Berücksichtigung der intraplasmatischen Speicherung des Farbstoffs in granulärer Form berichtet.Die Untersuchungen wurden an lebenden Zellen mit der kombinierten Phasenkontrast-Fluoreszenzmikroskopie durchgeführt und die Ergebnisse dann den Bildern gegenübergestellt, die nach Fixation und Färbung der vitalfluochromierten Zellen zu erreichen waren.Im wesentlichen wurden die Verhältnisse nach Injektion sehr hoher Acridinorangedosen untersucht, aus Vergleichsgründen aber auch die Wirkung geringerer Farbstoffmengen und anderer, verwandter basischer Farbstoffe.Nach Injektion von 8 mg des stärker wirksamen gereinigten Acridinorange kommt es zunächst zu dem Symptomenkomplex der initialen FarbstoffÜberschwemmung. Er ist im wesentlichen gekennzeichnet durch die diffuse, sehr labile Rotfluoreszenz der gesamten Zelle, wobei offen gelassen wird, ob die Rotfluoreszenz im Kernbereich auf Überlagerung entsprechend fluoreszierender Cytoplasmabestandteile, oder auf leicht reversibler Farbstoffadsorption an der Kernmembran beruht.Die Bedeutung dieses Fluoreszenzmodus liegt in dem gelungenen Nachweis, daß diffuse Rotfluoreszenz aller Zellareale mit dem Weiterleben der Zellen vereinbar sein kann. Der Nachweis der erhaltenen Vitalität läßt sich nicht nur durch den weiteren Ablauf des Färbeprozesses, sondern auch durch die Überimpfung solcher acridinorange-überschwemmter Zellen führen.Dieses Stadium der massiven Farbstoffaufnahme ist von dem der nachfolgenden Farbstoffspeicherung durch eine Phase getrennt, in dem die Zellen trotz reichlichen Farbstoffangebots nicht fähig sind, das Acridinorange in granulärer Form zu sammeln. Geringere Farbstoffmengen werden wesentlich schneller im Cytoplasma zu rotleuchtenden Körnchen konzentriert. Es wird daher die Auffassung vertreten, daß durch die initiale Farbstoffüberschwemmung eine reversible Zellschädigung, als solche kenntlich durch den weiteren Ablauf der Vitalfärbung, verursacht wird.Im Stadium der Farbstoffspeicherung wird das Acridinorange im Cytoplasma unter aktiver Mitwirkung der lebenden Zellen in gut abgegrenzten, leuchtend rot fluoreszierenden Gebilden gespeichert. Es wird erneut die Frage diskutiert, ob nicht dieser Konzentrationsvorgang, in Analogie zu ähnlichen, bereits entsprechend gedeuteten Prozessen in der Zellpathologie als Koazervatbildung aufgefaßt werden könne.Teilnehmer an der Bildung solcher Komplexkoazervate sind im wesentlichen Nukleoproteide der Zelle und der Farbstoff.Entstehung, Wachstum und Rückbildung der Koazervate wurden an vitalen Zellen im kombinierten Phasenkontrast-Fluoreszenzmikroskop und in gefärbten Präparaten untersucht.Ein Frühstadium wird von einem Spätstadium abgegrenzt. Im Frühstadium sind die Koazervate groß, wasserreich, labil, dem Fixations- und Färbeprozeß nicht gewachsen. Der Übergang vom Früh- in das Spätstadium wird im Phasenkontrastmikroskop von einem Gestaltwechsel angezeigt:Die großen, gelb-glänzenden Frühkoazervate werden durch Dehydratation zu dichten, grau-gelben oder schwarzen Körnchen bei zunächst gleichbleibender Rotfluoreszenz.Diese dehydrierten Gebilde des Spätstadiums färben sich mit May-Grünwald-Giemsa-Lösung tief dunkelblau; mit Methylgrün grün, mit Pyronin rot, bei kombinierter Methylgrün-Pyroninfärbung mit erhöhtem Pyroninanteil rot, mit modifizierter Gallocyaninchromalaunfärbung tiefblau. Allgemein färben sie sich mit den basischen Farbstoffen dann, wenn der Färbeprozeß so schnell abläuft, daß die immer noch labilen Koazervate in der Zelle erhalten werden können.Die Färbeergebnisse werden mit dem hohen Gehalt der Koazervate an Nukleoproteinen, speziell an Ribonukleinsäure, in Zusammenhang gebracht.Besonders hervorgehoben werden die Unterschiede in der Koazervatbildung zwischen Tumorzellen und Histiozyten des Mäuseascitescarcinoms. Die Tumorzellen wieder zeigen Verschiedenheiten zwischen kleinen, stark basophilen Zellen (A-Zellen) und größeren schwach basophilen (B-Zellen). Die letzteren scheinen leichter und in größerem Ausmaß Koazervate zu bilden.Die Histiozytengranula werden schneller und reichlicher gebildet als die der Tumorzellen. Sie sind bereits wenige Stunden nach Fixation und Färbung nachweisbar. Da das Volumen der Koazervate über den ursprünglichen Umfang der dazugehörigen Histiozyten hinauswachsen kann, wird angenommen, daß die Histiozyten während der Koazervatbildung Nährstoffe und Eiweiß aus der Suspensionsflüssigkeit aufnehmen können. Im Frühstadium nehmen die Koazervate auch weiter Farbstoff aus der Umgebung auf, den sie sogar benachbarten Zellstrukturen (Kern) zu entziehen vermögen. Sie behalten stets ihren basophilen Charakter.Im Gegensatz zu den Histiozyten, die einen Großteil oder gar ihre gesamte basophile Plasmagrundsubstanz in den Granula zu sammeln vermögen, ist der Anteil der Nukleoproteide, den die lebende Tumorzelle in die Koazervate abgibt, im Verhältnis zur vorhandenen Gesamtmenge relativ gering: Auch im Anschluß an starke Granulabildung läßt sich nach Fixation und Färbung eine im wesentlichen unveränderte Basophilie des Grundplasmas nachweisen.In der vitalen Zelle besteht eine unterschiedliche Affinität anderer basischer Farbstoffe zu den bereits gebildeten Acridinorangekoazervaten: Neutralrot vermag Acridinorange zu verdrängen, Pyronin und Trypaflavin dagegen nicht. Hinsichtlich seiner Fähigkeit zur Koazervatbildung nimmt jedoch das Acridinorange absolut eine Sonderstellung ein und wird hierin von keinem anderen Farbstoff erreicht. Mögliche Beziehungen dieser Eigenart zu physikalisch-chemischen Merkmalen des Farbstoffs werden besprochen.Art und Ausmaß der Koazervatbildung werden als unmittelbar abhängig von der Zellstruktur aufgefaßt. Mögliche Zusammenhänge werden unter Berücksichtigung elektronenmikroskopischer Befunde sowie neuere Anschauungen über den Nukleinsäurestoffwechsel diskutiert.Die Relationen zwischen den unter Farbstoffeinwirkung neugebildeten Koazervaten und präexistierenden Cytoplasmaeinschlüssen werden erörtert. Unterscheidungsmöglichkeiten sind nicht immer gegeben. Gesetzmäßigkeiten in der Lokalisation fluoreszierender Einschlüsse, Anfärbung solcher Einschlüsse nach dem erwiesenen Zelltod sprechen für die Anwesenheit präformierter Plasmaeinschlüsse.Hinweise werden auf die mögliche praktische Bedeutung der Koazervatbildung gegeben.In Zellen des Ascitestumors lassen sich nach der oben angegebenen Methode Koazervate in starkem Ausmaß erzeugen. Die koazervattragenden Zellen lassen sich als Testobjekte verwenden, in denen der Einfluß verschiedener Medien allgemein auf die Fluoreszenzeigenschaften und speziell auf die fluoreszierenden Koazervate studiert werden kann. Insbesondere lassen sich Rückbildungs- bzw. Abbauvorgänge verfolgen. Besonders verträglich sind albuminhaltige Medien. Allerdings extrahieren sie mitunter den Farbstoff ziemlich schnell aus den Zellen. Frühkoazervate werden zurückgebudet, ohne Spuren in der Zelle zu hinterlassen. Spätkoazervate werden nach fortschreitender Dehydratation wahrscheinlich so abgebaut, wie auch andere ausgesonderte proteinhaltige Plasmabestandteile.  相似文献   

12.
Zusammenfassung Die Wand der Kapillaren in der menschlichen Placenta aus der Schwangerschaftsmitte wird elektronenmikroskopisch untersucht und zu der Wand des Sinusoides der reifen Placenta in Beziehung gesetzt. Bereits zur Zeit der Schwangerschaftsmitte sind vereinzelt Sinusoide nachweisbar, doch treten sie gegenüber den Kapillaren zahlenmäßig in den Hintergrund.Die Kapillaren des Zottenbinnenraumes besitzen keine Basalmembran; sie sitzen meist, nur durch einen Spalt getrennt, einer Pericytenschicht auf. Die Pericyten haben häufig fußförmige Ausläufer, die die Basalmembran des Cytotrophoblasten erreichen. Die Kapillarendothelien sind zwar einreihig angeordnet, überlappen aber einander in ausgedehnter Weise.Im Cytoplasma der Kapillarendothelien findet man häufig eine feinfilamentäre Zeichnung, jedoch nur nach Kaliumpermanganat-Kontrastierung.Die Kapillaren der unreifen Placenta sind durch das Fehlen der Basalmembran, durch die ungewöhnliche Dicke und durch die starke Überlappung ihres Endothels für eine Gefügedilatation besonders geeignet.Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

13.
Zusammenfassung Unter Verwendung der Silbermethode nach Bielschowsky-Gros und der Einschlußfärbung mit Ehrlichschem, saurem Hämatoxylin wurde die Anordnung, Ausbreitung und Endigungsweise des vegetativen Nervensystems in der Wand der A. uterina des Menschen untersucht.Die A. uterina ist in der Adventitia und Periadventitia von dicken Bündeln in der Mehrzahl markloser, weniger markhaltiger Nervenfasern begleitet. Die in der Adventitia parallel zur Verlaufsrichtung der A. uterina ziehenden Stränge grobkalibriger markloser Nervenfasern verzweigen sich mehrfach und bilden Geflechte, die mit den auf der Muskularis aus feinen Nervenfasern zusammengesetzten Nervengeflechten in Verbindung stehen.Die A. uterina ist in ihrem ganzen Verlauf an der Muskularis von einem dichten Flechtwerk feinster markloser Nervenfasern überzogen, die von länglichen Schwannschen Kernen begleitet werden. Die feinkalibrigen Nervenfasern eines Nervengeflechtes setzen sich kontinuierlich in ein aus feinsten marklosen Nervenfasern bestehendes präterminales Netz fort, an das sich das nervöse Terminalretikulum, die Endigungsform des vegetativen Nervensystems, anschließt. Beide Formationen, das präterminale Netz und das Terminalretikulum lassen sich nicht immer deutlich voneinander abgrenzen und müssen als ein einheitliches Ganzes betrachtet werden.Das Terminalretikulum setzt sich aus weiten oder engen Maschen zusammen und stellt die plasmatische Verbindung von Nervengewebe und dem Plasma der Erfolgszellen, sowohl in der Tunica media, als auch in der Adventitia der A. uterina her. An den Verzweigungsstellen des prätermmalen Netzes, an den Übergängen präterminaler Nervenelemente in das nervöse Terminalretikulum und seltener im Bereich des Terminalretikulums sind die mit unterschiedlichen Kernen ausgestatteten interstitiellen Zellen zu beobachten.Da sich das Nervengewebe auf und zwischen den oberen Mediaschichten kontinuierlich erstreckt und durch das nervöse Terminalretikulum mit den glatten Muskelzellen der A. uterina in plasmatische Verbindung gerät, ist die Abhängigkeit einer jeden Muskelzelle der A. uterina vom vegetativen Nervensystem wahrscheinlich.In der Adventitia der A. uterina sind stellenweise Bindegewebszellen von Neurofibrillen durchzogen; auch ist die Verbindung von Schwannschem Leitgewebe mit dem Plasma von Bindegewebszellen zu beobachten. Eine eingehende Betrachtung ist den interstitiellen (intercalären) Zellen und den mit dem Nervengewebe in Verbindung stehenden Bindegewebszellen in der Adventitia der A. uterina und im menschlichen Magen gewidmet.Die neurovegetative Endformation (präterminales Netz und Terminalretikulum) wird mit ihren zelligen Elementen als ein in normalen und pathologischen Lebensabläufen veränderliches Gewebe betrachtet.  相似文献   

14.
Fritz Laschat 《Zoomorphology》1943,40(1-3):314-347
VII. Zusammenfassung der Ergebnisse Bei den mit Hilfe einer Eiablageuhr genau zeitbestimmten Eiern beträgt die Dauer der Embryonalentwicklung des Keimes bei einer Temperatur von 27 ± 0,5° C und bei 85–90% r. F. 12 Tage.Am Ende des 5. Tages wird die Augenanlage zum ersten Male während der Umrollung äußerlich sichtbar.Bis zum 6. Entwicklungstage besteht die Augenimaginalscheibe aus einem verdickten Epithel.Der Augenfleck wächst, auf das funktionstüchtige Auge bezogen, von hinten nach vorn. Am hinteren Begrenzungsbogen der Anlage findet kein Zuwachs statt. Er ist von Anfang an scharf abgesetzt und wird zum Hinterrande des larvalen und imaginalen Auges.Mit dem 7. Tage haben sich auf dem Wege der Gruppenbildung einzelne Elemente des werdenden Ommas vorgeordnet. Am B. Tage wird auch äußerlich am Hinterrande des Auges auf seiner Dorso-Ventral-Mittelachse das erste Omma sichtbar, um das die folgenden im halbkreisförmigen Bogen sich anordnen.An der 2 Tage vor dem Schlüpfen einsetzenden Bildung der Cornea sind nur die Kristallkegelzellen und die Nebenpigmentzellen beteiligt.Larvenhäutung und Augenwachstum stehen histologisch in einer engen Beziehung zueinander, und beide hängen von der Einnahme einer Vollmahlzeit ab.Postembryonal erfolgen Zuwachs des Auges und Bildung der Cornea grundsätzlich in gleicher Weise wie embryonal.Während der ganzen postembryonalen Entwicklung nehmen Zahl und Größe der Facetten stetig und harmonisch zu. Die Zahl steigt um das Neunfache.In der Vorderrandzone des Auges beträgt der Breitenzuwachs für jede der fünf Häutungen konstant drei Ommen im Querschnitt.Die Cornealinsen am Hinterrande und in der Mitte des Auges sind gleich groß. Die der Vorderrandommen in der Zuwachszone sind kleiner, sie gleichen sich bei der nächstfolgenden Häutung in ihrer Größe den übrigen Ommen an. Im Auge der Imago haben alle Ommen den gleichen Durchmesser.Neben den beiden Facettenaugen besitzt Rhodnius ein Paar seitlicher Ocellen. Ihre Anlagen werden zwar früh aus der Hypodermis herausdifferenziert, ihre Entwicklung ist aber bis zur Larve V gehemmt. Bei der Anlage der Ocellen bilden sich die Zellen der Hypodermis unter ähnlichen Wachstumserscheinungen um, wie sie in der Zuwachszone des embryonalen und postembryonalen Auges deutlich werden.Die Schicht der Sinneszellen und die der Corneagenzellen werden als zwei Zellager nacheinander durch Auswanderung von Hypodermiszellen angelegt.Abschließend werden Beziehungen zwischen der Entwicklung der Sehorgane und den allgemeinen Häutungsvorgängen besprochen.  相似文献   

15.
Zusammenfassung Die Gefäße der zwischen Aorta ascendens und Truncus pulmonalis, an der Vorder- und Hinterwand des Truncus pulmonalis gelegenen Glomera, sowie das sogenannte Glomus pulmonale der Katze lassen sich von den Coronararterien aus durch Tusche-Gelatine-Lösungen füllen. Die erwähnten Paraganglien sind als Chemoreceptorenfelder dem Coronarkreislauf angeschlossen und daher als Glomera coronaria zu bezeichnen. Licht- und elektronenmikroskopische Untersuchungen ergaben eine morphologische Übereinstimmung mit dem Glomus caroticum. Vagusdurchtrennungen verursachen eine Degeneration der an den Glomuszellen gelegenen synaptischen Formationen sowie Veränderungen in Glomuszellen.
Glomera coronaria of the cat
Summary The vessels of the glomera that lie between the aorta and the pulmonary trunk, on the anterior and posterior wall of the pulmonary trunk, as well as the so-called glomus pulmonale of the cat have been injected with gelatine-india ink mixture. The paraganglia mentioned above are associated with the coronary circulation as chemoreceptors and are designated as the glomera coronaria. The investigations demonstrate a morphologic similarity with the glomus caroticum. Section of the vagus causes a degeneration of the synaptic structures on the glomus cells as well as changes in the cells themselves.
Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

16.
Zusammenfassung Die bei 8 Kaninchen untersuchten Geschmacksknospen zeigen in den Papillae vallatae und Papillae foliatae einen übereinstimmenden Bau. Die Knospen grenzen mit ihrer Basis an die mit der Überjodsäure-Leukofuchsin-Reaktion deutlich darstellbare Basalmembran und bilden mit ihrem apikalen Pol den Boden des in dem geschichteten Plattenepithel ausgesparten Geschmacksgrübchens. Sie bestehen einerseits aus zahlreichen, dicht zusammenliegenden langgestreckten Zellen, andererseits aus spärlicher vorhandenen Basalzellen, die sich zwischen die Basen der langen Zallen und die Basalmembran einschieben. Weder nach dem morphologischen noch nach dem histochemischen Verhalten lassen lichtmikroskopisch sich eigentliche Sinneszellen von Stützzellen unterscheiden, weshalb die langgestreckten Knospenelemente mit dem allgemeinen Namen Geschmackszellen belegt worden sind. In vielen Geschmacksknospen finden sich einzelne offenbar zugrunde gehende Zellen, deren Ersatz durch mitotische Vorgänge in den Basalzellen wie auch in den Geschmackszellen besorgt wird; Mitosen haben verhältnismäßig häufig beobachtet werden können.Das unmittelbar unter den Geschmacksknospen gelegene bindegewebige Stroma enthält weite Blutkapillaren, deren Grundhäutchen vielfach mit der Basalmembran in Kontakt steht. Die kleinen Ganglien, welche in das reichliche Nervengeflecht der Geschmacksregion eingelassen sind, zeigen bei den Papillae foliatae eine gesetzmäßige topographische Beziehung zu den Furchen zwischen den einzelnen Blätterpapillen. Ihre Perikarya geben eine schwache, ihre Satellitenzellen eine intensive alkalische Phosphatase-Reaktion.Sudanophile Substanzen lassen sich in den Geschmackszellen in wechselnder Menge darstellen. Derartige Stoffe finden sich besonders häufig in dem Bereich des Golgi-Feldes, in welchem sie zum Teil mit der Feyrterschen Einschlußfärbung auch eine deutliche Chromotropie zeigen, ferner in den apikalen Zellabschnitten sowie an der Basis der Zellen und in perinuklearer Lage. PAS-positive Substanzen konnten einerseits in dem Golgi-Feld und andererseits an den apikalen Enden der Geschmackszellen dargestellt werden; ihre chemische Natur bleibt unklar. l-Ascorbinsäure ließ sich regelmäßig an den Knospenspitzen und massiv im Bereich der Geschmacksgrübchen nachweisen. Alkalische Phosphatase-Aktivität ist in den Geschmacksknospen auf einen ganz schmalen, unmittelbar an die Geschmacksgrübchen grenzenden Saum beschränkt. Die homogene Substanz, welche das Geschmacksgrübchen erfüllt, enthält keine schleimartigen Verbindungen; kleine sudanophile Granula sowie Tröpfchen lassen sich in der Regel hier nachweisen.  相似文献   

17.
Zusammenfassung Es wird der Einfluß verschiedener Reize auf den Zellverband der Deckzellen des Meerschweinchennetzes unter möglichst physiologischen Bedingungen untersucht.Das Netz reagiert in Form einer Spannungserhöhung oder einer Erschlaffung des ganzen Zellverbandes, formhaft sichtbar durch Enger- und Weiterstellung der Netzmaschen.Adrenalin, Ergotamin und andere Reizmittel bewirken eine Spannungserhöhung durch Kontraktion der Fibrocyten, die im Extremfall die Netzlöcher fast völlig verschließt und im Plasma der Fibrocyten eine feine Querstreifung entstehen läßt.Atropin und Acetylcholin bewirken im Endeffekt eine Erschlaffung des Netzes unter Weiterstellung der Maschen. Dabei fließen kleinere Maschen zu größeren zusammen und das Plasma der Deckzellen verschmälert sich auffallend zu einer den Faserbündeln des Netzes dicht anliegenden Hülle.Es wird der Nachweis geführt, daß die Reaktionen ohne Schädigung des Gewebes verlaufen, sie sind reversibel, am überlebenden Netz beobachtet und am fixierten Präparat soweit morphologisch möglich, analysiert.Die erwähnten Reaktionen sind an das Plasma der Deckzellen gebunden und beruhen nicht auf einer Veränderung des Faserskeletes. Dieses spielt nur eine passive Rolle.Am Mesenterium des Meerschweinchens läßt sich ebenfalls eine kontrahierende Wirkung des Adrenalins nachweisen, die aber hier an den Plattenepithelien auch bei starker Reaktion ohne Querstreifungsbild verläuft, allenfalls nur eine Granulierung im Plasma entstehen läßt.  相似文献   

18.
Zusammenfassung Zur mikroskopischen Untersuchung gelangte lebensfrisehes sowie unfixiert und fixiert geschnittenes Material aus dem Duodenum der weißen Maus.Kurzdauernde Instillation von Acridinorangelösung (110000/60 sec) in das Duodenum führt zum Auftreten zahlreicher intensiv rot fluoreszierender Granula unterschiedlicher Größe besonders im apikalen Abschnitt der Darmepithelzelle. Die Entstehung der roten Granula ist an die Vitalität der Zellen gebunden; durch die Technik zur Herstellung unfixierter Gewebeschnitte im Kryostaten werden die roten Granula schon zum Verschwinden gebracht.Als Zellgifte bekannte Chemikalien (Kaliumcyanid, Natriumfluorid, Malonsäure, Monojodessigsäure) führen zu einer Abschwächung der Granulabildung; Quecksilberverbindungen hemmen die Granulabildung vollkommen (HgCl2 in einer Konzentration von 10-3 mol).Aus den vorliegenden Befunden kann geschlossen werden, daß die Ausbildung der roten Granula in lebenden Epithelzellen Ausdruck einer Ferment-Tätigkeit ist. Aus der starken Beeinflußbarkeit des Vorganges durch Quecksilbersalze läßt sich ableiten, daß es sich dabei um Fermente handelt, die in ihrem Molekül eine SHGruppe aufweisen.Die Orte der roten Granula fallen in Darmepithelzellen nicht mit Orten höherer Ribonukleotidkonzentration zusammen, wie z. B. in Nervenzellen.Die Grünfluoreszenz einer Epithelzelle kann in Verbindung mit den in ihr auftretenden roten Granula bei Acridinorangefärbung als Ausdruck ungeschädigter Vitalität gedeutet werden. Rote Granula, die durch Blaulichtbestrahlung nur sehr langsam oder gar nicht in ihrer Floureszenzfarbe beeinträchtigt werden, wie z. B. Mastzellengranula oder Krinomgranula, lassen sich mit diesen Granula nicht vergleichen.Mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

19.
Zusammenfassung Bei placodialen, d. h. schuppigen bis angedeutet blättrigen, unterseits berindeten, erd- und spaltenbewohnenden Krustenflechten treten den Rhizinen der Blattflechten vergleichbare Anhangsorgane auf, die sich durch ihre unregelmäßige Struktur und das theoretisch endlose Wachstum von jenen unterscheiden.Diese Organe lassen sich in mehrere Typen einteilen, deren höchst entwickelter, derSquamarina-Typus, näher untersucht wurde.Die Stränge zeigen alle gleichartigen Aufbau aus im Prinzip längs verlaufenden Hyphen, die im Inneren des Stranges farblos, dünnwandig und dicklumig (Mark), gegen den Rand zu dickwandig-gefärbt und dünnlumig (Rinde) sind. Die äußersten Partien sind gewöhnlich tot und werden langsam borkenartig abgestoßen.Durch Verzweigung, basifugale und interkalare Aufspaltung, Verwachsung und Ausfallen von Teilen entstehen merkwürdige Wuchsformen (welche durch Habitusbilder illustriert werden).Die Stränge dienen zur Anheftung der Thalli an den durch extreme ökologische Bedingungen ausgezeichneten Standorten. Für die Wasserversorgung spielen sie offenbar keine Rolle.Die Strangtypen lassen sich unter Berücksichtigung der ökologischen Modifikabilität systematisch verwerten.  相似文献   

20.
Zusammenfassung Das Parenchym der peribronchialen Mikroparaganglien wird von zwei Zellarten aufgebaut: Chromaffine Zellen (Typ I-Zellen) und Hüllzellen (Typ II-Zellen).Die chromaffinen Zellen sind durch ihren reichen Gehalt an Vesikeln mit elektronendichtem Inhalt gekennzeichnet, deren Durchmesser 700–1300 Å beträgt. Markfreie Nerven ziehen an die Typ I-Zellen heran und bilden synaptische Kontakte aus. Die chromaffinen Zellen sind dabei der postsynaptische Teil der Verbindung. Die Hüllzellen entsprechen strukturell und funktionell den Schwannschen Zellen.Ein Mikroparaganglion wird von 10 bis 15 chromaffinen Zellen und deren Hüllzellen aufgebaut. Sie liegen dicht um fenestrierte Kapillaren, die von den Aa. bronchiales aus versorgt werden. Die Paraganglien sind von den Nervenzellen des peribronchialen Plexus durch dessen Perineurium getrennt. Selten findet man solitäre chromaffine Zellen innerhalb der Nervengeflechte. Es wird angenommen, daß die Paraganglien endokrine Funktionen erfüllen.
The fine structure of the guinea pig peribronchial micro-paraganglia
Summary The parenchyma of peribronchial microparaganglia consists of two different cell types: chromaffin cells (type I-cells) and surrounding cells (type II-cells).The chromaffin cells contain numerous vesicles with electron dense content, their diameter ranging from 700 to 1,300 Å. Unmyelinated nerves form synapses with type I-cells. The surrounding cells structurally and functionally correspond to Schwann cells.A micro-paraganglion consists of ten to fifteen chromaffin cells and their satellite cells. They are situated close to fenestrated capillaries, which are supplied from the Aa. bronchiales. A perineurial sheath separates the paraganglia from the nerve cells of the peribronchial plexus. Single chromaffin cells are found seldom within the nervous plexus.The paraganglia are thought to have an endocrine function.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号