首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myostatin is an important negative regulator of skeletal muscle growth, while androgens are strong positive effectors. In order to investigate the possible interaction between myostatin and androgen pathways, we followed myostatin expression in the androgen-dependent levator ani (LA) muscle of the rat as a function of androgen status. By testosterone deprivation (castration), we induced LA growth arrest in young male rats, whilst atrophy in adult ones, however, both processes could be reversed by testosterone supplementation. After castration, a significant up-regulation of active myostatin protein (and its propeptide) was found, whereas the subsequent testosterone treatment reduced myostatin protein levels to normal values in both young and adult rats. Similarly, a testosterone-induced suppression of myostatin mRNA levels was observed in castrated adult but not in young animals. Altogether, androgens seem to have strong negative impact on myostatin expression, which might be a key factor in the weight regulation of LA muscle.  相似文献   

2.
3.
Smoking causes multiple organ dysfunction. The effect of smoking on skeletal muscle protein metabolism is unknown. We hypothesized that the rate of skeletal muscle protein synthesis is depressed in smokers compared with non-smokers. We studied eight smokers (> or =20 cigarettes/day for > or =20 years) and eight non-smokers matched for sex (4 men and 4 women per group), age (65 +/- 3 and 63 +/- 3 yr, respectively; means +/- SEM) and body mass index (25.9 +/- 0.9 and 25.1 +/- 1.2 kg/m(2), respectively). Each subject underwent an intravenous infusion of stable isotope-labeled leucine in conjunction with blood and muscle tissue sampling to measure the mixed muscle protein fractional synthesis rate (FSR) and whole body leucine rate of appearance (Ra) in plasma (an index of whole body proteolysis), the expression of genes involved in the regulation of muscle mass (myostatin, a muscle growth inhibitor, and MAFBx and MuRF-1, which encode E3 ubiquitin ligases in the proteasome proteolytic pathway) and that for the inflammatory cytokine TNF-alpha in muscle, and the concentration of inflammatory markers in plasma (C-reactive protein, TNF-alpha, interleukin-6) which are associated with muscle wasting in other conditions. There were no differences between nonsmokers and smokers in plasma leucine concentration, leucine rate of appearance, and plasma concentrations of inflammatory markers, or TNF-alpha mRNA in muscle, but muscle protein FSR was much less (0.037 +/- 0.005 vs. 0.059 +/- 0.005%/h, respectively, P = 0.004), and myostatin and MAFBx (but not MuRF-1) expression were much greater (by approximately 33 and 45%, respectivley, P < 0.05) in the muscle of smokers than of nonsmokers. We conclude that smoking impairs the muscle protein synthesis process and increases the expression of genes associated with impaired muscle maintenance; smoking therefore likely increases the risk of sarcopenia.  相似文献   

4.
Myostatin is a well-known negative regulator of skeletal muscle growth. Inhibition of myostatin activity results in increased muscle mass. Myostatin propeptide, as a myostatin antagonist, could be applied to promote meat production in livestock such as pigs. In this study, we generated a transgenic mouse model expressing porcine myostatin propeptide under the control of muscle-specific regulatory elements. The mean body weight of transgenic mice from a line expressing the highest level of porcine myostatin propeptide was increased by 5.4 % (P = 0.023) and 3.2 % (P = 0.031) in males and females, respectively, at 8 weeks of age. Weight of carcass, fore limb and hind limb was respectively increased by 6.0 % (P = 0.038), 9.0 % (P = 0.014), 8.7 % (P = 0.036) in transgenic male mice, compared to wild-type male controls at the age of 9 weeks. Similarly, carcass, fore limb and hind limb of transgenic female mice was 11.4 % (P = 0.002), 14.5 % (P = 0.006) and 14.5 % (P = 0.03) respectively heavier than that of wild-type female mice. The mean cross-section area of muscle fiber was increased by 17 % (P = 0.002) in transgenic mice, in comparison with wild-type controls. These results demonstrated that porcine myostatin propeptide is effective in enhancement of muscle growth. The present study provided useful information for future study on generation of transgenic pigs overexpressing porcine myostatin propeptide for improvement of muscle mass.  相似文献   

5.
The mechanisms by which excessive glucocorticoids cause muscular atrophy remain unclear. We previously demonstrated that dexamethasone increases the expression of myostatin, a negative regulator of skeletal muscle mass, in vitro. In the present study, we tested the hypothesis that dexamethasone-induced muscle loss is associated with increased myostatin expression in vivo. Daily administration (60, 600, 1,200 micro g/kg body wt) of dexamethasone for 5 days resulted in rapid, dose-dependent loss of body weight (-4.0, -13.4, -17.2%, respectively, P < 0.05 for each comparison), and muscle atrophy (6.3, 15.0, 16.6% below controls, respectively). These changes were associated with dose-dependent, marked induction of intramuscular myostatin mRNA (66.3, 450, 527.6% increase above controls, P < 0.05 for each comparison) and protein expression (0.0, 260.5, 318.4% increase above controls, P < 0.05). We found that the effect of dexamethasone on body weight and muscle loss and upregulation of intramuscular myostatin expression was time dependent. When dexamethasone treatment (600 micro g. kg-1. day-1) was extended from 5 to 10 days, the rate of body weight loss was markedly reduced to approximately 2% within this extended period. The concentrations of intramuscular myosin heavy chain type II in dexamethasone-treated rats were significantly lower (-43% after 5-day treatment, -14% after 10-day treatment) than their respective corresponding controls. The intramuscular myostatin concentration in rats treated with dexamethasone for 10 days returned to basal level. Concurrent treatment with RU-486 blocked dexamethasone-induced myostatin expression and significantly attenuated body loss and muscle atrophy. We propose that dexamethasone-induced muscle loss is mediated, at least in part, by the upregulation of myostatin expression through a glucocorticoid receptor-mediated pathway.  相似文献   

6.
Myostatin is a negative regulator of skeletal muscle growth. Muscle tissue is the largest tissue in the body and influences body growth. Commercial Avian broiler chickens are selected for high growth rate and muscularity. Daweishan mini chickens are a slow growing small-sized chicken breed. We investigated the relations between muscle (breast and leg) myostatin mRNA expression and body and muscle growth. Twenty chickens per breed were slaughtered at 0, 30, 60, 90, 120, and 150 days of age. Body and muscle weights were higher at all times in Avian chickens. Breast muscle myostatin expression was higher in Avian chickens than in Daweishan mini chickens at day 30. Myostatin expression peaked at day 60 in Daweishan mini chickens and expression remained higher in breast muscle. Daweishan mini chickens myostatin expression correlated positively with carcass weight, breast and leg muscle weight from day 0 to 60, and correlated negatively with body weight from day 90 to 150, while myostatin expression in Avian chickens was negatively correlated with carcass and muscle weight from day 90 to 150. The results suggest that myostatin expression is related to regulation of body growth and muscle development, with two different regulatory mechanisms that switch between days 30 and 60.  相似文献   

7.
The superfamily of transforming growth factor-beta (TGF-beta) cytokines has been shown to have profound effects on cellular proliferation, differentiation, and growth. Recently, there have been major advances in our understanding of the signaling pathway(s) conveying TGF-beta signals to the nucleus to ultimately control gene expression. One tissue that is potently influenced by TGF-beta superfamily signaling is skeletal muscle. Skeletal muscle ontogeny and postnatal physiology have proven to be exquisitely sensitive to the TGF-beta superfamily cytokine milieu in various animal systems from mice to humans. Recently, major strides have been made in understanding the role of TGF-beta and its closely related family member, myostatin, in these processes. In this overview, we will review recent advances in our understanding of the TGF-beta and myostatin signaling pathways and, in particular, focus on the implications of this signaling pathway for skeletal muscle development, physiology, and pathology.  相似文献   

8.
Mutations in the myostatin gene lead to double-muscling in cattle indicating that it is a negative regulator of the total number of muscle fibres. Myostatin expression was analysed by RT-PCR in three developing bovine muscles. It decreased during differentiation in Semitendinosus and Biceps femoris, and increased in the late differentiating Masseter during gestation. A combination of in situ hybridisation and immuno-histochemical detection of myosin heavy chains (MHC) allowed us to locate the expression in myofibres containing only developmental MHC at different stages and in fast IIA fibres at the end of gestation. In vitro, myostatin was undetectable during proliferation, peaked at the onset of fusion and decreased during terminal differentiation. It was not detected in myotubes by in situ hybridisation. The inhibition of differentiation by BrdU prevented the decrease in expression. Our results show that the peak in myostatin expression coincides with early differentiation indicating a regulatory role in cattle myogenesis.  相似文献   

9.
Myostatin is a negative regulator of muscle mass and has been reported to be upregulated in several conditions characterized by muscle atrophy. The influence of sepsis on myostatin expression and activity is poorly understood. Here, we tested the hypothesis that sepsis upregulates the expression and downstream signaling of myostatin in skeletal muscle. Because sepsis‐induced muscle wasting is at least in part regulated by glucocorticoids, we also determined the influence of glucocorticoids on myostatin expression. Sepsis was induced in rats by cecal ligation and puncture and control rats were sham‐operated. In other experiments, rats were injected intraperitoneally with dexamethasone (10 mg/kg) or corresponding volume of vehicle. Surprisingly, myostatin mRNA levels were reduced and myostatin protein levels were unchanged in muscles from septic rats. Muscle levels of activin A, follistatin, and total and phosphorylated Smad2 (p‐Smad2) were not influenced by sepsis, suggesting that myostatin downstream signaling was not altered during sepsis. Interestingly, total and p‐Smad3 levels were increased in septic muscle, possibly reflecting altered signaling through pathways other than myostatin. Similar to sepsis, treatment of rats with dexamethasone reduced myostatin mRNA levels and did not alter myostatin protein levels. Fasting, an additional condition characterized by muscle wasting, reduced myostatin mRNA and activin A protein levels, increased myostatin protein, and did not influence follistatin and p‐Smad2 levels. Of note, total and p‐Smad3 levels were reduced in muscle during fasting. The results suggest that sepsis and glucocorticoids do not upregulate the expression and activity of myostatin in skeletal muscle. The role of myostatin may vary between different conditions characterized by muscle wasting. Downstream signaling through Smad2 and 3 is probably regulated not only by myostatin but by other mechanisms as well. J. Cell. Biochem. 111: 1059–1073, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Perlecan is a component of the basement membrane that surrounds skeletal muscle. The aim of the present study is to identify the role of perlecan in skeletal muscle hypertrophy and myostatin signaling, with and without mechanical stress, using a mouse model (Hspg2?/?-Tg) deficient in skeletal muscle perlecan. We found that myosin heavy chain (MHC) type IIb fibers in the tibialis anterior (TA) muscle of Hspg2?/?-Tg mice had a significantly increased fiber cross-sectional area (CSA) compared to control (WT-Tg) mice. Hspg2?/?-Tg mice also had an increased number of type IIx fibers in the TA muscle. Myostatin and its type I receptor (ALK4) expression was substantially decreased in the Hspg2?/?-Tg TA muscle. Myostatin-induced Smad activation was also reduced in a culture of myotubes from the Hspg2?/?-Tg muscle, suggesting that myostatin expression and its signaling were decreased in the Hspg2?/?-Tg muscle. To examine the effects of mechanical overload or unload on fast and slow muscles in Hspg2?/?-Tg mice, we performed tenotomy of the plantaris (fast) muscle and the soleus (slow) muscle. Mechanical overload on the plantaris muscle of Hspg2?/?-Tg mice significantly increased wet weights compared to those of control mice, and unloaded plantaris muscles of Hspg2?/?-Tg mice caused less decrease in wet weights compared to those of control mice. The decrease in myostatin expression was significantly profound in the overloaded plantaris muscle of Hspg2?/?-Tg mice, compared with that of control mice. In contrast, overloading the soleus muscle caused no changes in either type of muscle. These results suggest that perlecan is critical for maintaining fast muscle mass and fiber composition, and for regulating myostatin signaling.  相似文献   

11.
The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-alpha) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 +/- 4 yr, 74 +/- 14 kg, 1.71 +/- 0.11 m) and RUN (25 +/- 4 yr, 72 +/- 5 kg, 1.81 +/- 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1-4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8-12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-alpha mRNA were elevated 2-12 h. RUN increased (P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1-4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8-12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation (P < 0.05) of IL-6, IL-8, and TNF-alpha, followed by a second elevation (P < 0.05) 2-24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE.  相似文献   

12.
间歇低氧对大鼠骨骼肌IGF-1和myostatin基因表达的影响   总被引:2,自引:0,他引:2  
目的:旨在探讨低氧对骨骼肌胰岛素样生长因子-1(IGF-1)和肌肉生长抑制素(myostatin)表达的影响。方法:SD大鼠分为常氧对照组(C)、低氧暴露组(HO)、复氧1周组(H1)。于氧浓度13.6%的低氧舱内进行间歇性低氧暴露。采用RT-PCR方法测定腓肠肌myostatin mRNA和IGF-1 mRNA的表达。结果:与常氧对照组比,低氧暴露组骨骼肌IGF-1 mRNA表达显著下降,myostatin mRNA表达显著上升;与低氧暴露组比,复氧1周组骨骼肌IGF-1mRNA表达显著上升,myostatin mRNA表达显著下降。结论:低氧暴露后骨骼肌myostatin mRNA和IGF-1mRNA表达发生反向变化,提示二者可能以相反的作用共同参与低氧对肌肉生长的调控。  相似文献   

13.
14.
Functional overload and anabolic steroid administration induce signaling pathways that regulate skeletal muscle RhoA expression. The purpose of this study was to determine RhoA and associated protein expression at the onset of disuse and after a brief period of reloading. Male Sprague-Dawley rats were randomly assigned to cage control (Con), 3 days of hindlimb suspension (Sus), or 3 days of hindlimb suspension with 12 h of reloading (12-h Reload). The reloading stimuli consisted of 12 h of resumed normal locomotion after 3 days of hindlimb suspension. Plantaris muscle-to-body weight (mg/g) ratio decreased 17% from Con with Sus but returned to Con with 12-h Reload, increasing 13% from Sus. Sus decreased RhoA protein concentration 46%, whereas 12-h Reload induced a 24% increase compared with Sus. The ratio of cytosolic- to membrane-associated RhoA protein was not changed with either Sus or 12-h Reload. RhoA mRNA concentration was decreased 48% by Sus, and 12-h Reload induced a 170% increase from Sus. beta(1)-Integrin protein, a transmembrane protein associated with RhoA activation, was not altered by Sus but increased 155% with 12-h Reload. Although beta(1)-integrin mRNA was not altered by Sus, it increased 70% from Con with 12-h Reload. Rho family member Cdc42 protein associated with the muscle membrane was decreased 60% with Sus, and 12-h Reload induced a 172% increase compared with Sus. In conclusion, decreased RhoA protein expression and mRNA abundance are early adaptations to disuse but recover rapidly after normal locomotion is resumed.  相似文献   

15.
16.
17.
Myostatin (MSTN) is a potent negative regulator of skeletal muscle mass. The activity of MSTN is suppressed by MSTN propeptide (MSTNPro), the N-terminal part of unprocessed MSTN that is cleaved off during posttranslational MSTN processing. Easy availability of MSTNPro would help to investigate the potential of the protein as an agent to enhance muscle growth in agricultural animal species. Thus, this study was designed to produce bioactive wild-type porcine MSTN propeptide (pMSTNProW) and its mutated form at the BMP-1/TLD proteolytic cleavage site (pMSTNProM) in Escherichia coli. The pMSTNProW and pMSTNProM genes were separately cloned into pMAL-c5X vector downstream of the maltose-binding protein (MBP) gene and were transformed and expressed in soluble forms in E. coli. For each milliliter of cell culture, about 40 μg of soluble MBP-pMSTNProW and MBP-pMSTNProM proteins were purified by amylose resin affinity chromatography. Further purification by anion exchange chromatography of the affinity-purified fractions yielded about 10 μg/mL culture of MBP-pMSTNProW and MBP-pMSTNProM proteins. Factor Xa protease cleaved the fusion partner MBP from MBP-pMSTNPro proteins, and approximately 4.2 μg of pMSTNProW and pMSTNProM proteins were purified per milliliter of culture. MBP-pMSTNProM was resistant to digestion by BMP-1 metalloproteinase, while MBP-pMSTNProW was cleaved into two fragments by BMP-1. Both MBP-pMSTNProW and MBP-pMSTNProM demonstrated their MSTN binding affinities in a pulldown assay. In an in vitro gene reporter assay, both proteins inhibited MSTN bioactivity without a significant difference in their inhibitory capacities, indicating that the cell culture-based gene reporter assay has limitation in detecting the true in vivo biological potencies of mutant forms of MSTNPro proteins at the BMP-1/TLD cleavage site. Current results show that a high-level production of bioactive porcine MSTNpro is possible in E. coli, and it remains to be investigated whether the administration of the MSTNpro can improve skeletal muscle growth in pigs via suppression of MSTN activity in vivo.  相似文献   

18.
In amphibian and mammalian systems, regulation of Na+ transport via the Na,K-ATPase plays an important role in distinct developmental processes such as blastocoele formation and neurulation. In this study, we have followed the Na,K-ATPase activity, the biosynthesis, and the cellular accumulation of catalytic alpha-subunits after fertilization of Xenopus laevis eggs up to neurula formation. Our data show that Na,K-ATPase activity increases significantly between stages 4 and 6 and again between stages 13 and 24. The four-fold rise in Na,K-ATPase activity during blastocoele formation is not mediated by an increased cellular pool of alpha-subunits. On the other hand, a five-fold increase of the biosynthesis rate around midblastula precedes a progressive accumulation up to neurula stage mainly of alpha 1-subunits and to a lesser extent of a second alpha-immunoreactive species. In contrast, newly synthesized glycoproteinic beta 1-subunits of Na,K-ATPase cannot be detected up to late neurula. These data indicate that (1) upregulation of Na,K-ATPase activity during blastocoele and neurula formation are mediated by different regulation mechanisms and (2) alpha- and possibly beta-isoforms are expressed in a developmentally regulated fashion during early Xenopus development.  相似文献   

19.
By using transient elevations of cytosolic free calcium levels triggered by integrin antibody or laminin (Kwon, M. S., Park, C. S., Choi, K., Park, C.-S., Ahnn, J., Kim, J. I., Eom, S. H., Kaufman, S. J., and Song, W. K. (2000) Mol. Biol. Cell 11, 1433-1443), we have demonstrated that protein phosphatase 2A (PP2A) is implicated in the regulation of reversible phosphorylation of integrin. In E63 skeletal myoblasts, the treatment of PP2A inhibitors such as okadaic acid and endothall induces an increase of phosphorylation of integrin beta1A and thereby inhibits integrin-induced elevation of cytosolic calcium level and formation of focal adhesions. None of these effects were in differentiated myotubes expressing the alternate beta1D isoform. In the presence of okadaic acid, PP2A in association with integrin beta1A was reduced on myoblasts, whereas beta1D on myotubes remained bound with PP2A. Both co-immunoprecipitation and in vitro phosphatase assays revealed that dephosphorylation of residues Thr788-Thr789 in the integrin beta1A cytoplasmic domain is dependent upon PP2A activity. Mutational analysis of the cytoplasmic domain and confocal microscopy experiments indicated that substitution of Thr788-Thr789 with Asn788-Asn789 is of critical importance for regulating the function of integrin beta1. These results suggest that PP2A may be a primary regulator of threonine phosphorylation of integrin beta1A and subsequent activation of downstream signaling molecules. Taken together, we propose that dephosphorylation of residues Thr788-Thr789 in the cytoplasmic domain of integrin beta1A may contribute to the linkage of integrins to focal adhesion sites and induce the association with cytoskeleton proteins. The switch of integrin beta1A to beta1D isoform in myotubes therefore may be a mechanism to escape from phospho-regulation by PP2A and promotes a more stable association of the cytoskeleton with the extracellular matrix.  相似文献   

20.
The inhibitory and excitatory actions of catecholamines are compared in various types of smooth muscle. Inhibition is usually but not invariably associated with membrane hyperpolarization and a decrease in membrane resistance. It also has a metabolic component frequently involving an increase in tissue cAMP. In some cases, the metabolic component is related to a cation pump, but the nature of this pump is unclear. With the exception of intestinal muscle where inhibition results from the synergistic action of alpha and beta receptors, inhibition is caused by activation of beta receptors. Excitation is mediated by alpha activation and is usually accompanied by a decrease in membrane potential and membrane resistance. Only the uterus has a metabolic component. The specific ionic permeability changes accompanying excitation are different in various smooth muscles. Clarification of the mechanisms responsible for these differential actions in various types of smooth muscle is a challenge for future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号