首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosynthesis of chlorophyll is partly controlled by the phytochrome system. In order to study the effects of an activated phytochrome system on the protochlorophyllide (PChlide) biosynthesis without accompanying phototransformation to chlorophyll, wheat seedlings (Triticum aestivum L. cv. Starke II Weibull) were irradiated with long wavelength far-red light of low intensity. Absorption spectra were measured in vivo after different times in the far-red light or in darkness. The relationship between the different PChlide forms, the absorbance ratio 650nm636 nm changed with age in darkness, and the change was more pronounced when the leaves were grown in far-red light. Absorption spectra of dark-grown leaves always showed a maximum in the red region at 650 nm. For leaves grown in far-red light the absorption at 636 nm was high, with a maximum at the 5 day stage where it exceeded the absorption at 650 nm. At the same time there was a maximum in the total amount of PChlide accumulated in the leaves, about 30% more than in leaves grown in darkness. But the amount of the directly phototransformable PChlide, mainly PChlide650–657, was not increased. The amount of PChlide628–632, or more probably the amount of (PChlide628–632, + PChlide 636–657) was thus higher in young wheat leaves grown in far-red light than in those grown in darkness. After the 5 day stage the absorption at 636 nm relative to 650 nm decreased with age, and at the 8 day stage the spectra were almost the same in both types of leaves. Low temperature fluorescence spectra of the leaves also showed a change in the ratio between the different PChlide forms. The height of the fluorescence peak at 632 nm relative to the peak at 657 nm was higher in leaves grown in far-red light than in dark-grown leaves. – After exposure of the leaves to a light flash, the half time for the Shibata shift was measured. It increased with age both for leaves grown in darkness and in far-red light; but in older leaves grown in far-red light (7–8 days) the half time was slightly longer than in dark-grown leaves. – The chlorophyll accumulation in white light as well as the leaf unrolling were faster for leaves pre-irradiated with far-red light. The total length of the seedlings was equal or somewhat shorter in far-red light, but the length of the coleoptile was markedly reduced from 8.1 ± 0.1 cm for dark-grown seedlings to 5.2 ± 0.1 cm for seedlings grown in far-red light.  相似文献   

2.
1. Using 5‐m2 field enclosures, we examined the effects of Elodea canadensis on zooplankton communities and on the trophic cascade caused by 4–5 year old (approximately 16 cm) roach. We also tested the hypothesis that roach in Elodea beds use variable food resources as their diet, mainly benthic and epiphytic macroinvertebrates, and feed less efficiently on zooplankton. Switching of the prey preference stabilises the zooplankton community and, in turn, also the fluctuation of algal biomass. The factorial design of the experiment included three levels of Elodea (no‐, sparse‐ and dense‐Elodea) and two levels of fish (present and absent). 2. During the 4‐week experiment, the total biomass of euplanktonic zooplankton, especially that of the dominant cladoceran Daphnia longispina, decreased with increase in Elodea density. The Daphnia biomass was also reduced by roach in all the Elodea treatments. Thus, Elodea provided neither a favourable habitat nor a good refuge for Daphnia against predation by roach. 3. The electivity of roach for cladocerans was high in all the Elodea treatments. Roach were able to prey on cladocerans in Elodea beds, even when the abundance and size of these prey animals were low. In addition to cladocerans, the diet of roach consisted of macroinvertebrates and detrital/plant material. Although the biomass of macroinvertebrates increased during the experiment in all Elodea treatments, they were relatively unimportant in roach diets regardless of the density of Elodea beds. 4. Euplanktonic zooplankton species other than Daphnia were not affected by Elodea or fish and the treatments had no effects on the total clearance rate of euplanktonic zooplankton. However, the chlorophyll a concentration increased with fish in all the Elodea treatments, suggesting that fish enhanced algal growth through regeneration of nutrients. Thus, our results did not unequivocally show that Elodea hampered the trophic cascade of fish via lowered predation on grazing zooplankton. 5. In treatments with dense Elodea beds (750 g FW m?2), chlorophyll a concentration was always low suggesting that phytoplankton production was controlled by Elodea. Apparently, the top‐down control of phytoplankton biomass by zooplankton was facilitated by the macrophytes and operated simultaneously with control of phytoplankton production by Elodea.  相似文献   

3.
4.
Submerged aquatic macrophytes grow across a wide, often coupled, range of light and inorganic carbon availabilities, and each single factor influences photosynthesis and acclimation. Here we examine the interactive effects of light and inorganic carbon on the growth of Elodea canadensis and Callitriche cophocarpa. The plants were grown in the laboratory at a range of light intensities (0–108 μmol m−2s−1) and four inorganic carbon regimes in a crossed factorial design. Plant growth rates, measured over 3–4 weeks of incubation, increased in response to increasing light intensity and inorganic carbon availability, and significant interactive effects were observed. The light-use efficiency for growth at low light increased 2-fold for Callitriche and 6-fold for Elodea between the lowest and highest inorganic carbon concentrations applied. Also, the growth rate at the highest light intensity increased with inorganic carbon availability, but the relative increase was smaller than at low light. Both species acclimated to the light and carbon regime such that the chlorophyll content declined at low and high light intensities and the initial slopes of the photosynthetic CO2 and HCO3 response curves declined at high levels of CO2. Callitriche responded less markedly than Elodea to changing inorganic carbon availability during growth, and the initial slope of the photosynthetic HCO3 response curve, in particular, was greatly reduced (>90%) in Elodea by high CO2. It is suggested that the coupled responses of aquatic macrophytes to light and inorganic carbon influence their ability to develop dense stands at high light in shallow water and to extend to greater depths in waters rich in inorganic carbon.  相似文献   

5.
SUMMARY. In the laboratory, Asellus aquaticus devoured intact green leaves from growing shoots of the aquatic macrophyte Elodea canadensis. In four collections of A. aquaticus on Elodea in a lake (Windermere), c. 20% of the specimens contained in their guts fragments of green Elodea leaves; this material and pieces of oak (Quercus) were identified from characteristic leaf hairs. Some specimens had also eaten the filamentous alga Oedogonium. Fluorescence microscopy is a useful aid for screening invertebrates that may have eaten living plant tissues. Immature A. aquaticus, with an initial mean body length of c. 3 mm, wet weight c. 1 mg, were grown through sexual maturity over a 49-day period at 15°C in a series of twenty-two experiments (six to twelve isolated specimens in each experiment) comparing growth rates on different foods, including instances where no food was given. Animals were fed on a variety of items collected from the littoral of Windermere, plus some laboratory cultures of algae and bacteria. The highest mean specific growth rate (5.8% day?1) was obtained on young Elodea leaves mechanically shaken to remove epiphytes. Other diets yielding fast growth rates (3.7–5.3% day?1) were young growing leaves of Elodea with few epiphytes and older green and brown living leaves covered with a thick growth of epiphytic algae, epiphytic algae removed from Elodea, plastic imitation Elodea immersed in the lake until covered with attached algae, epilithic algae on stones, Oedogonium, and decaying oak leaves. Slower growth (1.3–2.2% day?1) and poorer survival was obtained on the following: a pure culture of the bacterium Sphaerotilus natans; cultured bacteria from lakewater; the filamentous algae Cladophora and Stigeoclonium both with and without epiphytes; faecal matter from Asellus; freshly killed Asellus; lake sediment. Some growth (mean = 0.7% day?1) and 50% survival for 21 days occurred in ‘starved’ animals kept in filtered, sterilized lakewater. Better survival and slightly faster growth (1.0–1.5% day?1) occurred in ‘starved’ animals kept in filtered and unfiltered lakewater. Growth of A. aquaticus was also experimentally determined from birth in animals fed on young green Elodea leaves and on decaying oak leaves. On both diets, growth was curvilinear and approximately exponential from birth to sexual maturity reached at c. 2mg wet weight in 46–60 days at 15°C. In older specimens the relative growth rate gradually fell over a period of 50 days, representing a more linear phase of growth during sexual maturity.  相似文献   

6.
Nolan WG 《Plant physiology》1981,67(6):1259-1263
Temperature-induced changes in the decay of the light-induced proton gradient of chloroplast thylakoids isolated from chilling-resistant and chilling-sensitive plants have been examined. In the presence of N-methylphenazonium methosulfate, the thylakoids isolated from chilling-resistant barley (cv. Kanby) and pea (cv. Alaska) and chilling-sensitive mung bean (cv. Berken) plants showed temperature-induced changes at approximately 8.6, 13.3, and 14.0 C, respectively. Barley thylakoids assayed in the presence of sodium thiocyanate also showed a change at 8.6 C, whereas with no addition or upon the inclusion of both N-methylphenazonium methosulfate and sodium thiocyanate the change occurred at approximately 11.5 C.  相似文献   

7.
The effect of a 30 h high light treatment on the amount and the localization of thylakoid proteins was analysed in low light grown photoautotrophic cells of Marchantia polymorpha and Chenopodium rubrum. High light treatment resulted in a net loss of D1 protein which was accompanied by comparable losses of other proteins of the PS II core (reaction center with inner antenna). LHC II proteins were not reduced correspondingly, indicating that these complexes are less affected by prolonged high light. High light influenced the distribution of PS II components between the grana and the stroma region of the thylakoid membrane, probably by translocation of the respective PS II proteins. Additionally, modifications of several thylakoid proteins were detected in high light treated cells of C. rubrum. These effects are discussed in relation to photoinhibitory damage and repair processes.Abbreviations BCA bioinchonic acid - chl chlorophyll - CF1 coupling factor - CYC cycloheximide - GT grana thylakoids - HL high light - LL low light - PAGE polyacrylamide gel electrophoresis - PFD photon flux density - PS I Photosystem I - PS II Photosystem II - RC reaction center - SDS sodium dodecylsulfate - ST stroma thylakoids - Thyl unfractionated thylakoids  相似文献   

8.
Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non‐appressed thylakoids harbor several high molecular mass pigment–protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light‐harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non‐appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment–protein complexes from all thylakoid compartments, revealed that the pigment–protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment–protein megacomplexes specifically in non‐appressed thylakoids undergoes redox‐dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.  相似文献   

9.
Microalgae perform oxygenic photosynthesis and are capable of taking up a large amount of CO2, using an inducible CO2 concentrating mechanism (CCM), and fixing CO2 into higher compounds. These characteristics make the microalgae potentially useful for removal and utilization of CO2 emitted from industrial plants and, generally, the usage of photosynthetic microorganisms has increased and significantly improved as a solution for CO2 emissions. In this light and based on previous research using Anabaena cylindrica IAM M1 and Spirulina platensis IAM M 135, enhancement was sought for CO2 fixation and biomass production by Chlorella vulgaris Buitenzorg by increasing the photon flux density concurrent with increases in culture biomass during the cellular growth phase and was compared to cultures of Chlorella grown at optimal constant illumination, with all cultures grown using Bennick basal medium, 29°C, and a flow of 1.0 atm. 10% CO2 enriched air delivered to three in serial photobioreactors of 0.200 dm3 capacity each. The results showed that increasing illumination during culture increased biomass production of Chlorella by ∼60% as well as increased CO2 fixation ability by ∼7.0%. It was also demonstrated that the non-competitive inhibition of [HCO3 ] as a carbon source significantly affected the cultivation in both the increasing and constant photon flux density regimes.  相似文献   

10.
Elodea leaves and spinach chloroplasts emit red light when treated with alcohols or certain other solvents for chlorophyll. The intensity of the light, the lag phase and the threshold concentration vary considerably between different alcohols. Light emission from a leaf starts a few seconds to a few minutes after the addition of alcohol to the medium, reaches a maximum after 2–45 minutes (sometimes more) and then continues for many hours. Despite the faintness of the glow, the total number of photons given off from a leaf after addition of alcohol may exceed the number of photons given off from the same sample as long-lived afterglow after saturating irradiation with far-red light. The maximum yield of photons per chlorophyll molecule is a little more than 10–5. The alcohol-induced luminescence is not influenced by a decrease in the oxygen tension to one fifth of the normal. Electron micrographs of treated leaves reveal that the thylakoid lipids contract to drops at the edges of the grana. Treatment of isolated chloroplasts with ethanol results in light emission when the concentration is high enough to dissolve the chlorophyll. It is estimated that the surface free energy in the thylakoid lipid-aqueous interface, due to ordinary interfacial tension, is large enough to account for the light emission observed when the interfaces contract or disappear.  相似文献   

11.
1. The asymmetric competition for light and nutrients between floating and submerged aquatic plants is thought to be key in explaining why dominance by either of these groups can be stable and difficult to change. 2. Although the shading effect of floating plants on submerged plants has been well documented, the impact of submerged plants on floating plants has been poorly explored hitherto. 3. Here, we used laboratory experiments to examine how submerged plant (Elodea nuttallii) alter nutrient conditions in the water column and how this affects the growth of floating plants (Lemna gibba). 4. We demonstrate that, at higher nutrient concentrations, Lemna is increasingly likely to outcompete Elodea. 5. Under low nutrient concentrations (0.1–2 mg N L?1) Elodea can strongly reduce the growth of Lemna. Growth of floating plants virtually stopped in some of the experiments with Elodea. 6. Extremely reduced tissue N, Mn, chlorophyll and elongated roots indicated that the growth inhibition of Lemna by Elodea was predominantly caused by the latter’s impact on the nutrient conditions for floating plants. 7. These results strengthen the hypothesis that submerged plants can prevent colonization of a lake by floating plants.  相似文献   

12.
A chemostat with cell feedback is analyzed for three kinds of limiting nutrient: a substrate dissolved in the inflow, a gas bubbled directly into the reactor, and light. The effects of recycle are distinct in each case, because the relationships between hydraulic detention time and nutrient inflow are different for each type of nutrient, Effluent recycle, in which the recycle stream is more dilute than the reactor, is discussed in terms of cell detention time and nutrient limitation. Results from chemostat cultures of the blue-green alga, Spirulina geitleri, demonsrtat cell feedback under light limitation. Maximum Productivity is fixed by the incident light intensity. At a particular dilution rate recycling increases or decreases productivity by taking cell density closer or further from the optimum density. Cell recycle with heterogeneous populations can change the outcome of species competition. Selective recycling of one species can reverse this outcome or stabilize coexistence by its selective effect on cell detention time. Experimental results from light-limited mixed cultures of S. geitleri and a Chlorella sp. verify this.  相似文献   

13.
Etiolated Hordeum vulgare (barley) Plants were greened underwhite light or far-red (> 700 nm) light. Exposure to far-redlight inhibited chlorophyll synthesis (especially chlorophyllb) and the development of photosystem II which were seen whengreening took place under white light. Primary leaves were detachedand the labelling of their acyl lipids from [14C]acetate wasstudied under white light or far-red light illumination. Greeningwith far-red light caused a reduction in the radiolabellingof polyunsaturated fatty acids and diacylgalactosylglycerol.Total fatty acid labelling rates were unaffected. Phosphatidylethanolamine,which was normally poorly labelled, accounted for up to 15 percent of the total radioactivity in acyl moieties of lipids inleaves greened with far-red light. The results are discussedin connection with the role that acyl lipids may play in normalthylakoid structure and function. Hordeum vulgare, barley, acyl lipids, white light, far-red light, chloroplasts, thylakoids  相似文献   

14.
The changes in the numbers of individuals of the constituent species and ammonia concentrations in 6 subsystems (Bacteria, bacteria-Cyclidium, bacteria-Aeolosoma, bacteria-Chlorella, bacteria-Cyclidium-Chlorella, bacteria-Aeolosoma-Chlorella) of an aquatic microcosm were examined after the addition of organic substance (peptone) at both the young and mature stages of succession. Organic loading led to decreases in the numbers of bacteria and Aeolosoma after temporary increases in their numbers and an oscillation in the numbers of Cyclidium but the densities of these populations were maintained at constant values in the presence of Chlorella. When organic substance was added at a young stage where the photosynthetic activities of algae were high, invertebrates, especially Aeolosoma, were damaged by unionized ammonia which was formed as the pH value increased. In contrast, organic loading at the mature stage enhanced the population densities and biomasses of all constituent species.  相似文献   

15.
Summary The accumulation of cadmium from aqueous systems by various green microalgae was investigated with focus, on Chlorella regularis as it is known to concentrate large amounts of heavy metals. The amount of cadmium absorbed by Chlorella cells was rapid during the first 30 min following addition of cadmium and then continued to be absorbed more slowly. The uptake of cadmium by Chlorella was not markedly affected by temperature or metabolic inhibitors. Most of the cadmium absorbed by Chlorella cells was easily released by EDTA. The amount of cadmium absorbed differed markedly with the pH value of the solution and was inhibited by the presence of other divalent cations. Heat-killed Chlorella cells took up cadmium to a greater degree than living ones. From these results, it was considered that the uptake of cadmium into Chlorella cells was not directly mediated by metabolic processes, rather it appeared completely dependent upon physico-chemical adsorption on the cell surface.The ability to accumulate cadmium was species specific and found to be (in decreasing order); Chlamydomonas reinhardtii>Chlorella regularis> Scenedesmus bijuga>Scenedesmus obliquus>Chlamydomonas angulosa> Scenedesmus chlorelloides.Studies on the Accumulation of Heavy Metal Elements in Biological Systems Part XIV  相似文献   

16.
Summary In Chlorella, as in most photosynthetic organisms, the reduction of nitrate to ammonia proceeds sequentially in two independent and well characterized steps, catalyzed by the enzymes of the nitrate-reducing system: 1. the reduction of nitrate to nitrite by the flavomolybdoprotein NADH-nitrate reductase, and 2. the reduction of nitrite to ammonia by the ironprotein ferredoxin-nitrite reductase. In this communication, it is shown that, in Chlorella, the cellular level of nitrite reductase activity specifically increases in response to the iron content of the culture medium. By contrast, the activity of nitrate reductase is apparently not affected by the concentration of iron in the nutrient solution under the same conditions.  相似文献   

17.
Although glutaraldehyde alkylates protein NH2 groups to the same extent in unstacked and stacked thylakoids, the photosynthetic electron transport of the stacked membranes is always more inhibited. Inhibition of photosystem II electron transport, measured in the presence of lipophilic Hill oxidants, is 20–30% in unstacked and 60–70% in stacked thylakoids. Photosystem I electron transport is nearly completely inhibited in both preparations, but in the case of stacked thylakoids maximal inhibition occurs at a lower glutaraldehyde level than in unstacked thylakoids. In contrast, the photooxidation of the reaction center chromophore of photosystem I (P700) is unaffected by the glutaraldehyde treatment of either stacked or unstacked chloroplasts. The results are discussed with regard to the accessibility of membrane sites to exogenous electron transport cofactors, in view of the observation that N-methylphenazonium methosulfate, a quencher of electronically excited chlorophyll a, partitions more easily into the pigment domains of the glutaraldehyde-fixed unstacked thylakoids.  相似文献   

18.
Growth limitation of submerged aquatic macrophytes by inorganic carbon   总被引:4,自引:1,他引:3  
1. This study determined the effects of CO2 and HCO3- enrichment on in situ growth of two submerged macrophytes, Elodea canadensis and Callitriche cophocarpa, in two Danish lakes: Lake Hampen and Lake Væng. Lake Hampen is an oligotrophic low-alkaline lake (0.4 meq ?1) and Lake Væng is mesotrophic with an alkalinity of 1.1 meq 1-?1. In Lake Hampen experiments were carried out throughout the growth season, whereas experiments in Lake Væng were restricted to late summer. The CO2 and HCO3-enrichment procedures used increased the concentration of free-CO2 by 500–1000 μM and the concentration of HCO3- by about 80 μM. 2. The concentration of free-CO2 in Lake Hampen was about five times atmospheric equilibrium concentration (55 μM) in early summer declining to virtually zero at the end of summer. 3. Under ambient conditions Callitriche, which is restricted to CO2 use, was unable to grow and survive in both lakes. In contrast, Elodea, which has the potential to use HCO3- in photosynthesis, grew at rates varying from 0.046 to 0.080 day?1 over the season. 4. Under CO2 enrichment the growth rate of Callitriche varied from 0.089 to 0.124 day?1 and for Elodea from 0.076 to 0.117 day?1 over the season. Enrichment with HCO3-affected Elodea only and only to a limited extent. This may be a result of insufficient increase in [HCO3-] upon enrichment or to a limited capacity of the plants to take up HCO3-. 5. The substantial stimulation of in situ growth of Elodea and Callitriche by enhanced concentrations of free-CO2 shows that inorganic carbon is an important determinant of growth of submerged macrophytes and that inorganic carbon limitation of in situ growth may be a common phenomenon in nature, even in lakes with an alkalinity as high a 1 meq 1-?1. Inorganic carbon, however, is only one of many parameters important for growth, and the growth rates of Elodea at both ambient and high free-CO2 were closely coupled to day length and photon irradiance, indicating that light had an ultimate control on growth.  相似文献   

19.
We have selected two recessive mutants of tomato with slightly longer hypocotyls than the wild type, one under low fluence rate (3 mol/m2/s) red light (R) and the other under low fluence rate blue light. These two mutants were shown to be allelic and further analysis revealed that hypocotyl growth was totally insensitive to far-red light (FR). We propose the gene symbol fri (far-red light insensitive) for this locus and have mapped it on chromosome 10. Immunochemically detectable phytochrome A polypeptide is essentially absent in the fri mutants as is the bulk spectrophotometrically detectable labile phytochrome pool in etiolated seedlings. A phytochrome B-like polypeptide is present in normal amounts and a small stable phytochrome pool can be readily detected by spectrophotometry in the fri mutants. Inhibition of hypocotyl growth by a R pulse given every 4 h is quantitatively similar in the fri mutants and wild type and the effect is to a large extent reversible if R pulses are followed immediately by a FR pulse. After 7 days in darkness, both fri mutants and the wild type become green on transfer to white light, but after 7 days in FR, the wild-type seedlings that have expanded their cotyledons lose their capacity to green in white light, while the fri mutants de-etiolate. Adult plants of the fri mutants show retarded growth and are prone to wilting, but exhibit a normal elongation response to FR given at the end of the daily photoperiod. The inhibition of seed germination by continuous FR exhibited by the wild type is normal in the fri mutants. It is proposed that these fri mutants are putative phytochrome A mutants which have normal pools of other phytochromes.  相似文献   

20.
The rate of volatilization of Hg2+ as metallic Hg is accelerated by illumination of Chlorella cells. In the presence of the uncoupler methylamine the rate of volatilization in the light is greatly but transiently increased. DCMU (3-(3,4-dichlorophenyl)-1,1-dimethyl urea) prevented the light response. In the presence of Hg2+, O2 evolution by the cells was not completely inhibited by DCMU. Hg2+ appears to prevent DCMU reaching its binding site. Light seems to increase the amount of or leakage from the cells of a metabolite capable of reducing Hg2+ to Hg°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号