首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The previous studies showed that gangliosides modulated the ATPase activity of the PMCA from porcine brain synaptosomes [Yongfang Zhao, Xiaoxuan Fan, Fuyu Yang, Xujia Zhang, Arch. Biochem. Biophys. 427 (2004) 204-212]. The effects of gangliosides on the hydrolysis of p-nitrophenyl phosphate (pNPP) catalyzed by the erythrocyte plasma membrane Ca(2+)-ATPase, which was characterized as E(2) conformer of the enzyme, were studied. The results showed that pNPPase activity was stimulated up to seven-fold, depending upon the different gangliosides used with GD1b>GM1>GM2>GM3 approximately Asialo-GM1. Under the same conditions, the ATPase activity was also activated, suggesting that gangliosides should modify both E(1) and E(2) conformer of the enzyme. The Ca(2+), which drove the enzyme to E(1) conformation, inhibited the pNPPase activity, but with the similar half-maximal inhibitory concentrations (IC(50)) in the presence and the absence of gangliosides. Moreover, the pNPPase activity was also inhibited by the raise in ATP concentrations. Gangliosides caused a large increase in V(max), but had no effect on the apparent affinity (K(m)) of the enzyme for pNPP. The kinetic analysis indicated that gangliosides could modulate the erythrocyte PMCA through stabilizing E(2) conformer.  相似文献   

2.
We systematically examined the effects of gangliosides on the plasma membrane Ca(2+)-ATPase (PMCA) from porcine brain synaptosomes. Our results showed that GD1b (two sialic acid residues) stimulated the activity, GM1 (one sialic acid residue) slightly reduced the activity, while asialo-GM1 (no sialic acid residue) markedly inhibited it, suggesting that sialic acid residues of gangliosides are important in the modulation of the PMCA. We also examined the oligosaccharide effects by using GM1, GM2, and GM3 whose only difference was in the length of their oligosaccharide chain. GM1, GM2, and GM3 reduced the enzyme activities, whereas GM2 and GM3 were potent inhibitors. Gangliosides affect both affinity for Ca(2+) and the Vmax of enzyme. It was observed that GD1b and GM2 increased the affinity of the enzyme for Ca(2+). GD1b, GM2 affected the Vmax with an increase of GD1b, but decreases of GM2. The study of the affinity for ATP and the Vmax of enzyme in the presence of gangliosides showed that GD1b and GM2 had little effect on the ATP binding to the enzyme, but the Vmax was apparently changed. Moreover, the effects of gangliosides are additive to that of calmodulin, suggesting that the modulation of PMCA by gangliosides should be through a different mechanism. The conformational changes induced by gangliosides were probed by fluorescence quenching. We found that fluorescent quenchers (I(-) and Cs(+)) with opposite charges had different accessibility to the IAEDANS binding to the PMCA in the presence of gangliosides. An apparent red shift (25nm) with increased maximum of fluorescence spectrum was also observed in the presence of GD1b.  相似文献   

3.
Binding of fibronectins to gangliosides was tested directly using several different in vitro models. Using an enzyme-linked immunoabsorbent assay (ELISA), gangliosides were immobilized on polystyrene tubes and relative binding of fibronectin was estimated by alkaline phosphatase activity of conjugated second antibody. Above a critical ganglioside concentration, the gangliosides bound the fibronectin (GT1b congruent to GD1b congruent to GD1a greater than GM1 much greater than GM2 congruent to GD3 congruent to GM3) in approximately the same order of efficiency as they competed for the cellular sites of fibronectin binding in cell attachment assays (Kleinman et al., Proc natl acad sci US 76 (1979) 3367). Alternatively, these same gangliosides bound to immobilized fibronectin. Rat erythrocytes coated with gangliosides GM1, GD1a or GT1b bound more fibronectin than erythrocytes not supplemented with gangliosides. Using fibronectin in which lysine residues were radioiodinated, an apparent Kd for binding to mixed rat liver gangliosides of 7.8 X 10(-9) M was determined. This value compared favorably with the apparent Kd for attachment of fibronectin to isolated plasma membranes from rat liver of 3.7 X 10(-9) M for fibronectin modified on the tyrosine residue, or 6.4 X 10(-9) M for fibronectin modified on lysine residues. As shown previously by Grinnell & Minter (Biochem biophys acta 550 (1979) 92), fibronectin modified on tyrosine residues did not promote spreading and attachment of CHO cells. It did, however, bind to cells. In contrast, lysine-modified fibronectin both bound to cells and promoted cell attachment. Plasma membranes isolated from hepatic tumors in which the higher gangliosides that bind fibronectin were depleted bound 43-75% less [125I]fibronectin than did plasma membranes from control livers. The findings were consistent with binding of fibronectins to gangliosides, including the same gangliosides depleted from cell surfaces during tumorigenesis in the rat.  相似文献   

4.
Interactions among four natural neutral sphingolipids (ceramide, glucosyl-ceramide, lactosyl-ceramide and asialo-GM1) and six gangliosides (GM3, GM2, GM1, GD3, GD1a and GT1b) were studied in binary Langmuir monolayers at the air-buffer interface in terms of their molecular packing, compressibility, dipole potential and mixing behavior. The changes of surface organization can be grouped into three sets: (a) binary films of neutral GSLs, and of the latter with ceramide, exhibit thermodynamically unfavorable mixing with mean molecular area expansions and dipole moment hyperpolarization; (b) mixed monolayers of ceramide, or of GlcCer, and gangliosides occur with thermodynamically favorable interactions leading to mean molecular area condensation and depolarisation; (c) binary mixtures of LacCer or Gg4Cer with gangliosides, and all ganglioside species among them, revealed molecular immiscibility characterized by additive mean molecular area and dipole potential, with composition-independent constant collapse pressure. These results disclose basic tendencies of GSLs to molecularly mix or demix, leading to their surface segregation, which may underlay vectorial separation of their specific biosynthetic pathways.  相似文献   

5.
Control of intracellular calcium concentrations ([Ca2 +]i) is essential for neuronal function, and the plasma membrane Ca2 +-ATPase (PMCA) is crucial for the maintenance of low [Ca2 +]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca2 + homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (d-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by d-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca2 + transporter.  相似文献   

6.
Our previous study showed an impaired regulation of Ca(2+) homeostasis in cultured cerebellar granule neurons (CGN) from neonatal mice lacking GM2, GD2 and all gangliotetraose gangliosides, due to disruption of the GM2/GD2 synthase (GalNAc-T) gene. In the presence of depolarizing concentration (55 mM) K(+), these cells showed persistent elevation of intracellular Ca(2+) ([Ca(2+)]( i )) leading to apoptosis and cell destruction. This was in contrast to CGN from normal littermates whose survival was enhanced by high K(+). In this study we demonstrate that glutamate has the same effect as K(+) on CGN from these ganglioside-deficient knockout (KO) mice and that apoptosis in both cases is averted by exogenous GM1. Even more effective rescue was obtained with LIGA20, a semi-synthetic derivative of GM1. LC(50) of glutamate in the KO cells was 3.1 microM, compared to 46 microM in normal CGN. [Ca(2+)]( i ) measurement with fura-2 revealed no difference in glutamate-stimulated Ca(2+) influx between the 2 cell types. However, reduction of [Ca(2+)]( i ) following application of Mg(2+) was significantly impaired in the mutant CGN. The rescuing effects of exogenous GM1 and LIGA20 corresponded to their ability to restore Ca(2+) homeostasis. The greater potency of LIGA20 is attributed to its greater membrane permeability with resultant ability to insert into both plasma and nuclear membranes at low concentration (相似文献   

7.
To study the predominant binding substance for the heat-labile enterotoxin (LTc) isolated from chicken enterotoxigenic Escherichia coli, competitive binding assays were performed with neuraminidase-treated human type B erythrocytes and 125I-labeled B subunit of LTc (LTc-B). Of all inhibitors used, the ganglioside GM1 was the most effective in inhibiting the binding of 125I-labeled LTc-B to the erythrocytes. The other gangliosides used as inhibitors, gangliosides GD1b, GD1a, GM2, GT1b and GM3, were about 24, 166, 250, 440 and at least 440 times less reactive than ganglioside GM1, respectively. With glycoproteins as inhibitors, on the other hand, hog A + H, porcine thyroglobulin and bovine salivary mucin were over 10(4) times less potent. No inhibition was obtained by other mono-, di- and polysaccharides at the highest concentrations used. These findings suggest that the predominant binding substance on neuraminidase-treated human type B erythrocytes for the LTc-B is ganglioside GM1 and that the combining site of LTc-B may be specific for the terminal disaccharide (galactose-N-acetyl-D-galactosamine)-linked portion of ganglioside GM1.  相似文献   

8.
The binding specificities of heat-labile enterotoxins (LTp and LTh) isolated from porcine and human enterotoxigenic Escherichia coli on human erythrocytes were studied by competitive binding assays using different gangliosides as inhibitors. The binding of 125I-labeled LTp to neuraminidase-treated human type A erythrocytes was most effectively inhibited by ganglioside GM1. Ganglioside GM1 was 11 and 105 times more potent than gangliosides GD1b and GM2, respectively. Gangliosides GD1a, GT1b, and GM3 were much less potent. Similar results were also obtained in competitive binding assays with the 125I-labeled B subunit of LTh and neuraminidase-treated human type B erythrocytes, and in those with 3H-labeled ganglioside GM1 and LTp-coupled Sepharose 4B. The binding of 3H-labeled ganglioside GM1 to LTp was not effectively inhibited by galactose-beta(1----3)N-acetyl-D-galactosamine at the highest concentration used. These findings suggest that the combining sites of LTp and LTh may be specific for at least the galactose-N-acetyl-D-galactosamine-galactose (N-acetyl-neuraminic acid) portion of ganglioside GM1.  相似文献   

9.
The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. p150(Glued) is the dynactin subunit responsible for binding to dynein and microtubules. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which governs phosphorylation-dependent ubiquitination and subsequent proteolysis. Our recent study showed that the proteolysis of mitotic kinesin CENP-E is mediated by SCF via a direct Skp1 link [D. Liu, N. Zhang, J. Du, X. Cai, M. Zhu, C. Jin, Z. Dou, C. Feng, Y. Yang, L. Liu, K. Takeyasu, W. Xie, X. Yao, Interaction of Skp1 with CENP-E at the midbody is essential for cytokinesis, Biochem. Biophys. Res. Commun. 345 (2006) 394-402]. Here we show that F-box protein FBXL5 interacts with p150(Glued) and orchestrates its turnover via ubiquitination. FBXL5 binds to p150(Glued)in vitro and in vivo. FBXL5 and p150(Glued) co-localize primarily in the cytoplasm with peri-nuclear enrichment in HeLa cells. Overexpression of FBXL5 promotes poly-ubiquitination of p150(Glued) and protein turnover of p150(Glued). Our findings provide a potential mechanism by which p150(Glued) protein function is regulated by SCFs.  相似文献   

10.
The effect of end-product gangliosides (GD1a, GT1b, GQ1b) on the activities of two key enzymes in ganglioside biosynthesis, namely GM2-synthase and GD3-synthase in rat liver Golgi apparatus, has been investigated in detergent-free as well as in detergent-containing assays. In detergent-free intact Golgi vesicles, phosphatidylglycerol was used as a stimulant. This phospholipid was earlier shown to stimulate the activity of GM2-synthase without disrupting the vesicular intactness; it has, however, no effect on GD3-synthase (Yusuf, H.K.M., Pohlentz, G., Schwarzmann, G. & Sandhoff, K. (1983) Eur. J. Biochem. 134, 47-54). In the presence of this stimulant, all higher gangliosides inhibited the activity of GM2-synthase, the inhibition being more profound with increasing negative charge of the inhibiting gangliosides. These inhibitions are unspecific, but they do not exclude an end-product regulation of ganglioside biosynthesis. In detergent-solubilized Golgi membranes, on the other hand, the inhibition pattern was completely different. Here, ganglioside GD1a was the strongest inhibitor of GM2-synthase, followed by GM1 and GM2, but GT1b also inhibited this enzyme appreciably, in fact more strongly than GM1 or GM2. On the other hand, GQ1b had no effect at all. Conversely, GD3-synthase activity was most strongly inhibited by GQ1b, followed by GT1b, but GD1a also inhibited this enzyme almost as strongly as GT1b. These latter findings indicate that feed-back control of the a- and the b-series pathways of ganglioside biosynthesis is probably not specific, but the pathways appear to be inhibited more preferably by their respective end-products than by any other gangliosides of the same of the other series.  相似文献   

11.
The anti-viral activity of gangliosides such as SPG (sialylparagloboside), GD1a, GM3, and GM4 was assessed by inhibition of the cytopathy of MDCK cells due to infection with the influenza virus A/PR/8/34. The inhibitory effect was in the following sequence: SPG>GD1a>GM3>GM4. The IC50 of SPG and GD1a was 7 and 70 microM, respectively, indicating that they are more effective than the representative inhibitor amantadine. Although 3'-sialyllactose (3'-SL) and 3'-sialyllactosamine (3'-SLN), which are identical to the terminal trisaccharides of GM3 and SPG, respectively, did not show any inhibitory effect, introduction of an amino group to the reducing end of 3'-SL following amidation with lauroyl chloride gave the inhibitory potency, which was comparable to that of GM3. These results suggest that the viral hemagglutinin recognizes exogenous sialyloligosaccharides rather than inherent sialyloligosaccharides expressed on MDCK cells, since introduction of the hydrophobic moiety to oligosaccharides might cause micelle formation.  相似文献   

12.
Among calmodulin-non-binding glycosphingolipids, GM3, sialosylneolactotetraosylceramide (LM1), and sulfatide potently activated calmodulin-dependent cyclic nucleotide phosphodiesterase with or without Ca2+ showing ED50 1-5 microM. In contrast to calmodulin-binding gangliosides, these glycosphingolipids activated the enzyme up to the maximum level achieved by Ca2+/calmodulin and did not inhibit the activity at higher concentrations. Competition studies with GD1b that bind both to calmodulin and the enzyme suggest that the calmodulin-non-binding glycosphingolipids activate the enzyme through interaction with the same site of the enzyme as GD1b interacts.  相似文献   

13.
Prior development of a unique androgen-receptor (AR)-negative cell line (HH870) from organ-confined (T2b) human prostate cancer (CaP) enabled comparison of the gangliosides associated with normal and neoplastic prostate epithelial cells, organ-confined versus metastatic (DU 145, PC-3), and AR-negative versus AR-positive CaP cell lines. Resorcinol-HCl and specific monoclonal antibodies were used to characterize gangliosides on 2D-chromatograms, and to visualize them on the cell surface with confocal-fluorescence microscopy. AR-negative cells expressed GM1b, GM2, GD2, GD1a, and GM3. GM1a, GD1b, and GT1b were undetectable. GM1b and GD1a were more prominent in AR-negative than in AR-positive cells. PC-3 and HH870 cells were unique in the expression of O-acetylGD2 (O-AcGD2) and two alpha2,3-sialidase-resistant, alkali-susceptible GMR17-reactive gangliosides. Expression of GD1a, GM1b, doublets of GD3, GD2, and O-AcGD2, and the presence of an additional alkali-labile-14.G2a-reactive ganglioside, two alkali-susceptible, and three alkali-resistant GMR17-reactive gangliosides makes HH870 a potential component of a polyvalent-vaccine for active-specific immunotherapy of CaP.  相似文献   

14.
The Ca2+ signaling protein calmodulin (CaM) stimulates Ca2+ pumping in the plasma-membrane Ca2+-ATPase (PMCA) by binding to an autoinhibitory domain, which then dissociates from the catalytic domain of PMCA to allow full activation of the enzyme. We measured single-molecule fluorescence trajectories with polarization modulation to track the conformation of the autoinhibitory domain of PMCA pump bound to fluorescently labeled CaM. Interchange of the autoinhibitory domain between associated and dissociated conformations was detected at a physiological Ca2+ concentration of 0.15 microM, where the enzyme is only partially active, but not at 25 microM, where the enzyme is fully activated. In previous work we showed that the conformation of the autoinhibitory domain in PMCA-CaM complexes could be monitored by the extent of modulation of single-molecule fluorescence generated with rotating excitation polarization. In the present work, we determined the timescale of association and dissociation of the autoinhibitory domain with the catalytic regions of the PMCA. Association of the autoinhibitory domain was rare at a high Ca2+ concentration (25 microM). At a lower Ca2+ concentration (0.15 microM), conformations of the autoinhibitory domain interchanged with a dissociation rate of 0.042 +/- 0.011 sec(-1) and an association rate of 0.023 +/- 0.006 sec-1. The results indicate that the response time of PMCA upon a reduction in Ca2+ is limited to tens of seconds by autoinhibitory dynamics. This property may reduce the sensitivity of PMCA to transient reductions in intracellular Ca2+. We suggest that the dynamics of the autoinhibitory domain may play a novel role in regulating PMCA activity.  相似文献   

15.
Glycosphingolipids were purified from porcine erythrocytes and plasma. Two minor glycolipids with human blood group A and H antigenicities were found in both sources as components. The two antigenic glycolipids were identified as a hexaglycosylceramide (IV3 alpha GalNAc,IV2 alpha Fuc-Lc4Cer) for the A antigen and pentaglycosylceramide (IV2 alpha Fuc-Lc4Cer) for the H antigen and belonged to lactoseries (type 1 sugar chain) in contrast to those with neolacto core (type 2 sugar chain) in human erythrocytes, thereby endorsing biochemically the previous serological observations that the A antigen on porcine erythrocytes is uptake from plasma, probably the H antigen being the case. In addition to major glycolipids of globoseries in red cells and plasma, a variety of acidic glycolipids including two classes of sulphatides (sulphated galactosylceramide and sulphated lactosylceramide) and five classes of gangliosides (GM3, GD3, GM1, fucosyl GM1 and GD1a) containing N-acetylneuraminic acid and N-glycolylneuraminic acid were obtained from plasma.  相似文献   

16.
Mice genetically engineered to lack complex gangliosides are improved hosts for raising antibodies against those gangliosides. We report the generation and characterization of nine immunoglobulin G (IgG)-class monoclonal antibodies (mAbs) raised against the four major brain gangliosides in mammals. These include (designated as ganglioside specificity-IgG subclass) two anti-GM1 mAbs (GM1-1, GM1-2b), three anti-GD1a mAbs (GD1a-1, GD1a-2a, GD1a-2b), one anti-GD1b mAb (GD1b-1), and three anti-GT1b mAbs (GT1b-1, GT1b-2a, GT1b-2b). Each mAb demonstrated high specificity, with little or no cross-reactivity with other major brain gangliosides. Enzyme-linked immunosorbent assay (ELISA) screening against 14 closely related synthetic and purified gangliosides confirmed the high specificity, with no significant cross-reactivity except that of the anti-GD1a mAbs for the closely related minor ganglioside GT1a alpha. All of the mAbs were useful for ELISA, TLC immunooverlay, and immunocytochemistry. Neural cells from wild-type rats and mice were immunostained to differing levels with the anti-ganglioside antibodies, whereas neural cells from mice engineered to lack complex gangliosides (lacking the ganglioside-specific biosynthetic enzyme UDP-GalNAc:GM3/GD3 N-acetylgalactosaminyltransferase) remained unstained, demonstrating that most of the mAbs react only with gangliosides and not with related structures on glycoproteins. These mAbs may provide useful tools for delineation of the expression and function of the major brain gangliosides and for probing the pathology of anti-ganglioside autoimmune diseases.  相似文献   

17.
Exogenous gangliosides are known to affect the metabolism when administered to the body. To study the mechanism of this effect three types of gangliosides were administered intraperitoneally to mice and the changes in the enzyme activity of the cerebral tissues studied. The effect of GM2 from bovine brain was characterized by a decrease in the activity of various aminopeptidases, while GD3 from cow's milk caused an increase in the activity of sugar-related enzymes such as sialidase, glucosidase, and fucosidase. GM3 from horse erythrocytes showed intermediate effects between GM2 and GD3. Multivariate analysis showed that the effects of the three gangliosides are clearly separable statistically. These results which demonstrate the sugar moiety-specificity of gangliosides are discussed in relation to the A and B pathways of ganglioside synthesis.  相似文献   

18.
Beta1,4-N-acetylgalactosaminyltransferase (GM2/GD2 synthase) is a key enzyme which catalyzes the conversion of GM3, GD3 and lactosylceramide (LacCer) to GM2, GD2 and asialo-GM2 (GA2), respectively. This step is critical for the synthesis of all complex gangliosides enriched in the nervous system of vertebrates. Following the cloning of cDNAs encoding GM2/GD2 synthase by an expression cloning approach, substantial evidence for the roles of complex gangliosides have been obtained. Above all, knock-out mice lacking all complex gangliosides revealed important roles of complex gangliosides in vivo, i.e., in the maintenance and repair of nervous tissues, in the intact differentiation of spermatocytes via the transport of testosterone, and in the regulation of interleukin-2 receptor complex. Molecular mechanisms for these functions of complex gangliosides in vivo remain to be clarified.  相似文献   

19.
Abstract— The ganglioside composition of the brain of a patient with Tay-Sachs disease (TS-brain) was determined by a newly developed ganglioside-mapping procedure and compared with that of an age-matched control brain. GM2 ganglioside was the predominant component in TS-brain and the following gangliosides were also found, GM1, GD1a, GD1b and GT1 (major gangliosides in normal brain), and GM3, GD3, GD2 and GD1a-GAN (minor or undetectable components of normal brain). Individual gangliosides were isolated by column chromatography using a combination of DEAE-Sepharose, Iatrobeads and Silica Gel 60 and their structures were confirmed by comparing them with authentic standards using TLC, analysing their carbohydrate compositions by gas-liquid chromatography and cleaving them sequentially with glycosidases. The amounts of individual components were measured by quantitative densitometric scanning of the thin-layer plates. As a reflection of myelin breakdown, no sialosylgalactosyl ceramide was detectable in TS-brain. Although the total amounts of all gangliosides except GM2 in TS-brain were low, there were normal molar ratios of the main gangliosides in normal brain, that is, GM1, GD1a, GD1b and GT1. In comparison with the amount of GDla ganglioside, the amounts of GM2, GD2 and GD1a-GAN, which contain N-acetylgalactosamine as a terminal carbohydrate residue, were all elevated in TS-brain. The long chain bases of individual gangliosides contained both C-18 and C-20 sphingosine in different ratios and the ratio of C-20 to C-18 increased in the gangliosides in the order: GM2 < GM1 < GD1a < GD1a-GAN < GD1b < GT1 in both normal brain and TS-brain. In contrast, GD2 and GD3 gangliosides consisted mainly of C-18 sphingosine. The C-20 to C-18 ratios of individual gangliosides in the TS-brain were lower than those of age-matched control brain. Hexosaminidase from Turbo cornutus showed the same specific activity and Km value in catalysing the cleavage of terminal N-acetylgalactosaminyl residues from GM2, GD2 and GD1a-GAN, suggesting that the brain gangliosides that increase in Tay-Sachs disease may be cleaved by the same enzyme.  相似文献   

20.
The effect of neutral (galactocerebroside and asialo-ganglioside GM1) or anionic (sulphatide and gangliosides GM1, GD1a and GT1b) glycosphingolipids on the activity of phospholipase A2 from pig pancreas was studied in mixed monolayers of dilauroyl phosphatidylcholine with the glycosphingolipids in different molar fractions at various constant surface pressures. The activity of the enzyme depends on the proportion and type of glycosphingolipid in the interface. Sulphatide activates the enzyme at all proportions, whereas galactocerebroside shows inhibition or activation depending on its proportion in the film. Asialo-ganglioside GM1 and gangliosides GM1, GD1a and GT1b can strongly inhibit the enzyme at relatively low molar fractions in the film in the following order: asialo-ganglioside GM1 less than ganglioside GM1 less than ganglioside GT1b less than ganglioside GD1a. The changes of activity are not due to a direct action of the lipids on the active centre or interfacial recognition region of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号