首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyembryony, referring here to situations where a nucellar embryo is formed along with the zygotic embryo, has different consequences for the fitness of the maternal parent and offspring. We have developed genetic and inclusive fitness models to derive the conditions that permit the evolution of polyembryony under maternal and offspring control. We have also derived expressions for the optimal allocation (evolutionarily stable strategy, ESS) of resources between zygotic and nucellar embryos. It is seen that (i) Polyembryony can evolve more easily under maternal control than under that of either the offspring or the ‘selfish’ endosperm. Under maternal regulation, evolution of polyembryony can occur for any clutch size. Under offspring control polyembryony is more likely to evolve for high clutch sizes, and is unlikely for low clutch sizes (<3). This conflict between mother and offspring decreases with increase in clutch size and favours the evolution of polyembryony at high clutch sizes, (ii) Polyembryony can evolve for values of “x” (the power of the function relating fitness to seed resource) greater than 0.5758; the possibility of its occurrence increases with “x”, indicating that a more efficient conversion of resource into fitness favours polyembryony. (iii) Under both maternal parent and offspring control, the evolution of polyembryony becomes increasingly unlikely as the level of inbreeding increases, (iv) The proportion of resources allocated to the nucellar embryo at ESS is always higher than that which maximizes the rate of spread of the allele against a non-polyembryonic allele.  相似文献   

2.
Injections of cytochalasin D (CD) or DNase I under the surface of fertilized loach egg result in local disorganization of microfilamentous cortex (MC) as revealed by transmission electron microscopy. This effect correlates with the loss of the cortex ability to contract in vitro. The disorganization of MC in the vegetal hemisphere of the egg does not affect the ooplasm segregation or blastodisk cleavage. Injection under the animal pole suppresses blastodisk formation and results in the autonomous separation of ooplasm in the central part of the egg. The experiments suggest that (1) autonomous separation of ooplasm from the yolk granules can proceed in the central part of the egg without the participation of MC; (2) normal segregation of ooplasm at the animal pole requires that the structures of microfilaments in the animal hemisphere (but not in the vegetal one) be preserved.  相似文献   

3.
Polyembryony in maize (PEm) contributes to improving the nutritional properties of the grain, as well as an increase in yield, since it generates multiple plants per seed, opening the possibility of developing new varieties. However, it is unknown whether polyembryony in maize is the product of chromosomal abnormalities. Based on the above, in this research a cytogenetic study was proposed to verify if chromosomal abnormalities are related to the maize polyembryony. For a meiotic study, maize genotypes with variable proportions of polyembryony (PEm), from the UA-IMM-BAP population and non-PEm (monoembryonic) maize were used, while for a mitosis analysis, 30 families of maternal half-siblings (MHS) from two different populations with high polyembryony, denominated as BHP (brachytic, high polyembryony) and NHP (normal height, high polyembryony) were used. All these genotypes were planted in the Buenavista Agricultural Experimental Station-UAAAN at Saltillo, Coahuila, Mexico. The frequency of PEm was estimated in all genotypes. It was found that the polyembryony occurs at frequencies from 34 to 66% in the D-02, BHP group, and from 13 to 21% in the segregating groups of the G3-0202 and G3-0201. The squash technique was used for both cytogenetic analyses. Different meiotic irregularities in maize chromosomes were detected, such as irregular association of 10% of chromosomes in metaphase 1, and agglomeration of chromatin in 100% of the cells. In addition, pollen viability was estimated by the staining technique with 1% acetocarmine dye, and it was found that the polyembryonic ones have pollen viability of 100%. In meiosis in prophase, I sub-phase diakinesis, ten pairs of bivalents were confirmed, confirming 2n = 20, both in non-PEm and PEm maize, corroborating mating, and balanced segregation, without the presence of univalent or multivalent. In the chromosomal count carried out in cells in mitosis, only in the BHP-200 polyembryonic family was registered two out of twenty triploid plants. This condition of ploidy is atypical in maize, so it is recommended to analyze more plants from this family.  相似文献   

4.
Different concepts of polyembryony and genetic heterogeneity of seeds in flower plants have been reviewed. Different types, ways, and forms of plant reproduction appeared in the course of evolution as a consequences of the attached mode of life and autotrophy. This is ascribed to totipotency, "stemminess" of plant cells, and presence of constantly functioning meristems, which determined to a great extent the system of plant safety. There are two ways of formation of a new individual: sexual process --> gamospermy involving meiosis and gamete fusion and asexual process --> agamospermy without meiosis and gamete fusion and two types of reproduction: seed and vegetative. Both processes may take place simultaneously in one seed, as a result of which many embryos of different origins are formed: uniparental and biparental inheritance. Traditionally, this phenomenon is called polyembryony. It comprises embryoidogeny (a new category of vegetative reproduction): formation of somatic embryos (= embryoids) in the flower, seed, and on vegetative organs. Genetic heterogeneity is one of the most important characteristics of seeds, which is based on different phenomena, such as embryogeny, embryoidogeny, and gametophytic and sporophytic apomixes. When describing two types of polyembryony, sporophytic (nucellar, integumental, cleavage) and gametophytic (synergidal, antipodal), a great attention is paid to characterization of initial cells of the sexual and adventive embryos. A new concept of apogamety is developed from new positions (totipotency and "stemminess"), which is based on different genesis of cells of the egg and antipodal systems. Five possible pathways of formation of the adventive embryos have been proposed from cells of the egg apparatus. Specific features of the formation of adventive embryos in the case of gametophytic apomixis, such as androgenesis and semigamy, are discussed. Morphogenesis of the sexual and adventive embryos proceeds in the mother organism and is determined by the origin and formation of their initials, types of ovule and germ sac, and specific features of developmental biology. This determines parallelism in their development. The main difference consists in the way of reproduction: heterophasic and homophasic, The phenomenon of polyembryony and genetic heterogeneity of seeds is essential for development of the theory of reproduction and applied research related to seed productivity of plants.  相似文献   

5.
Animal polyembryony appears to be paradoxical because it clones an unproven genotype at the expense of genetic diversity in a clutch. However, it is employed by at least 18 taxa in six phyla (excluding instances of occasional twinning). Most polyembryony occurs in parasitic stages or in other environments whose quality is not predictable by the mother; in some instances, it compensates for a constraint on zygote number. We predict that polyembryony is likely to evolve when the offspring has more information regarding optimal clutch size than the parents.  相似文献   

6.
Prolific polyembryony is reported in few major taxa, but its occurrence has generated theoretical debate on potential conflict between sexual and asexual reproduction. It is, therefore, important to genetically confirm a widely cited inference, based on microscopy, that polyembryony characterizes marine bryozoans of the order Cyclostomata. Microsatellite genotyping of brooded embryos and maternal colonies conclusively demonstrated polyembryony, while genetic variation among broods within colonies indicated outcrossing via water-borne sperm, in the rocky-shore species Crisia denticulata. The characteristically voluminous brood chamber of cyclostomes is judged to be an adaptation linked to larval cloning and hence an indicator of polyembryony. We speculate that although the almost universal occurrence of polyembryony among crown-group Cyclostomata is probably attributable to phylogenetic constraint, adaptive consequences are likely to be significant.  相似文献   

7.
Approximately 4000 mature seeds from 350 trees in nine populations (12–75 trees per population) of Siberian stone pine were investigated for multiple embryos (polyembryony). Haploid megagametophytes and embryos were genotyped for eight allozyme loci. Eight-yone seeds (2.11%) had more than 1 embryo. Of these, 71 seeds had 2 embryos (1.85%), 6 seeds had 3 embryos (0.16%), 3 seeds had 4 embryos (0.08%) and 1 seed had 6 embryos (0.026%). Allozyme comparison of megagametophytes and embryos could distinquish two types of polyembryony in 56 of the 81 seeds. In 28 seeds (50%) the polyembryony was polyzygotic (independent fertilizations of more than one egg cell in the ovule); 25 seeds (45%) had most likely monozygotic polyembryony (genetically identical embryos resulting from the cleavage of a single proembryo) and 3 seeds had both genetically different and genetically identical embryos. To the best of our knowledge, this is the first genetic evidence for the form of polyembryony in conifer seeds.  相似文献   

8.
Some parasitoid wasps possess soldier castes during their parasitic larval stage, but are often neglected from our evolutionary theories explaining caste systems in animal societies. This is primarily due to the polyembryonic origin of their societies. However, recent discoveries of polyembryonic trematodes (i.e. flatworms) possessing soldier castes require us to reconsider this reasoning. I argue we can benefit from including these polyembryonic parasites in eusocial discussions, for polyembryony and parasitism are taxonomically vast and influence the evolution of social behaviours and caste systems in various circumstances. Despite their polyembryony, their social evolution can be explained by theories of eusociality designed for parent–offspring groups, which are the subjects of most social evolution research. Including polyembryonic parasites in these theories follows the trend of major evolutionary transitions theory expanding social evolution research into all levels of biological organization. In addition, these continued discoveries of caste systems in parasites suggest social evolution may be more relevant to parasitology than currently acknowledged.  相似文献   

9.
Anatomical observations, genetic and cytoembryological studies were conducted to determine the cytological factors in relation to the production of diploid polyembryony within one embryo sac occurring in polyembryonic line SB-1 of O. sativa L. The results showed that the diploid polyembryony in SB-1 was not originated from the fertilization of synergids, but presumably from the megagametophytes with supernumerary egg cells. Potentially polyembryonic megagametophytes at maturity contained either a conventional 3-celled egg apparatus (92.60% of megagametophytes) or the supernumerary eggs forming either a 4-celled (5.2 %) or 5-celled (2.2 %) egg apparatus. In megagametophyte with one additional supernumerary egg cells were almost situated side by side in adjacent to the synergids and recessed from the micropyle, whereas in megagametophyte with two additional supernumerary eggs, one egg cell occupied the conventional possition and the other two lay above the synergids. The arrangement of embryos in polyembryonic caryopsis at various developmental stages was concordant to that of egg cells in megagametophytes with supernumerary eggs. Karyotype analysis showed that most of the twins and triplets were of 2n--2n and 2n-2n-2n respectively. Polyembryony was observed in Fo and F1 caryopsis of cross SB-1 × Malaihong (Malaihong is of non-polyembryony) and in Fl caryopsis of its reciprocal but not in Fo caryopsis. This implies that polyembryony occurring in SB-1 is of a dominant character of embryo sac. Anatomical observations proved that each seedling from twins or triplets was completely independent with no vascular bundle connected with each other. The causes of polyembryony within one embryo sac, the entry of supernumerary sperms and the origin of supernumerary egg cells are discussed.  相似文献   

10.
Development of multiple embryos from a single zygote, the phenomenon called monozygotic polyembryony, is a widespread reproductive strategy found in higher plants and especially in gymnosperms. The enigma of plant monozygotic polyembryony is that only one embryo in a polyembryonic seed usually survives while the others are eliminated at an early stage. Here we report that programmed cell death (PCD) is the major mechanism responsible for elimination of subordinate embryos in a polyembryonic seed. Using post-fertilized pine (Pinus sylvestris) ovules, we show that once the dominant embryo is selected and, subsequently, the entire female gametophyte is affected by PCD, the cells of subordinate embryos initiate an autolytic self-destruction program. The progression of embryonic PCD follows a rigid basal-apical pattern, first killing the most basally situated cells, adjacent to the suspensor, and then proceeding towards the apical region until all cells in the embryonal mass are doomed. Our data demonstrate that during polyembryony, PCD serves to halt competition among monozygotic embryos in order to ensure survival of one embryo.  相似文献   

11.

Background and Aims

Adventitious embryony from nucellar cells is the mechanism leading to apomixis in Citrus sp. However, singular cases of polyembryony have been reported in non-apomictic genotypes as a consequence of 2x × 4x hybridizations and in vitro culture of isolated nucelli. The origin of the plants arising from the aforementioned processes remains unclear.

Methods

The genetic structure (ploidy and allelic constitution with microsatellite markers) of plants obtained from polyembryonic seeds arising from 2x × 4x sexual hybridizations and those regenerated from nucellus culture in vitro was systematically analysed in different non-apomictic citrus genotypes. Histological studies were also conducted to try to identify the initiation process underlying polyembryony.

Key Results

All plants obtained from the same undeveloped seed in 2x × 4x hybridizations resulted from cleavage of the original zygotic embryo. Also, the plants obtained from in vitro nucellus culture were recovered by somatic embryogenesis from cells that shared the same genotype as the zygotic embryos of the same seed.

Conclusions

It appears that in non-apomictic citrus genotypes, proembryos or embryogenic cells are formed by cleavage of the zygotic embryos and that the development of these adventitious embryos, normally hampered, can take place in vivo or in vitro as a result of two different mechanisms that prevent the dominance of the initial zygotic embryo.  相似文献   

12.
Some citrus varieties express a form of apomixis termed nucellar embryony in which the adventive embryos develop from nucellus tissue surrounding the embryo sac. This trait results in many seeds containing multiple embryos (polyembryony). Inheritance of the frequency of polyembryony was studied in 88 progeny from a cross of Citrus maxima (monoembryonic) × Poncirus trifoliata (polyembryonic). The frequency of polyembryonic seed produced by each progeny was determined by scoring 100–500 seeds for the number of seedlings to emerge from each seed. Two groups of eight individuals from each extreme of the population were chosen for bulked segregant analysis with amplified fragment length polymorphism markers amplified with 256 primer combinations. Candidate markers identified in the bulks as linked to the trait were tested on the 32 individuals used to create the bulks and then on the remaining plants in the population. Five candidate markers tightly linked to polyembryony in P. trifoliata were identified. Specific marker alleles were present in nearly all progeny that produced polyembryonic seed, and alternate alleles were present in nearly all progeny that produced only monoembryonic seed. The region defined by these markers very likely contains a gene that is essential for the production of polyembryonic seeds by apomixis, but also shows segregation distortion. The proportion of polyembryonic seeds varied widely among the hybrid progeny, probably due to other genes. Scoring 119 progeny of a P. trifoliata selfed population for the closely linked markers and the proportion of polyembryonic seeds confirmed close linkage between these markers and polyembryony.  相似文献   

13.
Tamar Keasar  Eric Wajnberg 《Oikos》2019,128(3):347-359
Polyembryony involves the production of several genetically identical progeny from a single egg through clonal division. Although polyembryonic development allows highly efficient reproduction, especially in some parasitoid wasps, it is far less common than monoembryony (development of one embryo per egg). To understand what might constrain the evolutionary success of polyembryony in parasitoids, we developed Monte Carlo models that simulate the competition between polyembryonic females and their monoembryonic counterparts. We investigated which simulated life‐history traits of the females allow the monoembryonic mode of development to succeed. Published empirical studies were surveyed to explore whether these traits indeed differ between polyembryonic parasitoids and related monoembryonic species. The simulations predict an advantage to monoembryony in parasitoids whose reproduction is limited by host availability rather than by egg supply, and that parasitize small‐bodied hosts. Comparative data on the parasitoid families Encyrtidae and (to a lesser extent) Braconidae, but not the data from Platygastridae, circumstantially support these predictions. The model also predicts monoembryony to outcompete polyembryony when: 1) hosts vary considerably in quality, 2) polyembryonic development carries high physiological costs, and 3) monoembryonic females make optimal clutch size decisions upon attacking hosts. These multiple constraints may account for the rarity of polyembryony among parasitoid species.  相似文献   

14.
Polyembryony has been commonly associated with apomixis in the angiosperms and seems to be more common than expected, even in biomes where sexual reproduction processes are predominant. Recent studies in Cerrado, the Neotropical savannas of Central Brazil, showed high frequencies of apomixis and polyembryony and indicated these processes as reproductive and evolutionary alternatives for plants in these areas. In this sense, we investigated the occurrence of polyembryony and its relationships with ecological (season and type of dispersal, ploidy, species distribution and breeding system) and taxonomic (tribe) factors in the Melastomataceae, a mostly tropical family already known for its high frequency of apomixis and very common in Cerrado. We collected seeds from 69 populations of 53 species, which were sown in germination chambers. After seed germination, the presence and number of seedlings per seed were evaluated as a method to estimate polyembryony. We encountered 18 species (33.96%) with polyembryony (more than one seedling, or gemellar seedlings, originated per seed) concentrated in species of the tribe Miconieae (64%) and Microlicieae (16.67%), but absent in Melastomeae. Monoembryony was present only in sexual species, while all apomictic species were polyembryonic. In Miconia, the polyembryony was correlated with polyploidy, and monoembryony with diploid species. Polyembryony was more common among species with wide distribution in the Cerrado region, which indicates that the presence of gemellar seedlings is important for establishment and survival of the group in the Cerrado biome.  相似文献   

15.
无融合生殖是指未经精卵融合而产生后代的特殊生殖方式,它可以分为单倍体无融合生殖和二倍体无融合生殖;对于作物改良意义更大的是二倍体无融合生殖。多胚囊和多胚现象SHI是无融合生殖的表现形式。本文运用石蜡切片法、子房整体透明法研究了雾灵山草地早熟禾〖WTBX〗(Poa pratensis〖WTBZ〗 L.)多胚囊和多胚现象。结果表明,(1)草地早熟禾多胚囊来源有两种:一是来自大孢子母细胞,二是来自珠心细胞;(2)草地早熟禾多胚来源有四个:其一是有性生殖胚,其二是孤雌生殖胚,其三是无配子生殖胚,其四是珠心胚。  相似文献   

16.
雾灵山草地早熟禾多胚囊和多胚的研究   总被引:4,自引:0,他引:4  
无融合生殖是指未经炷卵事例而产生后代的特殊生殖方式,它可以分为单倍体无融合生殖和二倍体无融合生殖;对于作物意义更大的是二倍体无融合生殖。多胚囊和多胚现象SHI是无融合生殖的表现形式。本文运用石蜡切片法、子房整体透明法研究了雾灵山草地早熟禾(Poa pratensis L.)多胚囊和多胚现象。结果表明,(1)草地早熟禾多胚囊来源有两种:一是自大孢子母细胞,二是来自珠心细胞;(2)草地早熟禾多 来源有  相似文献   

17.
Polyploidy is a key process in plant evolution, with the asexual formation of embryos representing a way through which polyploids can escape sterility. The association between polyploidy and polyembryony is known to occur in Bignoniaceae. In this study, we investigate polyembryony in four polyploid species of Anemopaegma: A. acutifolium, A. arvense, A. glaucum and A. scabriusculum as well as in one diploid species, A. album. Polyembryony was observed only in polyploid species. We used seed dissection and germination tests to compare the number of polyembryonic seeds. We tested how the pollen source influences the number of polyembryonic seeds and the number of embryos per seed and tested the correlation between the number of viable seeds per fruit and mean number of embryos per seed. The number of polyembryonic seeds observed by seed dissection was higher than the number of polyembryonic seeds determined by the germination test, with the number of embryos produced per seed being higher than the number of seedlings. The dissection of seeds of A. glaucum indicated that a higher number of polyembryonic seeds and a higher number of embryos were present in seeds from cross-pollination than in seeds from self-pollination. On the other hand, germination tests indicated that a higher number of polyembryonic seeds were present in fruits from self-pollination than from cross-pollination. The mean number of embryos per seed was not influenced by the number of viable seeds per fruit in fruits from open pollination. These results indicate a positive relationship between polyembryony and polyploidy in Anemopaegma.  相似文献   

18.
Because of the growing worldwide demand for maize grain, new alternatives have been sought for breeding of this cereal, e.g., development of polyembryonic varieties, which agronomic performance could positively impact the grain yield per unit area, and nutritional quality. The objectives of this study were to (1) determine the phytochemicals present in the embryo and endosperm of grain from maize families with high, low, and null polyembryony frequency, which were planted at different locations, and (2) state the relationship between these compounds and seed germination. The extracted phytochemicals from corn were identified by HPLC-MS. The results showed that the genotype with the highest presence of phytochemicals was the brachytic population with high polyembryony called “BAP”, which also required less water during the germination process. The number of phytochemicals in both embryo and endosperm tissues was not related to the sowing location where they came from or the type of polyembryony. The number of different phytochemicals depended on the grain tissue from where they were extracted. The chemical compounds found in the different maize tissues were related to the development of the plant, either in roots or nibs because these are mainly associated with the lignin synthesis.  相似文献   

19.
通过目测筛选出咖啡多胚豆(种子),对其进行离体胚培养获得幼小植株,观察分析了多胚及其幼苗的形态发育特征。结果表明,不同倍性咖啡种质均存在多胚现象,不同材料的双胚率不同(变幅在1.06‰ ~ 4.46‰),其中四倍体材料普遍比二倍体的高。多胚豆中胚的形态和着生位置各异。多胚再生植株生长发育特点各不相同,一般大胚再生植株生长发育正常;小胚植株长势弱,出现畸形植株及生长过程中夭亡等现象。同一咖啡豆中远离正常胚位的额外胚可能是由胚囊外的体细胞发育而形成的不定胚。  相似文献   

20.
咖啡多胚现象与多胚苗形态发育的研究   总被引:2,自引:0,他引:2  
通过目测筛选出咖啡多胚豆(种子),对其进行离体胚培养获得幼小植株,观察分析了多胚及其幼苗的形态发育特征.结果表明,不同倍性咖啡种质均存在多胚现象,不同材料的双胚率不同(变幅在1.06‰~4.46‰),其中四倍体材料普遍比二倍体的高.多胚豆中胚的形态和着生位置各异.多胚再生植株生长发育特点各不相同,一般大胚再生植株生长发育正常;小胚植株长势弱,出现畸形植株及生长过程中夭亡等现象.同一咖啡豆中远离正常胚位的额外胚可能是由胚囊外的体细胞发育而形成的不定胚.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号