首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The inhibition of sugar uptake by a series of hydrophobic bis(D-mannose) derivatives has been measured in rat adipocytes. When the D-mannose moieties of the bis compounds are separated by a hexane bridge the transport inhibition constant (Ki) is greater than for a decane-bridged molecule. This is probably due to the increased hydrophobicity of the bridge of the decane-bridged compound. The enhancement in affinity due to the second sugar in the bis(D-mannose) derivatives is probably only 2-fold, since half reduction of the bis(D-mannosyloxy)hexane increases Ki approx. 2-3-fold. N'-DNP-1,3-bis(D-mannos-4'-yloxy)propyl-2-amine has very high affinity in insulin-treated cells. The affinity is approx. 1000-fold higher than for D-mannose. This enhancement is probably due to the hydrophobicity of the DNP group. The distance from the sugar to the hydrophobic group is important because an increase in Ki occurs if an aminocaproyl spacer is introduced between the DNP group and 1,3-bis(D-mannos-4'-yloxy)propyl-2-amine. Aminocaproyl and glycyl spacers also increase the Ki for NAP derivatives of 1,3-bis(D-mannos-4'-yloxy)propyl-2-amine. Each of the hydrophobic bis(D-mannose) derivatives has a lower Ki in insulin-treated cells. This may be due to an insulin responsive hydrophobic interaction between the hydrophobic portion of the sugar and a hydrophobic domain in the transport system. The inhibition constants for the hydrophobic bis(D-mannose) compounds have also been measured in human erythrocytes.  相似文献   

2.
Rheumatoid arthritis (RA) is the most common autoimmune rheumatic disease. It is characterized by persistent joint inflammation, resulting in loss of joint function, morbidity and premature mortality. The presence of antibodies against citrullinated proteins is a characteristic feature of RA and up to 70% of RA patients are anticitrullinated protein antibody (ACPA) positive. ACPA responses have been widely studied and are suggested to be heterogeneous, favoring antibody cross‐reactivity to citrullinated proteins. In this study, we examined factors that may influence cross‐reactivity between a commercial human anticitrullinated fibrinogen monoclonal antibody and a citrullinated peptide. Using a citrullinated profilaggrin sequence (HQCHQEST‐ Cit‐GRSRGRCGRSGS) as template, cyclic and linear truncated peptide versions were tested for reactivity to the monoclonal antibody. Factors such as structure, peptide length and flanking amino acids were found to have a notable impact on antibody cross‐reactivity. The results achieved contribute to the understanding of the interactions between citrullinated peptides and ACPA, which may aid in the development of improved diagnostics of ACPA.  相似文献   

3.
The antigen‐antibody interaction determines the sensitivity and specificity of competitive immunoassay for hapten detection. In this paper, the specificity of a monoclonal antibody against alternariol‐like compounds was evaluated through indirect competitive ELISA. The results showed that the antibody had cross‐reactivity with 33 compounds with the binding affinity (expressed by IC50) ranging from 9.4 ng/mL to 12.0 μg/mL. All the 33 compounds contained a common moiety and similar substituents. To understand how this common moiety and substituents affected the recognition ability of the antibody, a three‐dimensional quantitative structure‐activity relationship (3D‐QSAR) between the antibody and the 33 alternariol‐like compounds was constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The q2 values of the CoMFA and CoMSIA models were 0.785 and 0.782, respectively, and the r2 values were 0.911 and 0.988, respectively, indicating that the models had good predictive ability. The results of 3D‐QSAR showed that the most important factor affecting antibody recognition was the hydrogen bond mainly formed by the hydroxyl group of alternariol, followed by the hydrophobic force mainly formed by the methyl group. This study provides a reference for the design of new hapten and the mechanisms for antibody recognition.  相似文献   

4.
Dengue fever is the most important vector‐borne viral disease. Four serotypes of dengue virus, DENV1 to DENV4, coexist. Secondary infection by a different serotype is a risk factor for severe dengue. Monoclonal antibody mAb4E11 neutralizes the four serotypes of DENV with varying efficacies by recognizing an epitope located within domain‐III (ED3) of the viral envelope (E) protein. To better understand the cross‐reactivities between mAb4E11 and the four serotypes of DENV, we constructed mutations in both Fab4E11 fragment and ED3, and we searched for indirect interactions in the crystal structures of the four complexes. According to the serotype, 7 to 12 interactions are mediated by one water molecule, 1 to 10 by two water molecules, and several of these interactions are conserved between serotypes. Most interfacial water molecules make hydrogen bonds with both antibody and antigen. Some residues or atomic groups are engaged in both direct and water‐mediated interactions. The doubly‐indirect interactions are more numerous in the complex of lowest affinity. The third complementarity determining region of the light chain (L‐CDR3) of mAb4E11 does not contact ED3. The structures and double‐mutant thermodynamic cycles showed that the effects of (hyper)‐mutations in L‐CDR3 on affinity were caused by conformational changes and indirect interactions with ED3 through other CDRs. Exchanges of residues between ED3 serotypes showed that their effects on affinity were context dependent. Thus, conformational changes, structural context, and indirect interactions should be included when studying cross‐reactivity between antibodies and different serotypes of viral antigens for a better design of diagnostics, vaccine, and therapeutic tools against DENV and other Flaviviruses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Aims: Transmission routes of noroviruses, leading aetiological agents of acute gastroenteritis, are rarely verified when outbreaks occur. Because the destination of norovirus particles being firmly captured by micro‐organisms could be totally different from that of those particles moving freely, micro‐organisms with natural affinity ligands such as virus‐binding proteins would affect the fate of viruses in environment, if such microbial affinity ligands exist. The aim of this study is to identify norovirus‐binding proteins (NoVBPs) that are presumably working as natural ligands for norovirus particles in water environments. Methods and Results: NoVBPs were recovered from activated sludge micro‐organisms by an affinity chromatography technique in which a capsid peptide of norovirus genogroup II (GII) was immobilized. The recovered NoVBPs bind to norovirus‐like particles (NoVLPs) of norovirus GII, and this adsorption was stronger than that to NoVLPs of norovirus genogroup I. The profile of two‐dimensional electrophoresis of NoVBPs showed that the recovered NoVBPs included at least seven spots of protein. The determination of N‐terminal amino acid sequences of these NoVBPs revealed that hydrophobic interactions could contribute to the adsorption between NoVBPs and norovirus particles. Conclusions: NoVBPs conferring a high affinity to norovirus GII were successfully isolated from activated sludge micro‐organisms. Significance and Impact of the Study: NoVBPs could be natural viral ligands and play an important role in the NoV transmission.  相似文献   

6.
B‐cell lymphoma protein 2 (Bcl2) apoptotic repressor carries out its function by virtue of its ability to bind to BH3 domains of various pro‐apoptotic regulators in a highly promiscuous manner. Herein, we investigate the biophysical basis of such promiscuity of Bcl2 toward its cognate BH3 ligands. Our data show that although the BH3 ligands harboring the LXXXAD motif bind to Bcl2 with submicromolar affinity, those with the LXXX[G/S]D motif afford weak interactions. This implies that the replacement of alanine at the fourth position (A + 4)—relative to the N‐terminal leucine (L0) within the LXXXAD motif—to glycine/serine results in the loss of free energy of binding. Consistent with this notion, the A + 4 residue within the BH3 ligands harboring the LXXXAD motif engages in key intermolecular van der Waals contacts with A149 lining the ligand binding groove within Bcl2, whereas A + 4G/S substitution results in the disruption of such favorable binding interactions. Of particular interest is the observation that although increasing ionic strength has little or negligible effect on the binding of high‐affinity BH3 ligands harboring the LXXXAD motif, the binding of those with the LXXX[G/S]D motif in general experiences a varying degree of enhancement. This salient observation is indicative of the fact that hydrophobic forces not only play a dominant but also a universal role in driving the Bcl2‐BH3 interactions. Taken together, our study sheds light on the molecular basis of the factors governing the promiscuous binding of Bcl2 to pro‐apoptotic regulators and thus bears important consequences on the development of rational therapeutic approaches. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Bovine beta-lactoglobulin (betaLG) binds a variety of hydrophobic ligands, though precisely how is not clear. To understand the structural basis of this promiscuous binding, we studied the interaction of betaLG with palmitic acid (PA) using heteronuclear NMR spectroscopy. The titration was monitored using tryptophan fluorescence and a HSQC spectrum confirmed a 1:1 stoichiometry for the PA-betaLG complex. Upon the binding of PA, signal disappearances and large changes in chemical shifts were observed for the residues located at the entrance and bottom of the cavity, respectively. This observation indicates that the lower region makes a rigid connection with PA whereas the entrance is more flexible. The result is in contrast to the binding of PA to intestinal fatty acid-binding protein, another member of the calycin superfamily, in which structural consolidation occurs upon ligand binding. On the other hand, the ability of betaLG to accommodate various hydrophobic ligands resembles that of GroEL, in which a large hydrophobic cavity and flexible binding site confer the ability to bind various hydrophobic substrates. Considering these observations, it is suggested that, in addition to the presence of the hydrophobic cavity, the plasticity of the entrance region makes possible the binding of hydrophobic ligands of various shapes. Thus, in contrast to the specific binding seen for many enzymes, betaLG provides an example of binding with low specificity but high affinity, which may play an important role in protein-ligand and protein-protein networks.  相似文献   

8.
Several derivatives of ganglioside GM2 were synthesized for mapping of the binding epitope of a monoclonal antibody raised against this ganglioside. The GM2 ganglioside was modified in both the hydrophobic and the hydrophobilic part of the molecule. The synthesized derivatives were characterized with fast atom bombardment mass spectrometry (FAB-MS). Affinity of the monoclonal antibody for the GM2 derivatives was determined by enzyme-linked immunosorbent assay (ELISA) on microtitre plates or by TLC immunostaining. Modifying the GM2 sialic acid by deacetylation or blocking of the carboxyl moiety abolished the binding to the monoclonal antibody while the cleaving of the glycol group on the sialic acid tail led to a 70% reduced binding affinity. Removal of the fatty acid (lyso-GM2) eliminated the binding to the antibody. GM2 derivatives with fatty acid moieties of 8 carbon atoms or less showed almost no reactivity. GM2 with saturated fatty acids 16:0, 18:0 and 20:0 had binding affinity similar to natural GM2, while the 24:0 fatty acid had only half the binding affinity. The results demonstrate the importance of ganglioside fatty acid composition with regard to ligand binding between the monoclonal antibody and its specific ganglioside antigen. Thus, caution must be shown in the application of immunaffinity methods with monoclonal antibodies for the quantitative determination of glycosphingolipids from different tissues.  相似文献   

9.
The selectivity and the binding affinity of previously reported carborane-containing ligands 2 and 3 toward ERβ remains to be optimized. To improve their biological profiles, a series of iodinated carboranyl phenol derivatives (46) were designed and synthesized as prospective ERβ-selective ligands with high affinity. Several iodinated carboranyl phenols showed high relative binding affinity (RBA) values for both ERs, and especially for ERβ, due to suitable hydrophobic interactions of the iodine atoms with the hydrophobic amino acid residues of the ERβ ligand-binding domains. Among these derivatives, 9,10-diiodo-m-carborane 5f exhibited a more than 100% increase of the RBA values toward ERβ, a 14-fold increased selectivity for ERβ over ERα, and ER-agonistic activity in MCF-7 cell proliferation assays.  相似文献   

10.
Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics.  相似文献   

11.
Induction of CD8+ cytotoxic T cells (CTLs) to conserved internal influenza antigens, such as nucleoprotein (NP), is a promising strategy for the development of cross‐protective influenza vaccines. However, influenza NP protein alone cannot induce CTL immunity due to its low capacity to activate antigen‐presenting cells (APCs) and get access to the MHC class I antigen processing pathway. To facilitate the generation of NP‐specific CTL immunity the authors develop a novel influenza vaccine consisting of virosomes with the Toll‐like receptor 4 (TLR4) ligand monophosphoryl lipid A (MPLA) and the metal‐ion‐chelating lipid DOGS‐NTA‐Ni incorporated in the membrane. In vitro, virosomes with incorporated MPLA induce stronger activation of APCs than unadjuvanted virosomes. Virosomes modified with DOGS‐NTA‐Ni show high conjugation efficacy for his‐tagged proteins and facilitate efficient uptake of conjugated proteins by APCs. Immunization of mice with MPLA‐adjuvanted virosomes with attached NP results in priming of NP‐specific CTLs while MPLA‐adjuvanted virosomes with admixed NP are inefficient in priming CTLs. Both vaccines induce equally high titers of NP‐specific antibodies. When challenged with heterosubtypic influenza virus, mice immunized with virosomes with attached or admixed NP are protected from severe weight loss. Yet, unexpectedly, they show more weight loss and more severe disease symptoms than mice immunized with MPLA‐virosomes without NP. Taken together, these results indicate that virosomes with conjugated antigen and adjuvant incorporated in the membrane are effective in priming of CTLs and eliciting antigen‐specific antibody responses in vivo. However, for protection from influenza infection NP‐specific immunity appears not to be advantageous.  相似文献   

12.
Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [(125)I]-ANP from NPR-C with pM-to-nM K(i) values. DNP displaced [(125)I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K(i)>1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.  相似文献   

13.
IL‐7 is a cytokine that is required for T‐cell development and homeostasis as well as for lymph node organogenesis. Despite the importance of IL‐7 in the immune system and its potential therapeutic relevance, questions remain regarding the sites of IL‐7 synthesis, specific cell types involved and molecular mechanisms regulating IL‐7 expression. To address these issues, we generated two bacterial artificial chromosome (BAC) transgenic mouse lines in which IL‐7 regulatory elements drive expression of either Cre recombinase or a human CD25 (hCD25) cell surface reporter molecule. Expression of the IL‐7.hCD25 BAC transgene, detected by reactivity with anti‐hCD25 antibody, mimicked endogenous IL‐7 expression. Fetal and adult tissues from crosses between IL‐7.Cre transgenic mice and Rosa26R or R26‐EYFP reporters demonstrated X‐gal or YFP staining in tissues known to express endogenous IL‐7 at some stage during development. These transgenic lines provide novel genetic tools to identify IL‐7 producing cells in various tissues and to manipulate gene expression selectively in IL‐7 expressing cells. genesis 47:281–287, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
It is generally accepted that enzymes evolved via gene duplication of existing proteins. But duplicated genes can serve as a starting point for the evolution of a new function only if the protein they encode happens to exhibit some activity towards this new function. Although the importance of such catalytic promiscuity in enzyme evolution has been proposed, little is actually known regarding how common promiscuous catalytic activities are in proteins or their origins, magnitudes, and potential contribution to the survival of an organism. Here we describe a pattern of promiscuous activities in two completely unrelated proteins-serum albumins and a catalytic antibody (aldolase antibody 38C2). Despite considerable structural dissimilarities-in the shape of the cavities and the position of catalytic lysine residues-both active sites are able to catalyze the Kemp elimination, a model reaction for proton transfer from carbon. We also show that these different active sites can bind promiscuously an array of hydrophobic negatively charged ligands. We suggest that the basic active-site features of an apolar pocket and a lysine residue can act as a primitive active site allowing these promiscuous activities to take place. We also describe, by modelling product formation at different substrate concentrations, how promiscuous activities of this kind- inefficient and rudimentary as they are-can provide a considerable selective advantage and a starting point for the evolution of new functions.  相似文献   

15.
Using 6mer and 12mer phage peptide libraries three unique phage clones were identified which specifically bind to a monoclonal anti‐FITC antibody, B13‐DE1. The two 6mer and one 12mer peptide insert sequences are clearly related to each other and contain a high proportion of hydrophobic amino acids. The peptides are bound by the antibody combining site of B13‐DE1 probably in a similar manner to FITC and represent therefore true peptidic mimics of the fluorescein hapten. No reactivity of the peptides could be demonstrated with another monoclonal anti‐fluorescein antibody or with polyclonal anti‐fluorescein antibodies. Immunization of mice with the peptides resulted in the production of antibodies cross‐reacting with all peptides but not with fluorescein. The results show that phage peptide libraries can be used to isolate mimotope peptides which can mimic low molecular weight structures seen by a specific antibody and probably other recognition molecules. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
In this work we have investigated the role of high molecular weight poly(ethylene‐glycol) 8000 (PEG 8000) in modulating the interactions of the DNA molecule with two hydrophobic compounds: Ethidium Bromide (EtBr) and GelRed (GR). Both compounds are DNA intercalators and are used here to mimic the behavior of more complex DNA ligands such as chemotherapeutic drugs and proteins whose domains intercalate DNA. By means of single‐molecule stretching experiments, we have been able to show that PEG 8000 strongly shifts the binding equilibrium between the intercalators and the DNA even at very low concentrations (1% in mass). Additionally, microcalorimetry experiments were performed to estimate the strength of the interaction between PEG and the DNA ligands. Our results suggest that PEG, depending on the system under study, may act as an “inert polymer” with no enthalpic contribution in some processes but, on the other hand, it may as well be an active (non‐neutral) osmolyte in the context of modulating the activity of the reactants and products involved in DNA‐ligand interactions. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 227–233, 2016.  相似文献   

17.
Molecular recognition in water is an important challenge in supramolecular chemistry. Surface‐core double cross‐linking of template‐containing surfactant micelles by the click reaction and free radical polymerization yields molecularly imprinted nanoparticles (MINPs) with guest‐complementary binding sites. An important property of MINP‐based receptors is the surface‐cross‐linking between the propargyl groups of the surfactants and a diazide cross‐linker. Decreasing the number of carbons in between the two azides enhanced the binding affinity of the MINPs, possibly by keeping the imprinted binding site more open prior to the guest binding. The depth of the binding pocket can be controlled by the distribution of the hydrophilic/hydrophobic groups of the template and was found to influence the binding in addition to electrostatic interactions between oppositely charged MINPs and guests. Cross‐linkers with an alkoxyamine group enabled two‐stage double surface‐cross‐linking that strengthened the binding constants by an order of magnitude, possibly by expanding the binding pocket of the MINP into the polar region. The binding selectivity among very similar isomeric structures also improved.  相似文献   

18.
IgG2 subclass antibodies have unique properties that include low effector function and a rigid hinge region. Although some IgG2 subclasses have been clinically tested and approved for therapeutic use, they have a higher propensity than IgG1 for aggregation, which can curtail or abolish their biological activity and enhance their immunogenicity. In this regard, acid‐induced aggregation of monoclonal antibodies during purification and virus inactivation must be prevented. In the present study, we replaced the constant domain of IgG2 with that of IgG1, using anti‐2,4‐dinitrophenol (DNP) IgG2 as a model antibody, and investigated whether that would confer greater stability. While the anti‐DNP IgG2 antibody showed significant aggregation at low pH, this was reduced for the IgG2 antibody containing the IgG1 CH2 domain. Substituting three amino acids within the CH2 domain—namely, F300Y, V309L, and T339A (IgG2_YLA)—reduced aggregation at low pH and increased CH2 transition temperature, as determined by differential scanning calorimetric analysis. IgG2_YLA exhibited similar antigen‐binding capacity to IgG2, low affinity for FcγRIIIa, and low binding ability to C1q. The same YLA substitution also reduced the aggregation of panitumumab, another IgG2 antibody, at low pH. Our engineered human IgG2 antibody showed reduced aggregation during bioprocessing and provides a basis for designing improved IgG2 antibodies for therapeutic applications.  相似文献   

19.
The interaction of nonepithelial intermediate filament (IF) proteins with vesicles produced from total Ehrlich ascites tumor cell lipids results in the formation of complexes which in sucrose density gradient centrifugation attain positions distinctly different from those of the original reactants. In KBr density gradient equilibrium centrifugation, the IF protein-lipid adducts accumulate as thin proteolipid films on top of the KBr gradients, whereas in the absence of lipids the proteins remain distributed within the density gradients. Similar results were obtained with vesicles derived from individual phospholipids and a mixture thereof. The affinity of IF proteins for negatively charged phospholipids is greater than that for vesicles derived from uncharged phospholipids. Limited digestion of IF proteins with various proteinases demonstrated that for optimal association of the reactants IF proteins must carry an intact N terminus and that the isolated N-terminal polypeptide itself shows strong reactivity with lipid vesicles. Arginine-phosphate interactions between the N terminus and phospholipids seem to be partly responsible for this association. However, as shown by hydrophobic interaction chromatography on phenyl- and octyl-Sepharose 4B, IF proteins and their proteolytic derivatives also appear to have high affinities for aromatic and aliphatic substructures of biologically important molecules. The results are discussed in terms of a possible functional role of IF protein-lipid interactions in the association of nonepithelial intermediate filaments with intracellular membrane systems.  相似文献   

20.
Donepezil (DNP) is one of approved drugs to treat Alzheimer's disease (AD). However, the potential effect of DNP on DNA is still unclear. Therefore, the interaction of DNP with calf thymus DNA (DNA) was studied in vitro using spectroscopic and molecular docking methods. Steady‐state and transient fluorescence experiments showed that there was a clear binding interaction between DNP and DNA, resulting from DNP fluorescence being quenched using DNA. DNP and DNA have one binding site between them, and the binding constant (Kb) was 0.78 × 104 L·mol?1 at 298 K. In this binding process, hydrophobic force was the main interaction force, because enthalpy change (ΔH) and entropy change (ΔS) of DNP–DNA were 67.92 kJ·mol?1 and 302.96 J·mol?1·K?1, respectively. DNP bound to DNA in a groove‐binding mode, which was verified using a competition displacement study and other typical spectroscopic methods. Fourier transform infrared (FTIR) spectrum results showed that DNP interacted with guanine (G) and cytosine (C) bases of DNA. The molecular docking results further supported the results of spectroscopic experiments, and suggested that both Pi‐Sigma force and Pi‐Alkyl force were the major hydrophobic force functioning between DNP and DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号