首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Saccharomyces cerevisiae, SAL1 encodes a Ca2+ -binding mitochondrial carrier. Disruption of SAL1 is synthetically lethal with the loss of a specific function associated with the Aac2 isoform of the ATP/ADP translocase. This novel activity of Aac2 is defined as the V function (for Viability of aac2 sal1 double mutant), which is independent of the ATP/ADP exchange activity required for respiratory growth (the R function). We found that co-inactivation of SAL1 and AAC2 leads to defects in mitochondrial translation and mitochondrial DNA (mtDNA) maintenance. Additionally, sal1Delta exacerbates the respiratory deficiency and mtDNA instability of ggc1Delta, shy1Delta and mtg1Delta mutants, which are known to reduce mitochondrial protein synthesis or protein complex assembly. The V function is complemented by the human Short Ca2+ -binding Mitochondrial Carrier (SCaMC) protein, SCaMC-2, a putative ATP-Mg/Pi exchangers on the inner membrane. However, mitochondria lacking both Sal1p and Aac2p are not depleted of adenine nucleotides. The Aac2R252I and Aac2R253I variants mutated at the R252-254 triplet critical for nucleotide transport retain the V function. Likewise, Sal1p remains functionally active when the R479I and R481I mutations were introduced into the structurally equivalent R479-T480-R481 motif. Finally, we found that the naturally occurring V-R+ Aac1 isoform of adenine nucleotide translocase partially gains the V function at the expense of the R function by introducing the mutations P89L and A96 V. Thus, our data support the view that the V function is independent of adenine nucleotide transport associated with Sal1p and Aac2p and this evolutionarily conserved activity affects multiple processes in mitochondria.  相似文献   

2.
Genetic and biochemical analysis of Saccharomyces cerevisiae containing a disruption of the nuclear gene (AAC1) encoding the mitochondrial ADP/ATP carrier has revealed a second gene for this protein. The second gene, designated AAC2, has been isolated by genetic complementation and sequenced. AAC2 contains a 954-base pair open reading frame coding for a protein of 318 amino acids which is highly homologous to the AAC1 gene product except that it is nine amino acids longer at the NH2 terminus. The two yeast genes are highly conserved at the level of DNA and protein and share identity with the ADP/ATP carriers from other organisms. Both genes complement an ADP/ATP carrier defect (op1 or pet9). However, the newly isolated gene AAC2 need be present only in one or two copies while the previously isolated AAC1 gene must be present in multiple copies to support growth dependent on a functional carrier protein. This gene dosage-dependent complementation combined with the high degree of conservation suggest that these two functionally equivalent genes may be differentially expressed.  相似文献   

3.
Chen XJ 《Genetics》2004,167(2):607-617
Adenine nucleotide translocase (Ant) catalyzes ADP/ATP exchange between the cytosol and the mitochondrial matrix. It is also proposed to form or regulate the mitochondrial permeability transition pore, a megachannel of high conductancy on the mitochondrial membranes. Eukaryotic genomes generally contain multiple isoforms of Ant. In this study, it is shown that the Ant isoforms are functionally differentiated in Saccharomyces cerevisiae. Although the three yeast Ant proteins can equally support respiration (the R function), Aac2p and Aac3p, but not Aac1p, have an additional physiological function essential for cell viability (the V function). The loss of V function in aac2 mutants leads to a lethal phenotype under both aerobic and anaerobic conditions. The lethality is suppressed by a strain-polymorphic locus, named SAL1 (for Suppressor of aac2 lethality). SAL1 was identified to encode an evolutionarily conserved protein of the mitochondrial carrier family. Notably, the Sal1 protein was shown to bind calcium through two EF-hand motifs located on its amino terminus. Calcium binding is essential for the suppressor activity. Finally, Sal1p is not required for oxidative phosphorylation and its overexpression does not complement the R(-) phenotype of aac2 mutants. On the basis of these observations, it is proposed that Aac2p and Sal1p may define two parallel pathways that transport a nucleotide substrate in an operational mode distinct from ADP/ATP exchange.  相似文献   

4.
The ADP/ATP carrier (AAC) proteins play a central role in cellular metabolism as they facilitate the exchange of ADP and ATP across the mitochondrial inner membrane. We present evidence here that in yeast (Saccharomyces cerevisiae) mitochondria the abundant Aac2 isoform exists in physical association with the cytochrome c reductase (cytochrome bc(1))-cytochrome c oxidase (COX) supercomplex and its associated TIM23 machinery. Using a His-tagged Aac2 derivative and affinity purification studies, we also demonstrate here that the Aac2 isoform can be affinity-purified with other AAC proteins. Copurification of the Aac2 protein with the TIM23 machinery can occur independently of its association with the fully assembled cytochrome bc(1)-COX supercomplex. In the absence of the Aac2 protein, the assembly of the cytochrome bc(1)-COX supercomplex is perturbed, whereby a decrease in the III(2)-IV(2) assembly state relative to the III(2)-IV form is observed. We propose that the association of the Aac2 protein with the cytochrome bc(1)-COX supercomplex is important for the function of the OXPHOS complexes and for the assembly of the COX complex. The physiological implications of the association of AAC with the cytochrome bc(1)-COX-TIM23 supercomplex are also discussed.  相似文献   

5.
Previously, the role of residues in the ADP/ATP carrier (AAC) from Saccharomyces cerevisiae has been studied by mutagenesis, but the dependence of mitochondrial biogenesis on functional AAC impedes segregation of the mutational effects on transport and biogenesis. Unlike other mitochondrial carriers, expression of the AAC from yeast or mammalians in Escherichia coli encountered difficulties because of disparate codon usage. Here we introduce the AAC from Neurospora crassa in E. coli, where it is accumulated in inclusion bodies and establish the reconstitution conditions. AAC expressed with heat shock vector gave higher activity than with pET-3a. Transport activity was absolutely dependent on cardiolipin. The 10 single mutations of intrahelical positive residues and of the matrix repeat (+X+) motif resulted in lower activity, except of R245A. R143A had decreased sensitivity toward carboxyatractylate. The ATP-linked exchange is generally more affected than ADP exchange. This reflects a charge network that propagates positive charge defects to ATP(4-) more strongly than to ADP(3-) transport. Comparison to the homologous mutants of yeast AAC2 permits attribution of the roles of these residues more to ADP/ATP transport or to AAC import into mitochondria.  相似文献   

6.
The KlAAC gene, encoding the ADP/ATP carrier, has been assumed to be a single gene in Kluyveromyces lactis, an aerobic, petite-negative yeast species. The Klaac null mutation, which causes a respiratory-deficient phenotype, was fully complemented by AAC2, the Saccharomyces cerevisiae major gene for the ADP/ATP carrier and also by AAC1, a gene that is poorly expressed in S. cerevisiae. In this study, we demonstrate that the Klaac null mutation is partially complemented by the ScAAC3 gene, encoding the hypoxic ADP/ATP carrier isoform, whose expression in S. cerevisiae is prevented by oxygen. Once introduced into K. lactis, the AAC3 gene was expressed both under aerobic and under partial anaerobic conditions but did not support the growth of K. lactis under strict anaerobic conditions.  相似文献   

7.
A third ADP/ATP translocator gene in yeast   总被引:14,自引:0,他引:14  
The op1 mutation in yeast is known to be due to a defect in the mitochondrial ADP/ATP translocator. Sequencing of the gene AAC2 revealed that the mutation resulted from a single base change that caused a replacement of arginine 97 by a histidine. The gene encoding AAC2 was also cloned and sequenced from an op1 revertant capable of growth on glycerol as a sole carbon source. Sequence analysis indicates that the reverted gene underwent rearrangement in which a portion of an unknown gene was used to repair the mutation. An oligonucleotide complementary to this insert was used to clone a previously unrecognized gene encoding ADP/ATP translocator in yeast. The newly discovered gene, AAC3, is homologous with the previously known genes AAC1 and AAC2. Gene disruption experiments suggest that AAC2 encodes the majority of the translocator. Expression of AAC1 and AAC2 required derepressed conditions whereas expression of AAC3 occurred almost exclusively under anaerobic conditions. Both the op1 mutant and the strain that contains an interrupted AAC2 were able to grow under anaerobic conditions, suggesting that AAC3 can replace the gene product of AAC2. Indeed, when cloned into multicopy plasmid, AAC3 was able to replace the disrupted AAC2 in the JLY-73 strain. The concomitant disruption of the AAC2 and AAC3, however, results in arrest of cell growth under conditions of low oxygen tension. The discovery of a third gene encoding ADP/ATP translocator helps to clarify certain characteristics of op1 mutants which could not be resolved in the past.  相似文献   

8.
To detect structural changes in the second cytosolic loop of the mitochondrial ADP/ATP carrier of Saccharomyces cerevisiae AAC2, we prepared 20 single cysteine mutants by replacing each amino acid in the S213 to L232 region. All single cysteine mutants were fully functional, because they could restore growth on glycerol of a yeast strain lacking functional ADP/ATP carriers. First, these single-Cys mutants were treated with carboxyatractyloside to lock the carrier in the cytosolic state or with bongkrekic acid to generate the matrix state, and then with the membrane-impermeable SH reagent eosin-5-maleimide (EMA) to probe accessibility. The amino acid residues S213C, L214C, F231C and L232C were not labeled, indicating that these 4 residues must have been buried in the membrane, whereas the region between residues K215 and S230 is accessible to labeling and must, therefore, have protruded into the aqueous phase. Residue L218C showed strong resistance against EMA labeling regardless of the state of the carrier, but the reason for such behavior is unclear. On the contrary, the labeling of the residues between F227C and S230C was strongly dependent on the state of the carrier. Thus, the C-terminal region of the second cytosolic loop in AAC2 changes its environment when the carrier cycles between the matrix and cytosolic state.  相似文献   

9.
The ADP/ATP carrier of yeast (309 amino acids) is an abundant transmembrane protein of the mitochondrial inner membrane whose import involves well-defined steps (Pfanner, N., and Neupert, W. (1987) J. Biol. Chem. 262, 7528-7536). Analysis of the in vitro import of gene fusion products containing ADP/ATP carrier (AAC) sequences at the amino terminus and mouse dihydrofolate reductase (DHFR) at the carboxyl terminus indicates that the first 72 amino acids of the soluble carrier protein, a hydrophilic region of the protein, are not by themselves sufficient for initial binding to the AAC receptor on the mitochondrial surface. However, an AAC-DHFR gene fusion containing the first 111 residues of the ADP/ATP carrier protein exhibited binding to mitochondria at low temperature (2 degrees C) and internalization at 25 degrees C to a mitochondrial space protected from proteinase K in the same manner as the wild-type ADP/ATP carrier protein. The AAC-DHFR protein, in contrast to the wild-type AAC protein imported into mitochondria under optimal conditions, remained extractable at alkaline pH and appeared to be blocked at an intermediate step in the AAC import pathway. Based on its extraction properties, this AAC-DHFR hybrid is proposed to be associated with a proteinaceous component of the import apparatus within mitochondria. These data indicate that the import determinants for the AAC protein are not located at its extreme amino terminus and that protein determinants distal to the first 111 residues of the carrier may be necessary to move the protein beyond the alkali-extractable step in the biogenesis of a functional AAC protein.  相似文献   

10.
The gene encoding the major ADP/ATP carrier in yeast AAC2 (pet9; Lawson, J., and Douglas, M. (1988) J. Biol. Chem. 263, 14812-14818) has been disrupted (delta AAC2) by itself and in combination with a disruption of a second translocator gene AAC1 (delta AAC1). Disruption of AAC2 like the pet9 mutation renders yeast unable to grow on a nonfermentable carbon source. The AAC1 AAC2 double disruption exhibits a phenotype identical to the AAC2. This provides the host strain for the analysis of point mutations in the AAC protein. We have initiated this structure-function analysis by characterizing and confirming that the pet9 mutation is a G to A transition resulting in an arginine to histidine change at position 96. Site-directed replacements at Arg96 confirm its essential function for growth on a nonfermentable carbon source. These data also suggest that in the absence of functional AAC1 and AAC2 gene products, adenine nucleotide transport across the mitochondrial inner membrane must occur by an as yet unidentified translocator or translocation mechanism or that within these cells separate intra- and extramitochondrial adenine nucleotide pools can exist to support growth.  相似文献   

11.
Genetic expression versus plasmidic overexpression of a functional recombinant fusion protein combining the yeast Saccharomyces cerevisiae mitochondrial ADP/ATP carrier (Anc2p) and the iso-1-cytochrome c (Cyc1p) has been investigated, with the main aim of increasing the polar surface of the carrier to improve its crystallization properties. The gene encoding the his6-tagged fusion protein was expressed in yeast under the control of the regulatory sequences of ScANC2 or under the control of the strong yeast PMA1 promoter. In both cases, the chimeric carrier, Anc2-Cyc1(His6)p, was able to restore growth on a non-fermentable carbon source of a yeast strain devoid of functional ADP/ATP carrier, demonstrating its transport activity. Nevertheless, when the expression vector was used, the level of expression of Anc2-Cyc1(His6)p was no greater than that of the chimeric carrier obtained in yeast mitochondria after homologous recombination. Optimal conditions to extract and to purify Anc2-Cyc1(His6)p were determined. A series of detergents was screened for their ability to extract and to preserve in vitro the chimeric carrier. A rapid, single step purification of Anc2-Cyc1(His6)p was developed, using n-dodecyl-beta-d-maltoside (DoDM) as the best detergent to solubilize the chimeric protein. Carboxyatractyloside- (CATR-) and nucleotide-binding sites were preserved in the purified protein. Moreover, the Cyc1p moiety of Anc2-Cyc1(His6)p-CATR complex solubilized in DoDM was still able to interact in vitro with the cytochrome c oxidase (COX), with the same affinity as yeast Cyc1p. Improved production and purification of Anc2-Cyc1(His6)p-CATR complex opens up new possibilities for the use of this protein in crystallographic approaches to the yeast ADP/ATP carrier. Furthermore, Anc2-Cyc1(His6)p may be an useful molecular tool to investigate in vivo interactions between components of the respiratory chain complexes such as COX and the proteins implicated in ATP biogenesis, such as the ATP/ADP carrier.  相似文献   

12.
T Drgon  L Sabová  N Nelson  J Kolarov 《FEBS letters》1991,289(2):159-162
All three genes (AAC1, AAC2 and AAC3) encoding the mitochondrial ADP/ATP translocator, were inactivated in a haploid yeast strain by a gene disruption technique. The triple mutant was still able to grow on fermentable carbon sources but only in the presence of oxygen. Under aerobic conditions neither translocator-protein nor carrier-mediated transport was detected in all mutants in which the AAC2 gene was disrupted. It was further shown that a functional AAC genes product is essential only for anaerobic growth of Saccharomyces cerevisiae but not for growth under derepressed conditions. Under anaerobic conditions a non-detectable amount of AAC3 gene product is sufficient to ensure the cell growth and multiplication.  相似文献   

13.
ADP/ATP carriers in the inner mitochondrial membrane catalyze the exchange of cytosolic ADP for ATP synthesized in the mitochondrial matrix by ATP synthase and thereby replenish the eukaryotic cell with metabolic energy. The yeast ADP/ATP carrier (AAC3) was overexpressed, inhibited by atractyloside, purified, and reconstituted into two-dimensional crystals. Images of frozen hydrated crystals were recorded by electron microscopy, and a projection structure was calculated to 8-A resolution. The AAC3 molecule has pseudo 3-fold symmetry in agreement with the 3-fold sequence repeats that are typical of members of the mitochondrial carrier family. The density distribution is consistent with a bundle of six transmembrane alpha-helices with two or three short alpha-helical extensions closing the central pore on the matrix side. The AAC3 molecules in the crystal are arranged in symmetrical homo-dimers, but the translocation pore for adenine nucleotides lies in the center of the molecule and not along the dyad axis of the dimer.  相似文献   

14.
A recombinant fusion protein combining the mitochondrial ADP/ATP carrier (Anc2p) and the iso-1-cytochrome c (Cyc1p), both from Saccharomyces cerevisiae, has been genetically elaborated with the aim of increasing the polar surface area of the carrier to facilitate its crystallization. The gene encoding the his-tagged fusion protein was expressed in yeast under the control of the regulatory sequences of ScANC2. The chimeric carrier, Anc2-Cyc1(His6)p, was able to restore growth on a non-fermentable carbon source of a yeast strain devoid of functional ADP/ATP carrier, which demonstrated its transport activity. The kinetic exchange properties of Anc2-Cyc1(His6)p and the wild type his-tagged carrier Anc2(His6)p were very similar. However, Anc2-Cyc1(His6)p restored cell growth less efficiently than Anc2(His6)p which correlates with the lower amount found in mitochondria. Purification of Anc2-Cyc1(His6)p in complex with carboxyatractyloside (CATR), a high affinity inhibitor of ADP/ATP transport, was achieved by combining ion-exchange chromatography and ion-metal affinity chromatography in the presence of LAPAO, an aminoxide detergent. As characterized by absorption in the visible range, heme was found to be present in isolated Anc2-Cyc1(His6)p, giving the protein a red color. Large-scale purification of Anc2-Cyc1(His6)p-CATR complex opens up novel possibilities for the use of crystallographic approaches to the yeast ADP/ATP carrier.  相似文献   

15.
Most mitochondrial carriers carry out equimolar exchange of substrates and they are believed widely to exist as homo-dimers. Here we show by differential tagging that the yeast mitochondrial ADP/ATP carrier AAC2 is a monomer in mild detergents. Carriers with and without six-histidine or hemagglutinin tags were co-expressed in defined molar ratios in yeast mitochondrial membranes. Their specific transport activity was unaffected by tagging or by co-expression. The co-expressed carriers were extracted from the membranes with mild detergents and purified rapidly by affinity chromatography. All of the untagged carriers were in the flow-through of the affinity column, whereas all of the tagged carriers bound to the column and were eluted subsequently, showing that stable dimers, consisting of associated tagged and untagged carriers, were not present. The specific inhibitors carboxyatractyloside and bongkrekic acid and the substrates ADP, ATP and ADP plus ATP were added during the experiments to determine whether lack of association might have been caused by carriers being prevented from cycling through the various states in the transport cycle where dimers might form. All of the protein was accounted for, but stable dimers were not detected in any of these conditions, showing that yeast ADP/ATP carriers are monomeric in detergents in agreement with their hydrodynamic properties and with their structure. Since strong interactions between monomers were not observed in any part of the transport cycle, it is highly unlikely that the carriers function cooperatively. Therefore, transport mechanisms need to be considered in which the carrier is operational as a monomer.  相似文献   

16.
《The Journal of cell biology》1990,111(6):2353-2363
We have identified the yeast homologue of Neurospora crassa MOM72, the mitochondrial import receptor for the ADP/ATP carrier (AAC), by functional studies and by cDNA sequencing. Mitochondria of a yeast mutant in which the gene for MOM72 was disrupted were impaired in specific binding and import of AAC. Unexpectedly, we found a residual, yet significant import of AAC into mitochondria lacking MOM72 that occurred via the receptor MOM19. We conclude that both MOM72 and MOM19 can direct AAC into mitochondria, albeit with different efficiency. Moreover, the precursor of MOM72 apparently does not require a positively charged sequence at the extreme amino terminus for targeting to mitochondria.  相似文献   

17.
Adenine nucleotide translocator (ANT) is a mitochondrial inner membrane protein involved in the ADP/ATP exchange and is a component of the mitochondrial permeability transition pore (PTP). In mammalian apoptosis, the PTP can mediate mitochondrial outer membrane permeabilization (MOMP), which is suspected to be responsible for the release of apoptogenic factors, including cytochrome c. Although release of cytochrome c in yeast apoptosis has previously been reported, it is not known how it occurs. Herein we used yeast genetics to investigate whether depletion of proteins putatively involved in MOMP and cytochrome c release affects these processes in yeast. While deletion of POR1 (yeast voltage-dependent anion channel) enhances apoptosis triggered by acetic acid, H(2)O(2) and diamide, CPR3 (mitochondrial cyclophilin) deletion had no effect. Absence of ADP/ATP carrier (AAC) proteins, yeast orthologues of ANT, protects cells exposed to acetic acid and diamide but not to H(2)O(2). Expression of a mutated form of Aac2p (op1) exhibiting very low ADP/ATP translocase activity indicates that AAC's pro-death role does not require translocase activity. Absence of AAC proteins impairs MOMP and release of cytochrome c, which, together with other mitochondrial inner membrane proteins, is degraded. Our findings point to a crucial role of AAC in yeast apoptosis.  相似文献   

18.
19.
Sal1p, a novel Ca2+-dependent ATP-Mg/Pi carrier, is essential in yeast lacking all adenine nucleotide translocases. By targeting luciferase to the mitochondrial matrix to monitor mitochondrial ATP levels, we show in isolated mitochondria that both ATP-Mg and free ADP are taken up by Sal1p with a K m of 0.20 ± 0.03 mM and 0.28 ± 0.06 mM respectively. Nucleotide transport along Sal1p is strictly Ca2+ dependent. Ca2+ increases the V max with a S 0.5 of 15 μM, and no changes in the K m for ATP-Mg. Glucose sensing in yeast generates Ca2+ transients involving Ca2+ influx from the external medium. We find that carbon-deprived cells respond to glucose with an immediate increase in mitochondrial ATP levels which is not observed in the presence of EGTA or in Sal1p-deficient cells. Moreover, we now report that during normal aerobic growth on glucose, yeast mitochondria import ATP from the cytosol and hydrolyse it through H+-ATP synthase. We identify two pathways for ATP uptake in mitochondria, the ADP/ATP carriers and Sal1p. Thus, during exponential growth on glucose, mitochondria are ATP consumers, as those from cells growing in anaerobic conditions or deprived of mitochondrial DNA which depend on cytosolic ATP and mitochondrial ATPase working in reverse to generate a mitochondrial membrane potential. In conclusion, the results show that growth on glucose requires ATP hydrolysis in mitochondria and recruits Sal1p as a Ca2+-dependent mechanism to import ATP-Mg from the cytosol. Whether this mechanism is used under similar settings in higher eukaryotes is an open question.  相似文献   

20.
AAC1 and AAC2 genes in yeast each encode functional ADP/ATP carrier (AAC) proteins of the mitochondrial inner membrane. In the present study, mitochondria harboring distinct AAC proteins and the pet9 Arg96 to HIS mutant (Lawson, J., Gawaz, M., Klingenberg, M., and Douglas, M. G. (1990) J. Biol. Chem. 265, 14195-14201) protein have been characterized. In addition, properties of the different AAC proteins have been defined following reconstitution into proteoliposomes. Deletion of AAC2 but not AAC1 causes a major reduction in the mitochondrial cytochrome content and respiration, and this level remains low even when the level of AAC1 protein is increased to 20% that of the AAC2 gene product. In reconstitution studies, the rate of nucleotide transport by isolated AAC1 protein is approximately 40% that of the AAC2 protein. Thus, the lack of mitochondrial-dependent growth supported by the AAC1 gene product alone may be due to the combination of low abundance and reduced activity. Surprisingly, analysis of the Arg96 to His mutant protein revealed binding and transport activities similar to the functional AAC1 and AAC2 gene products. These observations are discussed in relation to a molecular analysis of this highly conserved small transporter and its function in conjunction with other proteins in the mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号