首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used fluorescence microscopy and the technique of rapamycin-regulated protein heterodimerization to examine the dynamics of the subcellular localizations of fluorescent proteins fused to lipid-modified protein sequences and to wild-type and mutated forms of full-length K-ras4B. Singly prenylated or myristoylated fluorescent protein derivatives lacking a "second signal" to direct them to specific subcellular destinations, but incorporating a rapamycin-dependent heterodimerization module, rapidly translocate to mitochondria upon rapamycin addition to bind to a mitochondrial outer membrane protein incorporating a complementary heterodimerization module. Under the same conditions analogous constructs anchored to the plasma membrane by multiply lipid-modified sequences, or by a transmembrane helix, show very slow or no transfer to mitochondria, respectively. Interestingly, however, fluorescent protein constructs incorporating either full-length K-ras4B or its plasma membrane-targeting sequence alone undergo rapamycin-induced transfer from the plasma membrane to mitochondria on a time scale of minutes, demonstrating the rapidly reversible nature of K-ras4B binding to the plasma membrane. The dynamic nature of the plasma membrane targeting of K-ras4B could contribute to K-ras4B function by facilitating redistribution of the protein between subcellular compartments under particular conditions.  相似文献   

2.
The ultrastructural localization of succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) activity in "dark" and "light" neurons of the intact rat's frontal brain cortex has been studied. The enzymes' activity was detected with using potassium ferricyanide as artificial acceptor of electrons. In the "light" cells SDH activity is localized in the mitochondria and plasma membranes. LDH activity is localized in the mitochondria, plasma membranes and hyaloplasm. SDH and LDH activity was not found in the "dark" cells.  相似文献   

3.
The properties of mitochondria from the cells of the "fermentative" variant of End. magnusii were studied. The induced fermentative transformation was brought about by a non-balanced vitamin cultivation. It was shown that the "fermentative" variant of End. magnusii represents an interesting model, in which the energy required for the cell functioning is provided for by a high fermentative activity and a normally functioning respiratory chain. The "fermentative" variant mitochondria were tightly coupled and possessed theoretical efficiency during oxidation of NAD-dependent substrates, which suggested the existence of all the three sites of energy coupling and phosphorylation at the substrate level. A specificity of energy regulation of the End. magnusii "fermentative" variant mitochondria, e. g. tight coupling during oxidation of succinate and lack of tight coupling during oxidation of exogenous NADH, is discussed. The tight coupling during succinate oxidation is confirmed by the observation of reverse electron transfer. Thus, the energy-dependent reduction of NAD during succinate oxidation has been firstly demonstrated for the mitochondria of yeast grown on a fermentable substrate.  相似文献   

4.
The aim of this work was to characterize quantitatively the arrangement of mitochondria in heart and skeletal muscles. We studied confocal images of mitochondria in nonfixed cardiomyocytes and fibers from soleus and white gastrocnemius muscles of adult rats. The arrangement of intermyofibrillar mitochondria was analyzed by estimating the densities of distribution of mitochondrial centers relative to each other (probability density function). In cardiomyocytes (1,820 mitochondrial centers marked), neighboring mitochondria are aligned along a rectangle, with distance between the centers equal to 1.97 ± 0.43 and 1.43 ± 0.43 µm in the longitudinal and transverse directions, respectively. In soleus (1,659 mitochondrial centers marked) and white gastrocnemius (621 pairs of mitochondria marked), mitochondria are mainly organized in pairs at the I-band level. Because of this organization, there are two distances characterizing mitochondrial distribution in the longitudinal direction in these muscles. The distance between mitochondrial centers in the longitudinal direction within the same I band is 0.91 ± 0.11 and 0.61 ± 0.07 µm in soleus and white gastrocnemius, respectively. The distance between mitochondrial centers in different I bands is 3.7 and 3.3 µm in soleus and gastrocnemius, respectively. In the transverse direction, the mitochondria are packed considerably closer to each other in soleus than in white gastrocnemius, with the distance equal to 0.75 ± 0.22 µm in soleus and 1.09 ± 0.41 µm in gastrocnemius. Our results show that intermyofibrillar mitochondria are arranged in a highly ordered crystal-like pattern in a muscle-specific manner with relatively small deviation in the distances between neighboring mitochondria. This is consistent with the concept of the unitary nature of the organization of the muscle energy metabolism. confocal microscopy; quantitative analysis; cardiac and skeletal muscles; probability density function; unitary structure of cells  相似文献   

5.
Higher plant mitochondria have many unique features compared with their animal and fungal counterparts. This is to a large extent related to the close functional interdependence of mitochondria and chloroplasts, in which the two ATP-generating processes of oxidative phosphorylation and photosynthesis, respectively, take place. We show that digitonin treatment of mitochondria contaminated with chloroplasts from spinach (Spinacia oleracea) green leaves at two different buffer conditions, performed to solubilize oxidative phosphorylation supercomplexes, selectively extracts the mitochondrial membrane protein complexes and only low amounts of stroma thylakoid membrane proteins. By analysis of digitonin extracts from partially purified mitochondria of green leaves from spinach using blue and colorless native electrophoresis, we demonstrate for the first time that in green plant tissue a substantial proportion of the respiratory complex IV is assembled with complexes I and III into "respirasome"-like supercomplexes, previously observed in mammalian, fungal, and non-green plant mitochondria only. Thus, fundamental features of the supramolecular organization of the standard respiratory complexes I, III, and IV as a respirasome are conserved in all higher eukaryotes. Because the plant respiratory chain is highly branched possessing additional alternative enzymes, the functional implications of the occurrence of respiratory supercomplexes in plant mitochondria are discussed.  相似文献   

6.
The yeast Pichia guilliermondii is capable of riboflavin overproduction under iron deficiency. The rib80, hit1, and red6 mutants of this species, which exhibit impaired riboflavin regulation, are also distinguished by increased iron concentrations in the cells and mitochondria, morphological changes in the mitochondria, as well as decreased growth rates (except for red6) and respiratory activity. With sufficient iron supply, the rib80 and red6 mutations cause a 1.5–1.8-fold decrease in the activity of such Fe-S cluster proteins as aconitase and flavocytochrome b 2, whereas the hit1 mutation causes a six-fold decrease. Under iron deficiency, the activity of these enzymes was equally low in all of the studied strains.  相似文献   

7.
Summary The distribution of calcium between isolated rat liver mitochondria and the extramitochondrial medium at 37°C and in the presence of 2mm inorganic phosphate, 3mm ATP, 0.05 or 1.1mm free magnesium and a calcium buffer, nitrilotriacetic acid, was investigated using a45Ca exchange technique. The amounts of40Ca in the mitochondria and medium were allowed to reach equilibrium before initiation of the measurement of45Ca exchange. At 0.05mm free magnesium and initial extramitochondrial free calcium concentrations of between 0.15 and 0.5 m, the mitochondria accumulated calcium until the extramitochondrial free calcium concentration was reduced to 0.15 m. Control experiments showed that the mitochondria were stable under the incubation conditions employed. The45Ca exchange data were found to be consistent with a system in which two compartments of exchangeable calcium are associated with the mitochondria. Changes in the concentration of inorganic phosphate did not significantly affect the45Ca exchange curves, whereas an increase in the concentration of free magnesium inhibited exchange. The maximum rate of calcium outflow from the mitochondria was estimated to be 1.7 nmol/min per mg of protein, and the value ofK 0.5 for intramitochondrial exchangeable calcium to be about 1.6 nmol per mg of protein. Ruthenium Red decreased the fractional transfer rate for calcium inflow to the mitochondria while nupercaine affected principally the fractional transfer rates for the transfer of calcium between the two mitochondrial compartments. The use of the incubation conditions and45Ca exchange technique described in this report for studies of the effects of agents which may alter mitochondrial calcium uptake or release (e.g., the pre-treatment of cells with hormones) is briefly discussed.  相似文献   

8.
Acetylpyridine NADP replaced NADP in promoting the Mn2+ ion-requiring mitochondrial "malic" enzyme of Hymenolepis diminuta. Disrupted mitochondria displayed low levels of an apparent oxaloacetate-forming malate dehydrogenase activity when NAD or acetylpyridine NAD served as the coenzyme. Significant malate-dependent reduction of acetylpyridine NAD by H. diminuta mitochondria required Mn2+ ion and NADP, thereby indicating the tandem operation of "malic" enzyme and NADPH:NAD transhydrogenase. Incubation of mitochondrial preparations with oxaloacetate resulted in a non-enzymatic decarboxylation reaction. Coupling of malate oxidation with electron transport via the "malic" enzyme and transhydrogenase was demonstrated by polarographic assessment of mitochondrial reduced pyridine nucleotide oxidase activity.  相似文献   

9.
Human term placental mitochondria were resolved by differential centrifugation into three fractions, heavy mitochondria, light mitochondria and a third, less dense fraction. Approximately equal amounts of mitochondrial protein were found in the three fractions. These mitochondrial preparations differed in physical properties. ATPase and "ADPase" content and oxidative capacities. Assay conditions were developed which permitted the polarographic measurement of respiration and coupled phosphorylation carried out by all three mitocondrial preparations despite the variable nucleotide-phosphate phosphatase activities present. With heavy mitochondria, rates of respiration were consistently higher than those previously reported for unfractionated placental mitochondria. Respiratory control ratios were comparable to those of mitochondria from other steroid hormone-producing endocrine tissues and ADP/O ratios approaching the theoretical maxima were obtained. Both lighter placental mitochondrial fractions displayed somewhat lower respiration rates and respiratory control but their primary defect was a selective uncoupling of the third site of energy conservation. Modification of isolation procedures were evaluated in terms of quantitative yield and functional activity of the three fractions.  相似文献   

10.
Modern α-proteobacteria are thought to be closely related to the ancient symbiont of eukaryotes, an ancestor of mitochondria. Respiratory complex I from α-proteobacteria and mitochondria is well conserved at the level of the 14 "core" subunits, consistent with that notion. Mitochondrial complex I contains the core subunits, present in all species, and up to 31 "supernumerary" subunits, generally thought to have originated only within eukaryotic lineages. However, the full protein composition of an α-proteobacterial complex I has not been established previously. Here, we report the first purification and characterization of complex I from the α-proteobacterium Paracoccus denitrificans. Single particle electron microscopy shows that the complex has a well defined L-shape. Unexpectedly, in addition to the 14 core subunits, the enzyme also contains homologues of three supernumerary mitochondrial subunits as follows: B17.2, AQDQ/18, and 13 kDa (bovine nomenclature). This finding suggests that evolution of complex I via addition of supernumerary or "accessory" subunits started before the original endosymbiotic event that led to the creation of the eukaryotic cell. It also provides further confirmation that α-proteobacteria are the closest extant relatives of mitochondria.  相似文献   

11.
The 3,3'-[omega,omega'-alkanediylbis(oxy)]bis[2- (hydroxyimino)methyl]-1-methylpyridinium derivatives bearing a linking chain of 4, 5 and 6 methylene groups are accumulated in mitochondria with increasing efficiency under the effect of the electrical potential. Accumulation does not take place with derivatives carrying a 2 and 3 methylene-long linking chain. The uptake process is saturable. The efficiency of the various derivatives to induce the "petite" phenotype in yeast reflects the uptake rate observed with purified mitochondria.  相似文献   

12.
The oxygen consumption rate in red blood cell suspensions of two Black Sea fish species, a cartilaginous fish, the common stingray (Dasyatis pastinaca L.) and the teleost black scorpionfish (Scorpaena porcus L.) has been studied. The proposed stimulants of activators and inhibitors of the mitochondria electron transport chain had very predictable responses, indicating that mitochondria in fish erythrocytes have a classical set of respiratory enzymes. Despite the fact that the basic respiratory activity of common stingray erythrocytes was greater than those of the scorpionfish, the responses of common stingray red blood cells to the exposure during investigation of the respiratory activity of the mitochondria have an inverse relationship. The oxygen consumption rates in suspensions of scorpionfish erythrocytes in response to the stimulant were higher according to both the amplitude and the duration of the response. Investigations have shown the high energy potential of the red blood cell mitochondria of the scorpionfish and stingray. This may be the energy basis for maintaining the high intracellular concentrations of ATP required not only to keep an adequate level of intracellular metabolism, but also to provide a special mode of blood flow through the capillary beds.  相似文献   

13.
Skeletal muscle contains two populations of mitochondria that appear to be differentially affected by disease and exercise training. It remains unclear how these mitochondrial subpopulations contribute to fiber type-related and/or training-induced changes in fatty acid oxidation and regulation of carnitine palmitoyltransferase-1 (CPT1), the enzyme that controls mitochondrial fatty acid uptake in skeletal muscle. To this end, we found that fatty acid oxidation rates were 8.9-fold higher in subsarcolemmal mitochondria (SS) and 5.3-fold higher in intermyofibrillar mitochondria (IMF) that were isolated from red gastrocnemius (RG) compared with white gastrocnemius (WG) muscle, respectively. Malonyl-CoA (10 µM), a potent inhibitor of CPT1, completely abolished fatty acid oxidation in SS and IMF mitochondria from WG, whereas oxidation rates in the corresponding fractions from RG were inhibited only 89% and 60%, respectively. Endurance training also elicited mitochondrial adaptations that resulted in enhanced fatty acid oxidation capacity. Ten weeks of treadmill running differentially increased palmitate oxidation rates 100% and 46% in SS and IMF mitochondria, respectively. In SS mitochondria, elevated fatty acid oxidation rates were accompanied by a 48% increase in citrate synthase activity but no change in CPT1 activity. Nonlinear regression analyses of mitochondrial fatty acid oxidation rates in the presence of 0–100 µM malonyl-CoA indicated that IC50 values were neither dependent on mitochondrial subpopulation nor affected by exercise training. However, in IMF mitochondria, training reduced the Hill coefficient (P < 0.05), suggesting altered CPT1 kinetics. These results demonstrate that endurance exercise provokes subpopulation-specific changes in mitochondrial function that are characterized by enhanced fatty acid oxidation and modified CPT1-malonyl-CoA dynamics. endurance exercise training; CPT-1; fiber type; rat; mitochondrial subpopulations  相似文献   

14.
1. The specific activity of lactate dehydrogenase of skeletal muscle mitochondria was found to be 2.5 times lower than specific activity of total NADH-cytochrome c reductase. 2. The specific activity of mitochondrial LDH in skeletal muscle mitochondria was almost equal to the activity of rotenone-insensitive NADH-cytochrome c reductase. 3. Mitochondrial LDH acting as an oxidase of lactate to pyruvate may feed an "external" pathway, but the activity of the mitochondrial enzyme is a limiting factor in oxidation of lactate-derived NADH. 4. Mitochondrial LDH acting as a reductase of pyruvate to lactate successfully competes with an "external" pathway for cytoplasmic NADH. 5. Exogenous NADH oxidation via an "external" pathway was inhibited by pyruvic acid. This inhibition was overcome by addition of oxamic acid or hydrazine.  相似文献   

15.
The repair of ventral hernia defects of the abdominal wall challenges both general and plastic surgeons. Ventral herniation is a postoperative complication in 10 percent of abdominal surgeries; the repair of such defects has a recurrence rate as high as 50 percent. The "components separation" technique has successfully decreased the recurrence rates of ventral abdominal hernias. However, this technique has been associated with midline dehiscence and a prolonged postoperative stay at the authors' institutions. The purpose of this study was to determine whether endoscopically assisted components separation could minimize operative damage to the vasculature of the abdominal wall and decrease postoperative wound dehiscence. The study group consisted of seven patients who underwent endoscopically assisted components separation; the control group consisted of 30 patients who underwent open components separation. The two groups were similar regarding demographic data and defect size. The endoscopic group had a higher initial success rate than the open group (100 versus 77 percent). Recurrence rates were not significantly different between the two groups. However, the endoscopically assisted components separation patients had fewer postoperative and long-term complications. In the authors' experience, endoscopically assisted components separation has proved to be a safe and effective method for the repair of complicated and recurrent midline ventral hernias.  相似文献   

16.
It was observed that borosilicate glass prefilters have a high absorptive capacity for isolated rat-liver mitochondria and that this binding does not need any kind of chemical procedure. This observation has led to the development of a perifusion technique for isolated rat-liver mitochondria. During perifusion the mitochondria are immobilized on a prefilter. Their morphological and functional intactness is conserved. During the course of the perifusion no loss of marker enzymes (adenylate kinase and malate dehydrogenase) can be detected. The respiration rates in the controlled and the active state are similar to those observed in a conventional closed polarographic vessel. The respiratory control is maintained for more than 30 min. With the perifusion technique it is possible to adjust respiration rates to stationary steady states between the controlled and the active state. It was shown that the control of respiration by the extramitochondrial ATP/ADP ratio is independent of the succinate concentration in the range of 1 to 10 mM.  相似文献   

17.
Recently developed technologies have enabled multi-well measurement of O(2) consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1-10 μg of mitochondrial protein per well). Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples.  相似文献   

18.
A fraction of unusual fast sedimenting (10 min at 600-1700g) particles with properties of mitochondria has been detected in wheat seedlings. This fraction conventionally called "heavy" mitochondria amounts (by protein) to about 40% of the total subcellular particle fraction sedimented by 10 min centrifugation at 17,000g. The specific feature of these "heavy" mitochondria in aging tissues is an ability to synthesize and even superproduce heavy (rho = 1.718 g/cm3) mitochondrial DNA (H-mtDNA). The share of "heavy" mitochondria sedimented in the interval between 1000 and 1700g and possessing the maximal H-mtDNA synthesis in aging coleoptiles is about 1.5-fold higher than that in young coleoptiles. Although "heavy" mitochondria are present in young plant organs, they seem to be unable to synthesize H-mtDNA; heavy mtDNA forms only in mitochondria of aging or old cells. Thus, aging in plants is accompanied by a change in population of mitochondria and appearance of the ability for selective H-mtDNA superproduction in a certain mitochondrial fraction. Mitochondria isolated from wheat coleoptiles are practically not stimulated by uncouplers. "Heavy" (600-1700g) and usual (4,300-17,400g) mitochondria are similar in respiration rates, cytochrome compositions, cytochrome c amount (per mg protein) and sensitivities to respiration inhibitors. However, "heavy" mitochondria contain (per mg protein) cytochromes b and aa3 by 10-20% and Ca2+ by 2-3-fold more than normal mitochondria. Ultrastructural analysis showed that the isolated fraction of fast sedimenting mitochondria consists of a suspension of closed membrane vesicles filled with cytoplasm and containing one or a few mitochondria. We observed similar structures in situ in vacuoles of parenchyma cells in the apical part of intact coleoptiles. The process of formation of such structures was detected by serial ultra-thin section analysis. It was shown that tonoplast protrudes into vacuoles, the separate mitochondria translocate into these protrusions, and then these structures separate. As a result, the suspended cytoplasmic bodies containing mitochondria appear in vacuoles. Appearance of these bodies containing mitochondria and, in particular, the superproduction of H-mtDNA in them correlate with processes of aging and cell transition to apoptosis.  相似文献   

19.
Abstract— Oxygen uptake, ADP/O ratios and respiratory control ratios (RCR) were studied by the oxygen electrode technique in mitochondria prepared from adult and neonatal brains from normal and pyridoxine-deficient rats. The mitochondria from neonatal brain exhibited decreased rates of substrate oxidation, ADP/O ratios and respiratory control ratios in comparison to those obtained with mitochondria from the respective adult brains. The cytochrome contents of the neonatal brains were also less than those of the adults. Within the neonatal or adult groups, there were no differences in any of the parameters tested between the normal and pyridoxine-deficient rats.  相似文献   

20.
SYNOPSIS. Light and electron microscope studies of the "cyst" of Besnoitia jellisoni indicate that it consists of an extracellular wall, a large, sometimes multinucleate, host cell, and an intracellular vacuole containing the parasites. The "cyst" wall has fine fibrils and small dense granules embedded in an election-lucid matrix. The wall may be formed from a secretion of the enclosed host cell. The plasma membrane of the host cell is very irregular, being modified into microvillar or pseudopodial extensions. Small vesicles and invaginations of the plasma membrane indicate mioropinocytosis. The one to several large lobular nuclei lie in a thick area of cytoplasm which is filled with rough endoplasmic reticulum and many mitochondria with lamellar cristae. The parasite-containing vacuole is limited by a vacuolar membrane which has many blebs suggesting a transfer of materials into the vacuole.
The "cyst" organisms are crescentic or piriform and are enclosed by a pellicle consisting of outer and inner membranes. Twenty-two subpellicular fibrils extend longitudinally adjacent to the inner membrane from the anterior polar ring to a posterior ring. A micropyle is situated laterally in the pelliole near the level of the nucleus. A conold and several associated paired organelles are present at the anterior end. Microuemes, more abundant in older organisms, are also present in the anterior portion of the parasite. A Golgi apparatus lies adjacent and anterior to the nucleus. One or more mitochondria with saccular cristae, ovoid glycogen bodies, free ribosomes and occasional vacuoles are also present. Organisms within the "cyst" multiply by endodyogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号