首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Porcine reproductive and respiratory syndrome virus (PRRSV) is the most important infectious disease agent of pigs worldwide, causing reproductive failure in pregnant sows and respiratory problems in nursing and growing pigs. PRRSV infection is characterized by a prolonged viremia of 30 or more days and an extended persistent infection of lymphoid tissues. To better understand the immunological basis for prolonged acute and persistent PRRSV infection, we have examined the cell-mediated immune (CMI) response throughout the course of infection and compared the results to the local distribution and abundance of PRRSV in infected tissues. PRRSV-specific T cells, enumerated by gamma interferon enzyme-linked immunospot assay, did not appear until 2 weeks after PRRSV inoculation, and their abundance exhibited substantial variation over time and among animals. In all cases the T-cell response was transient. High levels of viral RNA were present in lymphoid tissues of all animals in the acute phase of infection. Viral loads were decreased 1,000-fold or more in persistent infections, with the primary sites of persistence being tonsil, sternal lymph node, and inguinal lymph node. The abundance of virus-specific T cells in either acutely or persistently infected animals was highly variable and showed no correlation to the level of virus in lymphoid tissues. No significant difference in antigen-specific T-cell abundance was observed in secondary lymphoid tissues in either acute or persistent infection except for tonsil, in which the number of responding cells was extremely low. CD4(+)- and CD8(+)-T-cell frequencies did not change after PRRSV infection, though a decrease in gammadelta T cells was observed. Macrophages, the permissive cell type for PRRSV, were present in various levels in all tissue preparations and were not in proportion to local virus load. These findings indicate that a weak CMI response contributes to prolonged PRRSV infection and suggests that PRRSV suppresses T-cell recognition of infected macrophages. Thus, the slow but eventual resolution of PRRSV infection may be dependent on limiting permissive macrophages and on innate immune factors.  相似文献   

2.
Wei Z  Lin T  Sun L  Li Y  Wang X  Gao F  Liu R  Chen C  Tong G  Yuan S 《Journal of virology》2012,86(18):9941-9951
It has been proposed that the N-linked glycan addition at certain sites in GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) is important for production of infectious viruses and viral infectivity. However, such specific N-linked glycosylation sites do not exist in some field PRRSV isolates. This implies that the existence of GP5-associated glycan per se is not vital to the virus life cycle. In this study, we found that mutation of individual glycosylation sites at N30, N35, N44, and N51 in GP5 did not affect virus infectivity in cultured cells. However, the mutants carrying multiple mutations at N-linked glycosylation sites in GP5 had significantly reduced virus yields compared with the wild-type (wt) virus. As a result, no viremia and antibody response were detected in piglets that were injected with a mutant without all N-linked glycans in GP5. These results suggest that the N-linked glycosylation of GP5 is critically important for virus replication in vivo. The study also showed that removal of N44-linked glycan from GP5 increased the sensitivity of mutant virus to convalescent-phase serum samples but did not elicit a high-level neutralizing antibody response to wt PRRSV. The results obtained from the present study have made significant contributions to better understanding the importance of glycosylation of GP5 in the biology of PRRSV.  相似文献   

3.
There is currently no SIV macaque model in which the effects of combination antiretroviral therapy on tissue immune responses and latent reservoirs have been measured. This study was performed to define the impact of combination therapy on the specificity and distribution of the T lymphocyte response in multiple tissue compartments. Pigtailed macaques (Macaca nemestrina) were infected with SIV/17E-Fr and treated with combination antiretroviral therapy consisting of 9-R-(2-phosphonomethoxypropyl)adenine (PMPA) and beta-2',3'-dideoxy-3'-thia-5-fluorocytidine (FTC). The SIV-specific T lymphocyte response was measured in peripheral blood, spleen and several lymph nodes at necropsy by IFN-gamma Elispot analysis. Two animals (one treated, one untreated) had high acute peak viremia, which was associated with lower SIV-specific T lymphocyte responses in the peripheral blood and lymphoid tissues. In the treated animal, viremia was controlled to low or undetectable for the study duration, and virus-specific responses remained low. The untreated animal remained viremic throughout the study and developed clinical symptoms of AIDS. In contrast, the two animals that had lower acute peak viremia (one treated, one untreated) had more robust T lymphocyte responses, and controlled viral replication. Virus-specific responses were detected in the treated animal despite 6 months of suppressive therapy. These data suggest that in this model, in the context of acute peak viremia and weak T cell responses, combination therapy may be essential to control virus replication and disease progression. Conversely, in the setting of low initial viremia and robust T lymphocyte responses, treatment does not have a detrimental effect on the immune response.  相似文献   

4.
A window of opportunity for immune responses to extinguish human immunodeficiency virus type 1 (HIV-1) exists from the moment of transmission through establishment of the latent pool of HIV-1-infected cells. A critical time to study the initial immune responses to the transmitted/founder virus is the eclipse phase of HIV-1 infection (time from transmission to the first appearance of plasma virus), but, to date, this period has been logistically difficult to analyze. To probe B-cell responses immediately following HIV-1 transmission, we have determined envelope-specific antibody responses to autologous and consensus Envs in plasma donors from the United States for whom frequent plasma samples were available at time points immediately before, during, and after HIV-1 plasma viral load (VL) ramp-up in acute infection, and we have modeled the antibody effect on the kinetics of plasma viremia. The first detectable B-cell response was in the form of immune complexes 8 days after plasma virus detection, whereas the first free plasma anti-HIV-1 antibody was to gp41 and appeared 13 days after the appearance of plasma virus. In contrast, envelope gp120-specific antibodies were delayed an additional 14 days. Mathematical modeling of the earliest viral dynamics was performed to determine the impact of antibody on HIV replication in vivo as assessed by plasma VL. Including the initial anti-gp41 immunoglobulin G (IgG), IgM, or both responses in the model did not significantly impact the early dynamics of plasma VL. These results demonstrate that the first IgM and IgG antibodies induced by transmitted HIV-1 are capable of binding virions but have little impact on acute-phase viremia at the timing and magnitude that they occur in natural infection.  相似文献   

5.
Selection of T-cell vaccine antigens for chronic persistent viral infections has been largely empirical. To define the relationship, at the population level, between the specificity of the cellular immune response and viral control for a relevant human pathogen, we performed a comprehensive analysis of the 160 dominant CD8(+) T-cell responses in 578 untreated HIV-infected individuals from KwaZulu-Natal, South Africa. Of the HIV proteins targeted, only Gag-specific responses were associated with lowering viremia. Env-specific and Accessory/Regulatory protein-specific responses were associated with higher viremia. Increasing breadth of Gag-specific responses was associated with decreasing viremia and increasing Env breadth with increasing viremia. Association of the specific CD8(+) T-cell response with low viremia was independent of HLA type and unrelated to epitope sequence conservation. These population-based data, suggesting the existence of both effective immune responses and responses lacking demonstrable biological impact in chronic HIV infection, are of relevance to HIV vaccine design and evaluation.  相似文献   

6.
Although many studies have investigated the requirement for CD4(+) T cell help for CD8(+) T cell responses to acute viral infections that are fully resolved, less is known about the role of CD4(+) T cells in maintaining ongoing CD8(+) T cell responses to persistently infecting viruses. Using mouse polyoma virus (PyV), we asked whether CD4(+) T cell help is required to maintain antiviral CD8(+) T cell and humoral responses during acute and persistent phases of infection. Though fully intact during acute infection, the PyV-specific CD8(+) T cell response declined numerically during persistent infection in MHC class II-deficient mice, leaving a small antiviral CD8(+) T cell population that was maintained long term. These unhelped PyV-specific CD8(+) T cells were functionally unimpaired; they retained the potential for robust expansion and cytokine production in response to Ag rechallenge. In addition, although a strong antiviral IgG response was initially elicited by MHC class II-deficient mice, these Ab titers fell, and long-lived PyV-specific Ab-secreting cells were not detected in the bone marrow. Finally, using a minimally myeloablative mixed bone marrow chimerism approach, we demonstrate that recruitment and/or maintenance of new virus-specific CD8(+) T cells during persistent infection is impaired in the absence of MHC class II-restricted T cells. In summary, these studies show that CD4(+) T cells differentially affect CD8(+) T cell responses over the course of a persistent virus infection.  相似文献   

7.
Xenotropic murine leukemia-related virus (XMRV) was identified in association with human prostate cancer and chronic fatigue syndrome. To examine the infection potential, kinetics, and tissue distribution of XMRV in an animal model, we inoculated five macaques with XMRV intravenously. XMRV established a persistent, chronic disseminated infection, with low transient viremia and provirus in blood lymphocytes during acute infection. Although undetectable in blood after about a month, XMRV viremia was reactivated at 9 months, confirming the chronicity of the infection. Furthermore, XMRV Gag was detected in tissues throughout, with wide dissemination throughout the period of monitoring. Surprisingly, XMRV infection showed organ-specific cell tropism, infecting CD4 T cells in lymphoid organs including the gastrointestinal lamina propria, alveolar macrophages in lung, and epithelial/interstitial cells in other organs, including the reproductive tract. Of note, in spite of the intravenous inoculation, extensive XMRV replication was noted in prostate during acute but not chronic infection even though infected cells were still detectable by fluorescence in situ hybridization (FISH) in prostate at 5 and 9 months postinfection. Marked lymphocyte activation occurred immediately postinfection, but antigen-specific cellular responses were undetectable. Antibody responses were elicited and boosted upon reexposure, but titers decreased rapidly, suggesting low antigen stimulation over time. Our findings establish a nonhuman primate model to study XMRV replication/dissemination, transmission, pathogenesis, immune responses, and potential future therapies.  相似文献   

8.
Cell-mediated immunity and neutralizing antibodies contribute to control of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection, but the role of nonneutralizing antibodies is not defined. Previously, we reported that sequential oral/oral or intranasal/oral (I/O) priming with replication-competent adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants, followed by intramuscular envelope protein boosting, elicited systemic and mucosal cellular immunity and exhibited equivalent, significant reductions of chronic viremia after rectal SIVmac251 challenge. However, I/O priming gave significantly better control of acute viremia. Here, systemic and mucosal humoral immunity were investigated for potential correlates with the acute challenge outcome. Strong serum binding but nonneutralizing antibody responses against SIVmac251 were induced in both groups. Antibody responses appeared earlier and overall were higher in the I/O group. Reduced acute viremia was significantly correlated with higher serum binding titer, stronger antibody-dependent cellular cytotoxicity activity, and peak prechallenge and 2-week-postchallenge antibody-dependent cell-mediated viral inhibition (ADCVI). The I/O group consistently displayed greater anti-envelope immunoglobulin A (IgA) antibody responses in bronchoalveolar lavage and a stronger rectal anti-envelope IgA anamnestic response 2 weeks postchallenge. Pre- and postchallenge rectal secretions inhibited SIV transcytosis across epithelial cells. The inhibition was significantly higher in the I/O group, although a significant correlation with reduced acute viremia was not reached. Overall, the replicating Ad5hr-SIV priming/envelope boosting approach elicited strong systemic and mucosal antibodies with multiple functional activities. The pattern of elevated immune responses in the I/O group is consistent with its better control of acute viremia mediated, at least in part, by ADCVI activity and transcytosis inhibition.  相似文献   

9.
The requirement for costimulation in antiviral CD8+ T cell responses has been actively investigated for acutely resolved viral infections, but it is less defined for CD8+ T cell responses to persistent virus infection. Using mouse polyoma virus (PyV) as a model of low-level persistent virus infection, we asked whether blockade of the CD40 ligand (CD40L) and CD28 costimulatory pathways impacts the magnitude and function of the PyV-specific CD8+ T response, as well as the humoral response and viral control during acute and persistent phases of infection. Costimulation blockade or gene knockout of either CD28 or CD40L substantially dampened the magnitude of the acute CD8+ T cell response; simultaneous CD28 and CD40L blockade severely depressed the acute T cell response, altered the cell surface phenotype of PyV-specific CD8+ T cells, decreased PyV VP1-specific serum IgG titers, and resulted in an increase in viral DNA levels in multiple organs. CD28 and CD40L costimulation blockade during acute infection also diminished the memory PyV-specific CD8+ T cell response and serum IgG titer, but control of viral persistence varied between mouse strains and among organs. Interestingly, we found that CD28 and CD40L costimulation is dispensable for generating and/or maintaining PyV-specific CD8+ T cells during persistent infection; however, blockade of CD27 and CD28 costimulation in persistently infected mice caused a reduction in PyV-specific CD8+ T cells. Taken together, these data indicate that CD8+ T cells primed within the distinct microenvironments of acute vs persistent virus infection differ in their costimulation requirements.  相似文献   

10.
通过反转录-聚合酶链式反应(RT-PCR)扩增了猪繁殖与呼吸综合征病毒完整的GP5基因并进行了克隆与鉴定。序列测定结果与已经登陆GenBank 的EF488048高致病性江西株比对分析表明碱基同源性达98.7%。构建含GP5基因的真核表达载体pcDNA-GP5, 通过与鼠白血病病毒(MuLV)假病毒构建体系的两种质粒pHIT60和pHIT111共转染人胚肾细胞293T, 48 h后收集假病毒上清, 超离后通过Western-blot证明GP5蛋白在假型病毒颗粒表面存在, 表明GP5蛋白被整合到此假型病毒粒子表面。通过感染293T、Mark-145不同的靶细胞,证实所构建的假型病毒粒子具有感染性。成功构建了具有感染性的MuLV-GP5假病毒体系, 为研究猪繁殖与呼吸综合征病毒侵入细胞的机理及其组织嗜性的变异提供一种新方法。  相似文献   

11.
通过反转录-聚合酶链式反应(RT-PCR)扩增了猪繁殖与呼吸综合征病毒完整的GP5基因并进行了克隆与鉴定。序列测定结果与已经登陆GenBank 的EF488048高致病性江西株比对分析表明碱基同源性达98.7%。构建含GP5基因的真核表达载体pcDNA-GP5, 通过与鼠白血病病毒(MuLV)假病毒构建体系的两种质粒pHIT60和pHIT111共转染人胚肾细胞293T, 48 h后收集假病毒上清, 超离后通过Western-blot证明GP5蛋白在假型病毒颗粒表面存在, 表明GP5蛋白被整合到此假型病毒粒子表面。通过感染293T、Mark-145不同的靶细胞,证实所构建的假型病毒粒子具有感染性。成功构建了具有感染性的MuLV-GP5假病毒体系, 为研究猪繁殖与呼吸综合征病毒侵入细胞的机理及其组织嗜性的变异提供一种新方法。  相似文献   

12.
Passive administration of porcine reproductive and respiratory syndrome virus (PRRSV) neutralizing antibodies (NAbs) can effectively protect pigs against PRRSV infection. However, after PRRSV infection, pigs typically develop a weak and deferred NAb response. One major reason for such a meager NAb response is the phenomenon of glycan shielding involving GP5, a major glycoprotein carrying one major neutralizing epitope. We describe here a type II PRRSV field isolate (PRRSV-01) that is highly susceptible to neutralization and induces an atypically rapid, robust NAb response in vivo. Sequence analysis shows that PRRSV-01 lacks two N-glycosylation sites, normally present in wild-type (wt) PRRSV strains, in two of its envelope glycoproteins, one in GP3 (position 131) and the other in GP5 (position 51). To determine the influence of these missing N-glycosylation sites on the distinct neutralization phenotype of PRRSV-01, a chimeric virus (FL01) was generated by replacing the structural genes of type II PRRSV strain FL12 cDNA infectious clone with those from PRRSV-01. N-glycosylation sites were reintroduced into GP3 and GP5 of FL01, separately or in combination, by site-directed mutagenesis. Reintroduction of the N-glycosylation site in either GP3 or GP5 allowed recovery of in vivo and in vitro glycan shielding capacity, with an additive effect when these sites were reintroduced into both glycoproteins simultaneously. Although the loss of these glycosylation sites has seemingly occurred naturally (presumably by passage through cell cultures), PRRSV-01 virus quickly regains these glycosylation sites through replication in vivo, suggesting that a strong selective pressure is exerted at these sites. Collectively, our data demonstrate the involvement of an N-glycan moiety located in GP3 in glycan shield interference.  相似文献   

13.
The temporal relationships among the humoral and cellular immune responses were defined in BALB/c mice after vaginal or systemic infection with herpes simplex virus type 2 (HSV-2). After vaginal infection, mice showed evidence of clinical vaginitis on days 4 to 6 and HSV-2 replication was detected locally in the vaginal secretions, cervix, vagina, and uterus before the virus subsequently spread to the central nervous system. Death from encephalitis occurred between 7 and 10 days after infection. Vaginal infection was associated with significant delayed type hypersensitivity and splenic proliferative cell-mediated immune responses which appeared during the acute infection and waned by 3 weeks. There was almost no evidence of a systemic neutralizing antibody response at any time after vaginal infection. In contrast to the local vaginal infection, systemic i.v. HSV-2 infection induced a humoral response as well as the two cellular immune responses. Although both cellular immune responses appeared during the acute infection (days 6 to 14) and persisted for approximately 5 weeks, the humoral response appeared in surviving animals and persisted for at least 4 months. Thus, vaginal HSV-2 infection was associated primarily with transient cellular immune responses, whereas i.v. HSV-2 infection induced prolonged systemic humoral and cellular immune responses.  相似文献   

14.
The use of adenoviruses (Ad) as vaccine vectors against a variety of pathogens has demonstrated their capacity to elicit strong antibody and cell-mediated immune responses. Adenovirus serotype C vectors, such as Ad serotype 5 (Ad5), expressing Ebolavirus (EBOV) glycoprotein (GP), protect completely after a single inoculation at a dose of 10(10) viral particles. However, the clinical application of a vaccine based on Ad5 vectors may be hampered, since impairment of Ad5 vaccine efficacy has been demonstrated for humans and nonhuman primates with high levels of preexisting immunity to the vector. Ad26 and Ad35 segregate genetically from Ad5 and exhibit lower seroprevalence in humans, making them attractive vaccine vector alternatives. In the series of studies presented, we show that Ad26 and Ad35 vectors generate robust antigen-specific cell-mediated and humoral immune responses against EBOV GP and that Ad5 immune status does not affect the generation of GP-specific immune responses by these vaccines. We demonstrate partial protection against EBOV by a single-shot Ad26 vaccine and complete protection when this vaccine is boosted by Ad35 1 month later. Increases in efficacy are paralleled by substantial increases in T- and B-cell responses to EBOV GP. These results suggest that Ad26 and Ad35 vectors warrant further development as candidate vaccines for EBOV.  相似文献   

15.
16.
The hallmarks of the immune response to viral infections are the expansion of antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) after they encounter antigen-presenting cells in the lymphoid tissues and their subsequent redistribution to nonlymphoid tissues to deal with the pathogen. Control mechanisms exist within CTL activation pathways to prevent inappropriate CTL responses against disseminating infections with a broad distribution of pathogen in host tissues. This is demonstrated during overwhelming infection with the noncytolytic murine lymphocytic choriomeningitis virus, in which clonal exhaustion (anergy and/or deletion) of CTLs prevents immune-mediated pathology but allows persistence of the virus. The mechanism by which the immune system determines whether or not to mount a full response to such infections is unknown. Here we present data showing that the initial encounter of specific CTLs with infected cells in lymphoid tissues is critical for this decision. Whether the course of the viral infection is acute or persistent for life primarily depends on the degree and kinetics of CTL exhaustion in infected lymphoid tissues. Virus-driven CTL expansion in lymphoid tissues resulted in the migration of large quantities of CTLs to nonlymphoid tissues, where they persisted at stable levels. Surprisingly, although virus-specific CTLs were rapidly clonally exhausted in lymphoid tissues under conditions of chronic infection, a substantial number of them migrated to nonlymphoid tissues, where they retained an effector phenotype for a long time. However, these cells were unable to control the infection and progressively lost their antiviral capacities (cytotoxicity and cytokine secretion) in a hierarchical manner before their eventual physical elimination. These results illustrate the differential tissue-specific regulation of antiviral T-cell responses during chronic infections and may help us to understand the dynamic relationship between antigen and T-cell populations in many persistent infections in humans.  相似文献   

17.
Immediate treatment of acute human immunodeficiency virus type 1 (HIV-1) infection has been associated with subsequent control of viremia in a subset of patients after therapy cessation, but the immune responses contributing to control have not been fully defined. Here we examined neutralizing antibodies as a correlate of viremia control following treatment interruption in HIV-1-infected individuals in whom highly active antiretriviral therapy (HAART) was initiated during early seroconversion and who remained on therapy for 1 to 3 years. Immediately following treatment interruption, neutralizing antibodies were undetectable with T-cell-line adapted strains and the autologous primary HIV-1 isolate in seven of nine subjects. Env- and Gag-specific antibodies as measured by enzyme-linked immunosorbent assay were also low or undetectable at this time. Despite this apparent poor maturation of the virus-specific B-cell response during HAART, autologous neutralizing antibodies emerged rapidly and correlated with a spontaneous downregulation in rebound viremia following treatment interruption in three subjects. Control of rebound viremia was seen in other subjects in the absence of detectable neutralizing antibodies. The results indicate that virus-specific B-cell priming occurs despite the early institution of HAART, allowing rapid secondary neutralizing-antibody production following treatment interruption in a subset of individuals. Since early HAART limits viral diversification, we hypothesize that potent neutralizing-antibody responses to autologous virus are able to mature and that in some persons these responses contribute to the control of plasma viremia after treatment cessation.  相似文献   

18.
Pseudorabies virus (PRV),an alpha-herpesvirus,has been developed as a live viral vector for animal vaccines.However,the PRV recombinant virus TK-/gE-/GP5+expressing GP5 of porcine reproductive and respiratory syndrome virus (PRRSV),based on the PRV genetically depleted vaccine strain TK-/gE-/LacZ+,scarcely stimulated the vaccinated animals to produce neutralizing antibodies against PRRSV.To develop a booster-specific immune response of such PRV recombinants,the ORF5m gene (the modified ORF5 gene having better immune responses)was substituted for the ORF5 gene and introduced into PRV TK-/gE-/LacZ+,resulting in a PRV recombinant named TK-/gE-/GPSm+,which expressed the modified GPSm protein.The recombinant virus was confirmed using PCR,Southern blotting and Western blotting.TK-/gE-/GPSm+and TK-/gE-/GP5+expressing the authentic GP5 protein were inoculated into Balb/c mice to evaluate their immune responses.The results indicated that the protecting neutralization antibodies (the 3/6 vaccinated mice obtained 1:16)and cell immune responses induced by TK-/gE-/GPSm+against PRRSV were higher than that induced by TK-/gE-/GP5+.Thus,the development of the new PRV recombinant expressing the modified GP5m protein as a candidate vaccine established the basis for the study of bivalent genetic engineering vaccines against PRRSV and PRV.  相似文献   

19.
To address Sin Nombre (SN) virus persistence in deer mice, we sacrificed experimentally infected deer mice at eight time points from day 21 to day 217 postinoculation (p.i.) and examined their tissues for viral nucleocapsid (N) antigen expression and both negative-strand (genomic) and positive-strand (replicative/mRNA) viral S segment RNA titers. All the animals that we inoculated developed persistent infections, and SN virus could be isolated from tissues throughout the course of infection. The transition from an acute to a persistent pattern of infection appeared to occur between days 60 and 90 p.i. Beginning on day 60 p.i., the heart, brown adipose tissue (BAT), and lung retained antigen expression and genomic viral RNA the most frequently. We found a statistically significant association among the presence of replicative RNA in the heart, lung, and BAT, widespread antigen expression (in > or =5 tissues), and RNA viremia. Of these three tissues, the heart retained negative-strand RNA and viral N antigen the most consistently (in 25 of 26 animals). During persistence, there were two distinct patterns of infection: restricted versus disseminated tissue involvement. Mice with the restricted pattern exhibited N antigen expression in < or =3 tissues, an absence of viral RNA in the blood, neutralizing antibody titers of < or =1:1,280 (P = 0.01), and no replicative RNA in the heart, lung, or BAT. Those with the "disseminated" pattern showed N antigen expression in > or =5 tissues, neutralizing antibody titers of 1:160 to 1:20,480, replicative RNA in the heart, lung, and BAT at a high frequency, and RNA viremia. Virus could be isolated consistently only from mice that demonstrated the disseminated pattern. The heart, lung, and BAT are important sites for the replication and maintenance of SN virus during persistent infection.  相似文献   

20.
Woodchuck hepatitis virus (WHV) is an established model for human hepatitis B virus. The kinetics of virus and host responses in serum and liver during acute, self-limited WHV infection in adult woodchucks were studied. Serum WHV DNA and surface antigen (WHsAg) were detected as early as 1 to 3 weeks following experimental infection and peaked between 1 and 5 weeks postinfection. Thereafter, serum WHsAg levels declined rapidly and became undetectable, while WHV DNA levels became undetectable much later, between 4 and 20 weeks postinfection. Decreasing viremia correlated with transient liver injury marked by an increase in serum sorbitol dehydrogenase (SDH) levels. Clearance of WHV DNA from serum was associated with the normalization of serum SDH. Circulating immune complexes (CICs) of WHsAg and antibodies against WHsAg (anti-WHs) that correlated temporarily with the peaks in serum viremia and WHs antigenemia were detected. CICs were no longer detected in serum once free anti-WHs became detectable. The detection of CICs around the peak in serum viremia and WHs antigenemia in resolving woodchucks suggests a critical role for the humoral immune response against WHsAg in the early elimination of viral and subviral particles from the peripheral blood. Individual kinetic variation during WHV infections in resolving woodchucks infected with the same WHV inoculum and dose is likely due to the outbred nature of the animals, indicating that the onset and magnitude of the individual immune response determine the intensity of virus inhibition and the timing of virus elimination from serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号