首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The viscoelastic mechanical properties of normal and osteoarthritic articular were analyzed based on data reported by Kempson [in: Adult Articular Cartilage (1973)] and Silver et al. (Connect. Tissue Res., 2001b). Results of the analysis of tensile elastic stress-strain curves suggest that the elastic modulus of cartilage from the superficial zone is approximately 7.0 GPa parallel and 2.21 GPa perpendicular to the cleavage line pattern. Collagen fibril lengths in the superficial zone were found to be approximately 1265 microm parallel and 668 microm perpendicular to the cleavage line direction. The values for the elastic modulus and fibril lengths decreased with increased extent of osteoarthritis. The elastic modulus of type II collagen parallel to the cleavage line pattern in the superficial zone approaches that of type I collagen in tendon, suggesting that elastic energy storage occurs in the superficial zone due to the tensile pre-tension that exists in this region. Decreases in the elastic modulus associated with osteoarthritis reflect decreased ability of cartilage to store elastic energy, which leads to cartilage fibrillation and fissure formation. We hypothesize that under normal physiological conditions, collagen fibrils in cartilage function to store elastic energy associated with weight bearing and locomotion. Enzymatic cleavage of cartilage proteoglycans and collagen observed in osteoarthritis may lead to fibrillation and fissure formation as a result of impaired energy storage capability of cartilage.  相似文献   

2.
Organization of the collagen network is known to be different in healthy, osteoarthritic and repaired cartilage. The aim of the study was to investigate how the structure and properties of collagen network of cartilage modulate stresses in a knee joint with osteoarthritis or cartilage repair. Magnetic resonance imaging (MRI) at 1.5 T was conducted for a knee joint of a male subject. Articular cartilage and menisci in the knee joint were segmented, and a finite element mesh was constructed based on the two-dimensional section in sagittal projection. Then, the knee joint stresses were simulated under impact loads by implementing the structure and properties of healthy, osteoarthritic and repaired cartilage in the models. During the progression of osteoarthritis, characterized especially by the progressive increase in the collagen fibrillation from the superficial to the deeper layers, the stresses were reduced in the superficial zone of cartilage, while they were increased in and under menisci. Increased fibril network stiffness of repair tissue with randomly organized collagen fibril network reduced the peak stresses in the adjacent tissue and strains at the repair–adjacent cartilage interface. High collagen fibril strains were indicative of stress concentration areas in osteoarthritic and repaired cartilage. The collagen network orientation and stiffness controlled the stress distributions in healthy, osteoarthritic and repaired cartilage. The evaluation of articular cartilage function using clinical MRI and biomechanical modeling could enable noninvasive estimation of osteoarthritis progression and monitoring of cartilage repair. This study presents a step toward those goals.  相似文献   

3.
Articular cartilage degeneration seen in osteoarthritis is primarily the consequence of events within the articular cartilage that leads to the production of proteases by chondrocytes. 22 osteoarthritic cartilage specimens were obtained from patients with primary osteoarthritis (46–81 years) undergoing total knee replacement. 12 age-matched (41–86 years) and 16 young (16–40 years) non-osteoarthritic control cartilage specimens were obtained from the cadavers in the department of Anatomy and from patients undergoing lower limb amputation in Trauma center of PGIMER, Chandigarh. 5 μ thick paraffin sections were stained for osteocalcin, osteopontin, osteonectin and alkaline phosphatase to analyze their expression in hypertrophied chondrocytes and osteoarthritic cartilage matrix and to compare the staining intensity with that of normal ageing articular cartilage. Immunohistochemical staining of tissue sections revealed moderate to strong cytoplasmic staining for all four stains in all the specimens of the osteoarthritic group compared to age-matched control. The immunohistochemical scores were significantly higher in the osteoarthritic group for all four stains. The features of the osteoarthritic articular cartilage were markedly different from the non-osteoarthritic age-matched articular cartilage suggesting that osteoarthritis is not an inevitable feature of aging.  相似文献   

4.
During the progression of osteoarthritis, dysregulation of extracellular matrix (ECM) anabolism, abnormal generation of reactive oxygen species, and proteolytic enzymes have been shown to accelerate the degradation process of cartilage. The purpose of the current study was to investigate the functional role of bromodomain‐containing protein 4 (BRD4) in hydrogen peroxide (H2O2)–stimulated chondrocyte injury and delineate the underlying molecular mechanisms. We observed that the expression BRD4 was markedly elevated in rat chondrocytes after H2O2 stimulation. Additionally, inhibition of BRD4 using small interfering RNA or JQ1 (a selective potent chemical inhibitor) led to repression of H2O2‐induced oxidative stress, as revealed by a decrease in the reactive oxygen species production accompanied by a decreased malondialdehyde content, along with increased activities of antioxidant markers superoxide dismutase, catalase, and glutathione peroxidase on exposure of chondrocytes to H2O2. Meanwhile, depletion of BRD4 led to repress the oxidative stress–induced apoptosis of chondrocytes triggered by H2O2 accompanied by an increase in the expression of anti‐apoptotic Bcl‐2 and a decrease in the expression of pro‐apoptotic Bax and caspase 3 as well as attenuated caspase 3 activity. Moreover, knockdown of BRD4 or treatment with JQ1 markedly attenuated ECM deposition, reflected in a marked upregulation of proteoglycans collagen type II and aggrecan as well as downregulation of ECM–degrading enzymes matrix metalloproteinase 13 and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS‐5). More importantly, inhibition of BRD4‐activated NF‐E2–related factor 2 (Nrf2)–heme oxygenase‐1 signaling. Mechanistically, the protective effect of BRD4 inhibition on H2O2‐stimulated apoptosis and cartilage matrix degeneration was markedly abrogated by Nrf2 depletion. Altogether, we concluded that the protective effect of BRD4 inhibition against oxidative stress–mediated apoptosis and cartilage matrix degeneration occurred through Nrf2–heme oxygenase‐1 signaling, implying that BRD4 inhibition may be a more effective therapeutic strategy against osteoarthritis.  相似文献   

5.
Proline-hydroxyproline (Pro-Hyp) stimulated hyaluronic acid production in cultured synovium cells. It was detected in guinea pig blood after oral ingestion of collagen hydrolysates. Oral administration of collagen hydrolysates increased the amount of proteoglycans in the epiphyses. It also reduced the morphological changes associated with osteoarthritic cartilage destruction of the knee joint. The results suggest that collagen hydrolysates have therapeutic potential for treatment of osteoarthritis.  相似文献   

6.
Proline-hydroxyproline (Pro-Hyp) stimulated hyaluronic acid production in cultured synovium cells. It was detected in guinea pig blood after oral ingestion of collagen hydrolysates. Oral administration of collagen hydrolysates increased the amount of proteoglycans in the epiphyses. It also reduced the morphological changes associated with osteoarthritic cartilage destruction of the knee joint. The results suggest that collagen hydrolysates have therapeutic potential for treatment of osteoarthritis.  相似文献   

7.
The principal collagen types synthesized during two distinct phases of regeneration in rabbit ears have been investigated, in order to relate altered phenotypic expression in connective tissue cells to regeneration of cartilage. To do this, radioactively labeled collagens synthesized in short-term culture by selected regenerating ear tissues were analyzed by ion-exchange chromatography and SDS-gel electrophoresis of the intact collagens and of the cyanogen bromide peptides derived from them. Prior to the appearance of cartilage, rabbit ear holes are filled by an outgrowth of mesenchyme-like cells derived locally from adjacent tissues. These cells produce a mixture of collagens including type I, [α1(I)]2α2, and the type I trimer, [α1(I)]3, but not type II collagen. Trimer production represents about one-fourth of the collagen synthesized in either a 4-, 10-, or a 24-hr incubation. Trimer is not made by tissues from healing skin wounds nor is it present in normal, uninjured ear tissues. Type II collagen synthesis was detected in tissues taken from late regenerates containing histologically recognizable cartilage, and direct analysis of regenerated cartilage confirmed the presence of type II collagen in the matrix. Thus, regenerated cartilage in the rabbit ear system contains the normal cartilage collagen, type II, while the proliferating cell mass from which the cartilage develops synthesizes the unusual collagen, [α1(I)]3.  相似文献   

8.
Osteoarthritis in synovial joints remains a major cause of long-term disability worldwide, with symptoms produced by the progressive deterioration of the articular cartilage. The earliest cartilage changes are thought to be alteration in its main protein components, namely proteoglycan and collagen. Loss of proteoglycans bound in the collagen matrix which maintain hydration and stiffness of the structure is followed by collagen degradation and loss. The development of new treatments for early osteoarthritis is limited by the lack of accurate biomarkers to assess the loss of proteoglycan. One potential biomarker is magnetic resonance imaging (MRI). We present the results of a novel MRI methodology, Fast Field-Cycling (FFC), to assess changes in critical proteins by demonstrating clear quantifiable differences in signal from normal and osteoarthritic human cartilage for in vitro measurements. We further tested proteoglycan extracted cartilage and the key components individually. Three clear signals were identified, two of which are related predominantly to the collagen component of cartilage and the third, a unique very short-lived signal, is directly related to proteoglycan content; we have not seen this in any other tissue type. In addition, we present the first volunteer human scan from our whole-body FFC scanner where articular cartilage measurements are in keeping with those we have shown in tissue samples. This new clinical imaging modality offers the prospect of non-invasive monitoring of human cartilage in vivo and hence the assessment of potential treatments for osteoarthritis. Keywords: Fast Field-Cycling NMR; human hyaline cartilage; Osteoarthritis; T1 dispersion; quadrupolar peaks; protein interactions  相似文献   

9.
Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodelling. Under physiologic conditions, articular cartilage displays a stable chondrocyte phenotype, whereas in osteoarthritis a chondrocyte hypertrophy develops near the sites of cartilage surface damage and associates to the pathologic expression of type X collagen. Transglutaminases (TGs) include a family of Ca2+-dependent enzymes that catalyze the formation of γ-glutamyl cross-links. Their substrates include a variety of intracellular and extracellular macromolecular components. TGs are ubiquitously and abundantly expressed and implicated in a variety of physiopathological processes. TGs activity is modulated by inflammatory cytokines. TG2 (also known as tissue transglutaminase) mediates the hypertrophic differentiation of joint chondrocytes and interleukin-1-induced calcification. Histomorphometrical and biomolecular investigations document increased TG2 expression in human and experimental osteoarthritis. Consequently, the level of TG2 expression may represent an adjuvant additional marker to monitor tissue remodelling occurring in osteoarthritic joint tissue. Experimental induction of osteoarthritis in TG2 knockout mice is followed from reduced cartilage destruction and increased osteophyte formation compared to wild-type mice, suggesting a different influence on joint bone and cartilage remodelling. The capacity of transamidation by TG2 to regulate activation of latent TGF-β seems to have a potential impact on the regulation of inflammatory response in osteoarthritic tissues. Additional studies are needed to define TG2-regulated pathways that are differently modulated in osteoblasts and chondrocytes during osteoarthritis.  相似文献   

10.
The chondroitin sulfate-rich region was cleaved from cartilage proteoglycans of experimental osteoarthritic canine joints to establish whether changes in this region of the molecule contribute to the well-documented increase in the chondroitin sulfate to keratan sulfate ratio in osteoarthritis. Experimental osteoarthritis was induced in eight dogs by severance of the right anterior cruciate ligament, the left joint serving as a control. Proteoglycans were extracted from the femoral cartilage of both joints, isolated as A1 fractions by associative density gradient centrifugation and cleaved with hydroxylamine. The chondroitin sulfate-rich region was isolated by either gel chromatography or dissociative density gradient centrifugation. The chondroitin sulfate-rich region from the proteoglycans of the experimental osteoarthritic joints was slightly larger in hydrodynamic size and had both a higher uronate/protein weight ratio and galactosamine/glucosamine molar ratio than the corresponding control. We conclude that the chondroitin sulfate-rich region of proteoglycans in articular cartilage of experimental osteoarthritic joints is larger and has more chondroitin sulfate than that of proteoglycans of normal cartilage.  相似文献   

11.
Experimental osteoarthritis was surgically induced in the right knee joint of dogs; the left knee served as a control. Articular cartilage was extracted with 4 M guanidinium chloride, 0.05 M sodium acetate, pH 6.0, containing proteinase inhibitors and the proteins purified by associative CsCl density gradient centrifugation. Equal quantities of protein were electrophoresed in agarose-acrylamide gradient gels and the high molecular weight type VI collagen bands detected in immunoblots with a polyclonal antiserum. Type VI collagen bands between 185 and 220 kDa were evident in the pathological specimens of dogs sacrificed 3, 5, and 7 months after surgery and were either absent or only very weakly visible in the controls. These results demonstrate that experimental osteoarthritic cartilage is enriched in 4 M guanidine-soluble type VI collagen.  相似文献   

12.
To determine whether transitions occur in the types of collagen synthesized during embryonic chick limb development, the α chain composition of the collagens produced by whole limbs and various anatomical regions of limbs was analyzed at different stages (23–24 to 40). The tissues were incubated in the presence of 3H-proline and 3H-lysine and the α chain distribution of the purified, labeled collagens was determined by chromatography on carboxymethyl cellulose columns. We found that the stage 23–24 leg mesenchyme is producing predominantly, if not solely, an (α1)2α2 type collagen (chain type as yet undetermined). At about stage 25–26 the limb core begins synthesizing detectable amounts of (α1)3 collagen, which we presume to be cartilage type collagen, [α1 (II)]3, while the outer portion of the limb largely continues to produce (α1)2α2. The production of (α1)3 collagen in the core progressively increases until, by stage 33 it is the only species detectable in the tibial diaphysis. Shortly thereafter (by stage 35+–36) (α1)2α2 type collagen reappears in the tibial diaphysis signifying the production of bone collagen, [α1 (I)]2α2. During the next several days of incubation, the relative proportion of (α1)2α2 increases in the bony diaphysis while (α1)3 remains the predominant species synthesized in the cartilaginous epiphysis.  相似文献   

13.

Introduction

The small leucine-rich proteoglycans (SLRPs) modulate tissue organization, cellular proliferation, matrix adhesion, growth factor and cytokine responses, and sterically protect the surface of collagen type I and II fibrils from proteolysis. Catabolism of SLRPs has important consequences for the integrity of articular cartilage and meniscus by interfering with their tissue homeostatic functions.

Methods

SLRPs were dissociatively extracted from articular cartilage from total knee and hip replacements, menisci from total knee replacements, macroscopically normal and fibrillated knee articular cartilage from mature age-matched donors, and normal young articular cartilage. The tissue extracts were digested with chondroitinase ABC and keratanase-I before identification of SLRP core protein species by Western blotting using antibodies to the carboxyl-termini of the SLRPs.

Results

Multiple core-protein species were detected for all of the SLRPs (except fibromodulin) in the degenerate osteoarthritic articular cartilage and menisci. Fibromodulin had markedly less fragments detected with the carboxyl-terminal antibody compared with other SLRPs. There were fewer SLRP catabolites in osteoarthritic hip than in knee articular cartilage. Fragmentation of all SLRPs in normal age-matched, nonfibrillated knee articular cartilage was less than in fibrillated articular cartilage from the same knee joint or total knee replacement articular cartilage specimens of similar age. There was little fragmentation of SLRPs in normal control knee articular cartilage. Only decorin exhibited a consistent increase in fragmentation in menisci in association with osteoarthritis. There were no fragments of decorin, biglycan, lumican, or keratocan that were unique to any tissue. A single fibromodulin fragment was detected in osteoarthritic articular cartilage but not meniscus. All SLRPs showed a modest age-related increase in fragmentation in knee articular and meniscal cartilage but not in other tissues.

Conclusion

Enhanced fragmentation of SLRPs is evident in degenerate articular cartilage and meniscus. Specific decorin and fibromodulin core protein fragments in degenerate meniscus and/or human articular cartilage may be of value as biomarkers of disease. Once the enzymes responsible for their generation have been identified, further research may identify them as therapeutic targets.  相似文献   

14.
The knowledge of molecular alterations in osteoarthritic cartilage is important to identify novel therapeutic targets or to develop new diagnostic tools. We aimed to characterize the molecular response to cartilage degeneration by identification of differentially expressed genes in human osteoarthritic versus normal cartilage. Gene fragments selectively amplified in osteoarthritic cartilage by cDNA representational difference analysis included YKL-39 and the oesophageal-cancer-related-gene-4 (ECRG4). YKL-39 expression was significantly upregulated in cartilage from patients with osteoarthritis (n=14) versus normal subjects (n=8) according to real-time PCR (19-fold, p=0.009) and cDNA array analysis (mean 15-fold, p<0.001) and correlated with collagen 2 up-regulation. In contrast, the homologous cousin molecule YKL-40 (chitinase 3-like 1), which is elevated in serum and synovial fluid of patients with arthritis, showed no significant regulation in OA cartilage. Enhanced levels of YKL-40 may, therefore, be derived from synovial cells while modulation of YKL-39 and collagen 2 expression reflected the cartilage metabolism in response to degradation.  相似文献   

15.
Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation. The aim of this study was to use an active-site probe, biotinylated fluorophosphonate, to identify active serine proteinases present on the chondrocyte membrane after stimulation with the pro-inflammatory cytokines IL-1 and oncostatin M (OSM), agents that promote cartilage resorption. Fibroblast activation protein alpha (FAPα), a type II integral membrane serine proteinase, was identified on chondrocyte membranes stimulated with IL-1 and OSM. Real-time PCR analysis shows that FAPα gene expression is up-regulated by this cytokine combination in both isolated chondrocytes and cartilage explant cultures and is significantly higher in cartilage from OA patients compared to phenotypically normal articular cartilage. Immunohistochemistry analysis shows FAPα expression on chondrocytes in the superficial zone of OA cartilage tissues. This is the first report demonstrating the expression of active FAPα on the chondrocyte membrane and elevated levels in cartilage from OA patients. Its cell surface location and expression profile suggest that it may have an important pathological role in the cartilage turnover prevalent in arthritic diseases.  相似文献   

16.
 Articular cartilage is a multilayered structure that lines the surfaces of all articulating joints. It contains cells, collagen fibrils, and proteoglycans with compositions that vary from the surface layer to the layer in contact with bone. It is composed of several zones that vary in structure, composition, and mechanical properties. In this paper we analyze the structure of the extracellular matrix found in articular cartilage in an effort to relate it to the ability of cartilage to store, transmit, and dissipate mechanical energy during locomotion. Energy storage and dissipation is related to possible mechanisms of mechanochemical transduction and to changes in cartilage structure and function that occur in osteoarthritis. In addition, we analyze how passive and active internal stresses affect mechanochemical transduction in cartilage, and how this may affect cartilage behavior in health and disease. Received: 8 February 2002 / Accepted: 9 July 2002  相似文献   

17.
Articular cartilage consists mainly of extracellular matrix, mostly made of collagens and proteoglycans. These macromolecules have so far impaired the detailed two-dimensional electrophoresis-based proteomic analysis of articular cartilage. Here we describe a method for selective protein extraction from cartilage, which excludes proteoglycans and collagen species, thus allowing direct profiling of the protein content of cartilage by two-dimensional electrophoresis. Consistent electrophoretic patterns of more than 600 protein states were reproducibly obtained after silver staining from 500 mg of human articular cartilage from joints with diverse pathologies. The extraction yield increased when the method was applied to a chondrosarcoma sample, consistent with selective extraction of cellular components. Nearly 200 of the most intensely stained protein spots were analyzed by MALDI-TOF mass spectrometry after trypsin digestion. They represented 127 different proteins with diverse functions. Our method provides a rapid, efficient, and pertinent alternative to previously proposed approaches for proteomic characterization of cartilage phenotypes. It will be useful for detecting protein expression patterns that relate pathophysiological processes of cartilaginous tissues such as osteoarthritis and chondrosarcoma.  相似文献   

18.
A major and early feature of cartilage degeneration is proteoglycan breakdown. Matrix metalloprotease (MMP)-13 plays an important role in cartilage degradation in osteoarthritis (OA). This MMP, in addition to initiating collagen fibre cleavage, acts on several proteoglycans. One of the proteoglycan families, termed small leucine-rich proteoglycans (SLRPs), was found to be involved in collagen fibril formation/interaction, with some members playing a role in the OA process. We investigated the ability of MMP-13 to cleave members of two classes of SLRPs: biglycan and decorin; and fibromodulin and lumican. SLRPs were isolated from human normal and OA cartilage using guanidinium chloride (4 mol/l) extraction. Digestion products were examined using Western blotting. The identities of the MMP-13 degradation products of biglycan and decorin (using specific substrates) were determined following electrophoresis and microsequencing. We found that the SLRPs studied were cleaved to differing extents by human MMP-13. Although only minimal cleavage of decorin and lumican was observed, cleavage of fibromodulin and biglycan was extensive, suggesting that both molecules are preferential substrates. In contrast to biglycan, decorin and lumican, which yielded a degradation pattern similar for both normal and OA cartilage, fibromodulin had a higher level of degradation with increased cartilage damage. Microsequencing revealed a novel major cleavage site (... G177/V178) for biglycan and a potential cleavage site for decorin upon exposure to MMP-13. We showed, for the first time, that MMP-13 can degrade members from two classes of the SLRP family, and identified the site at which biglycan is cleaved by MMP-13. MMP-13 induced SLRP degradation may represent an early critical event, which may in turn affect the collagen network by exposing the MMP-13 cleavage site in this macromolecule. Awareness of SLRP degradation products, especially those of biglycan and fibromodulin, may assist in early detection of OA cartilage degradation.  相似文献   

19.
Proteolytic degradation of the major cartilage macromolecules, aggrecan and type II collagen, is a key pathological event in osteoarthritis (OA). ADAMTS-4 and ADAMTS-5, the primary aggrecanases capable of cartilage aggrecan cleavage, are synthesized as latent enzymes and require prodomain removal for activity. The N-termini of the mature proteases suggest that activation involves a proprotein convertase, but the specific family member responsible for aggrecanase activation in cartilage in situ has not been identified. Here we describe purification of a proprotein convertase activity from human OA cartilage. Through biochemical characterization and the use of siRNA, PACE4 was identified as a proprotein convertase responsible for activation of aggrecanases in osteoarthritic and cytokine-stimulated cartilage. Posttranslational activation of ADAMTS-4 and ADAMTS-5 was observed in the extracellular milieu of cartilage, resulting in aggrecan degradation. These findings suggest that PACE4 represents a novel target for the development of OA therapeutics.  相似文献   

20.
Suppression of type II collagen (COL2A1) cleavage by transforming growth factor (TGF)-β2 in cultured human osteoarthritic cartilage has been shown to be associated with decreased expression of collagenases, cytokines, genes associated with chondrocyte hypertrophy, and upregulation of prostaglandin (PG)E2 production. This results in a normalization of chondrocyte phenotypic expression. Here we tested the hypothesis that PGE2 is associated with the suppressive effects of TGF-β2 in osteoarthritic (OA) cartilage and is itself capable of downregulating collagen cleavage and hypertrophy in human OA articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with a wide range of concentrations of exogenous PGE2 (1 pg/ml to 10 ng/ml). COL2A1 cleavage was measured by ELISA. Proteoglycan content was determined by a colorimetric assay. Gene expression studies were performed with real-time PCR. In explants from patients with OA, collagenase-mediated COL2A1 cleavage was frequently downregulated at 10 pg/ml (in the range 1 pg/ml to 10 ng/ml) by PGE2 as well as by 5 ng/ml TGF-β2. In control OA cultures (no additions) there was an inverse relationship between PGE2 concentration (range 0 to 70 pg/ml) and collagen cleavage. None of these concentrations of added PGE2 inhibited the degradation of proteoglycan (aggrecan). Real-time PCR analysis of articular cartilage from five patients with OA revealed that PGE2 at 10 pg/ml suppressed the expression of matrix metalloproteinase (MMP)-13 and to a smaller extent MMP-1, as well as the proinflammatory cytokines IL-1β and TNF-α and type X collagen (COL10A1), the last of these being a marker of chondrocyte hypertrophy. These studies show that PGE2 at concentrations much lower than those generated in inflammation is often chondroprotective in that it is frequently capable of selectively suppressing the excessive collagenase-mediated COL2A1 cleavage found in OA cartilage. The results also show that chondrocyte hypertrophy in OA articular cartilage is functionally linked to this increased cleavage and is often suppressed by these low concentrations of added PGE2. Together these initial observations reveal the importance of very low concentrations of PGE2 in maintaining a more normal chondrocyte phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号