首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calorimetric studies of cytochrome oxidase-phospholipid interactions   总被引:1,自引:0,他引:1  
Thermotropic phase transitions in phospholipid vesicles reconstituted with mitochondrial cytochrome oxidase (EC 1.9.3.1) were studied using differential scanning calorimetry. Both dimyristoylphosphatidylcholine (DMPC) and mixtures of DMPC and cardiolipin were used at different lipid-to-protein ratios. The incorporated protein reduces the energy absorbed during phase transitions of DMPC vesicles, and causes a small decrease in the transition temperature (tm). delta H depends on the amount of protein in the vesicles. This dependence indicates that about 72 DMPC molecules are influenced per cytochrome alpha alpha 3 monomer. The transition parameters remain unaffected by changes in ionic strength or by reduction of the enzyme. Incorporation of cytochrome oxidase depleted of subunit III into DMPC liposomes resulted in a larger decrease of tm, but the amount of perturbed phospholipids remains similar to that in the case of the intact enzyme. Incorporation of cytochrome oxidase into DMPC/cardiolipin vesicles counteracts the effect of cardiolipin in decreasing the enthalpy of the DMPC transition. Thus cytochrome oxidase segregates the phospholipids by attracting cardiolipin from the bulk lipid. Cytochrome c does not significantly affect this apparent cardiolipin 'shell' around membranous cytochrome oxidase.  相似文献   

2.
The thermotropic behavior of the mitochondrial enzyme cytochrome c oxidase (EC 1.9.3.1) reconstituted in dimyristoylphosphatidylcholine (DMPC) vesicles has been studied by using high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. The incorporation of cytochrome c oxidase into the phospholipid bilayer perturbs the thermodynamic parameters associated with the lipid phase transition in a manner analogous to other integral membrane proteins: it reduces the enthalpy change, lowers the transition temperature, and reduces the cooperative behavior of the phospholipid molecules. Analysis of the dependence of the enthalpy change on the protein:lipid molar ratio indicates that cytochrome c oxidase prevents 99 +/- 5 lipid molecules from participating in the main gel-liquid-crystalline transition. These phospholipid molecules presumably remain in the same physical state below and above the transition temperature of the bulk lipid, thus providing a more or less constant microenvironment to the protein molecule. The effect of the phospholipid bilayer matrix on the thermodynamic stability of the cytochrome c oxidase complex was examined by high-sensitivity differential scanning calorimetry. Detergent (Tween 80)-solubilized cytochrome c oxidase undergoes a complex, irreversible thermal denaturation process centered at 56 degrees C and characterized by an enthalpy change of 550 +/- 50 kcal/mol of enzyme complex. Reconstitution of the cytochrome c oxidase complex into DMPC vesicles shifts the transition temperature upward to 63 degrees C, indicating that the phospholipid bilayer moiety stabilizes the native conformation of the enzyme. The lipid bilayer environment contributes approximately 10 kcal/mol to the free energy of stabilization of the enzyme complex. The thermal unfolding of cytochrome c oxidase is not a two-state process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The interaction between cytochrome c oxidase and phospholipids was studied by differential scanning calorimetry. The active, lipid-sufficient cytochrome c oxidase undergoes thermodenaturation at 336 K with a relatively broad and concentration dependent endothermic transition. The delipidated enzyme shows an endothermic denaturation temperature at 331.3 K. When the delipidated cytochrome c oxidase was treated with chymotrypsin, a lowered thermodenaturation temperature was observed. When the delipidated cytochrome c oxidase was reconstituted with asolectin to form a functionally active enzyme complex, the thermodenaturation shifted to a higher temperature, with a sharper transition thermogram. The increase in thermotransition temperature and enthalpy change of thermodenaturation of the asolectin-reconstituted enzyme is directly proportionate to the amount of asolectin used, up to 0.5 mg asolectin per mg protein. The thermotransition temperature and enthalpy changes of thermodenaturation for the phospholipid-reconstituted cytochrome c oxidase are affected by the phospholipid headgroup and the fatty acyl groups. Among phospholipids with the same acyl moiety but different head groups, phosphatidylethanolamine was found to be more effective than phosphatidylcholine in protecting cytochrome c oxidase from thermodenaturation. An exothermic transition thermogram was observed for delipidated cytochrome c oxidase embedded in phospholipid vesicles formed with phospholipids containing unsaturated fatty acyl groups. The increase in exothermic transition temperature and exothermic enthalpy change of thermodenaturation of the oxidase-cytochrome c-cytochrome c oxidase complex destabilized cytochrome c but not cytochrome c oxidase toward thermodenaturation.  相似文献   

4.
Release of cytochrome c from inside lipid vesicles and from inside proteoliposomes formed by cytochrome c oxidase has been studied by spectrophotometric methods. The protein encapsulated inside vesicles did not form complex with sodium azide solution added externally. Both hydrogen peroxide and superoxide were found to cause release of cytochrome c from the lipid encapsulated protein, which was detected from the distinct spectral changes due to the formation of the azide complex of cytochrome c in the solution. Cytochrome c encapsulated inside proteoliposomes containing cytochrome c oxidase (CcO) did not release the cytochrome c during enzymatic turnover of CcO. The anticancer drug, doxorubicin, was found to inhibit the biochemical function of cytochrome c oxidase and release of cytochrome c was observed from the proteoliposome encapsulating the protein during the enzymatic turnover in the presence of doxorubicin. The results indicated that the inhibition of enzymatic activity by doxorubicin possibly leads to the formation of reactive oxygen species, which induce the release of cytochrome c from inside to outside of the membrane.  相似文献   

5.
A spin-labeled fatty acid (16-doxylstearic acid), linked by an ester bond to a maleimide or a nitrene residue, was covalently attached to band 3 of erythrocyte membranes. The electron spin resonance spectrum of the spin-labeled protein was examined at different temperatures in: (a) whole erythrocyte ghosts; (b) ghosts depleted of spectrin and actin; (c) alkaline-treated ghosts; (d) vesicles made with purified band 3 reassociated with dimyristoylphosphatidylcholine. Most spectra are composite with a major component corresponding to a large overall splitting. The determination of the percentage of the immobilized component was carried out by pairwise subtraction. At low temperatures (1–7°C), the highest fraction of immobilized component was found in dimyristoylphosphatidylcholine vesicles (approx. 100%); alkaline-treated membranes had approx. 75% of the immobilized component at the same temperature; whole erythrocyte, spectrin/actin-depleted and spectrin/actin/ankyrin-depleted ghosts gave identical results (approx. 60% of immobilized component). The immobilized fraction decreased in all samples with increasing temperature or addition of a nonsolubilizing concentration of dodecyl octaethylene glycol monoether. In dimyristoylphosphatidylcholine vesicles, however, the modification in the ratio of the two components was obtained only above the lipid transition temperature (23°C). The strong immobilization of the spin-labeled lipid chain at all temperatures suggested trapping of the lipid chain between proteins. At low temperature, in dimyristoylphosphatidylcholine vesicles or in alkaline-treated ghosts, lipid-protein segregation is likely to take place. In whole erythrocyte ghosts, on the other hand, the large contribution of the motionally restricted component at physiological temperature indicates the oligomeric nature of band 3. Partial dissociation of the oligomers occurs as the temperature is increased, but the presence or absence of cytoskeletal proteins has no influence on the state of oligomerization of band 3.  相似文献   

6.
Thermal stability of membrane-reconstituted yeast cytochrome c oxidase   总被引:3,自引:0,他引:3  
P E Morin  D Diggs  E Freire 《Biochemistry》1990,29(3):781-788
The thermal dependence of the structural stability of membrane-reconstituted yeast cytochrome c oxidase has been studied by using different techniques including high-sensitivity differential scanning calorimetry, differential detergent solubility thermal gel analysis, and enzyme activity measurements. For these studies, the enzyme has been reconstituted into dimyristoylphosphatidylcholine (DMPC) and dielaidoylphosphatidylcholine (DEPC) vesicles using detergent dialysis. The phospholipid moiety affects the stability of the enzyme as judged by the dependence of the denaturation temperature on the lipid composition of the bilayer. The enzyme is more stable when reconstituted with the 18-carbon, unsaturated phospholipid (DEPC) than with the 14-carbon saturated phospholipid (DMPC). In addition, the shapes of the calorimetric transition profiles are different in the two lipid systems, indicating that not all of the subunits are affected equally by the lipid moiety. The overall enthalpy change for the enzyme denaturation is essentially the same for the two lipid reconstitutions (405 kcal/mol of protein for the DMPC and 425 kcal/mol for the DEPC-reconstituted enzyme). In both systems, the van't Hoff to calorimetric enthalpy ratios are less than 0.2, indicating that the unfolding of the enzyme cannot be represented as a two-state process. Differential detergent solubility experiments have allowed us to determine individual subunit thermal denaturation profiles. These experiments indicate that the major contributors to the main transition peak observed calorimetrically are subunits I and II and that the transition temperature of subunit III is the most affected by the phospholipid moiety. Experiments performed at different scanning rates indicate that the thermal denaturation of the enzyme is a kinetically controlled process characterized by activation energies on the order of 40 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The characteristics of small unilamellar, large unilamellar and large multilamellar vesicles of dimyristoylphosphatidylcholine and their interaction with alpha-lactalbumin are compared at pH 4. (1) By differential scanning calorimetry and from steady-state fluorescence anisotropy data of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene it is shown that the transition characteristics of the phospholipids in the large unilamellar vesicles resemble more those of the multilamellar vesicles than of the small unilamellar vesicles. (2) The size and composition of the lipid-protein complex formed with alpha-lactalbumin around the transition temperature of the lipid are independent of the vesicle type used. Fluorescence anisotropy data indicate that in this complex the motions of the lipid molecules are strongly restricted in the presence of alpha-lactalbumin. (3) The previous data and a comparison of the enthalpy changes, delta H, of the interaction of the three vesicle types with alpha-lactalbumin allow us to derive that the enthalpy state of the small unilamellar vesicles just below 24 degrees C is about 24 kJ/mol lipid higher than the enthalpy state of both large vesicle types at the same temperature. The abrupt transition from endothermic to exothermic delta H values around 24 degrees C for large vesicles approximates the transition enthalpy of the pure phospholipid.  相似文献   

8.
N J Ryba  D Marsh    R Uhl 《Biophysical journal》1993,64(6):1801-1812
The effects of light on rhodopsin reconstituted into dimyristoylphosphatidylcholine at a molar ratio of 1:70 have been studied as a function of temperature and time. The lipid phase behavior and thermal stability of rhodopsin in the system used to measure the photolytic reactions were also determined. Thus, it was shown that the gel-to-fluid phase transition of the reconstituted membrane had a marked influence on the bleaching kinetics and thermodynamics of rhodopsin-bleaching equilibria, whereas lipid-protein interactions were also directly involved. Rhodopsin photolysis resulted in temperature-sensitive equilibria between three main photoproducts, with absorption maximal of approximately 480, 380, and 465 nm. Below the lipid phase transition temperature, the main photoproduct had an absorption maximum at 480 nm. With increasing temperature progressively more of the 380 nm-absorbing species was formed. The photoproduct with a spectral-maximum at 465 nm absorption was formed more slowly. Increasing temperatures decreased the ratio of the 465:380 nm-absorbing species. The thermal reactions were reversible: on cooling the higher-temperature products were converted back to the lower-temperature products. The results indicate that rhodopsin has extensive photochemical activity when reconstituted in dimyristoylphosphatidylcholine. The equilibria that we have measured resemble those of rhodopsin in the disk membrane. However, the kinetics of meta-II and meta-III formation appear to be considerably faster in the reconstituted membranes and the meta-I-to-meta-II equilibrium is displaced in the direction of the meta-I state relative to native rod outer segment disk membranes. The displacement of the meta-rhodopsin equilibrium from its position in the rod outer segment is attributed mainly to the effects of lipid-lipid interactions in the membrane bilayer and correlates with the difference in gel-to-fluid phase transition temperature of the different lipids.  相似文献   

9.
The endogeneous lipid of bovine heart cytochrome c oxidase has been replaced by dimyristoylphosphatidylcholine using cholate-mediated exchange. The lipid-substituted preparation contained less than 1 mole cardiolipin per mole enzyme and possessed full oxidative activity. The association of spin-labelled cardiolipin with such lipid-substituted cytochrome oxidase preparations has been assayed using ESR spectroscopy. An average relative association constant 5.4-times that for phosphatidylcholine is obtained for cardiolipin. Measurements on preparations with increasing contents of unlabelled cardiolipin, introduced during lipid exchange, reveal that this selectivity corresponds to a generalized increase in specificity for all lipid association sites on the protein.  相似文献   

10.
A W Scotto  D Zakim 《Biochemistry》1986,25(7):1555-1561
The presence of cholesterol in small unilamellar vesicles (ULV) of dimyristoylphosphatidylcholine (DMPC) catalyzes fusion of the vesicles at temperatures below the upper limit for the gel to liquid-crystalline phase transition of the DMPC. The extent to which ULV grow depends on the concentration of cholesterol in the vesicles and on temperature. Maximum growth occurs at 21 degrees C. It decreases as the temperature is lowered below 21 degrees C. Growth does not occur at temperatures above the phase transition. In addition, the presence of cholesterol in ULV of DMPC catalyzes the insertion of integral membrane proteins into the vesicles. Thus, bacteriorhodopsin from Halobacterium halobrium, UDPglucuronosyltransferase (EC 2.4.1.17) from pig liver microsomes, and cytochrome oxidase from beef heart mitochondria formed stable lipid-protein complexes spontaneously when added to ULV containing cholesterol at temperatures under which these vesicles would fuse. Incorporation of these proteins into the ULV of DMPC did not occur in the absence of cholesterol or in the presence of cholesterol when the temperature of the system was above that for the phase transition. It appears that cholesterol lowers the energy barrier for fusion of ULV of DMPC and for insertion of integral membrane proteins into these bilayers. Studies with bacteriorhodopsin suggest that the energy barrier for insertion of proteins into ULV containing cholesterol is smaller than the energy barrier for fusion of the ULV with each other.  相似文献   

11.
We present a molecular dynamics study of cytochrome c oxidase from Paracoccus denitrificans in the fully oxidized state, embedded in a fully hydrated dimyristoylphosphatidylcholine lipid bilayer membrane. Parallel simulations with different levels of protein hydration, 1.125 ns each in length, were carried out under conditions of constant temperature and pressure using three-dimensional periodic boundary conditions and full electrostatics to investigate the distribution and dynamics of water molecules and their corresponding hydrogen-bonded networks inside cytochrome c oxidase. The majority of the water molecules had residence times shorter than 100 ps, but a few water molecules are fixed inside the protein for up to 1.125 ns. The hydrogen-bonded network in cytochrome c oxidase is not uniformly distributed, and the degree of water arrangement is variable. The average number of solvent sites in the proton-conducting K- and D-pathways was determined. In contrast to single water files in narrow geometries we observe significant diffusion of individual water molecules along these pathways. The highly fluctuating hydrogen-bonded networks, combined with the significant diffusion of individual water molecules, provide a basis for the transfer of protons in cytochrome c oxidase, therefore leading to a better understanding of the mechanism of proton pumping.  相似文献   

12.
The characteristics of small unilamellar, large unilamellar and large multilamellar vesicles of dimyristoylphosphatidylcholine and their interaction with α-lactalbumin are compared at pH 4. (1) By differential scanning calorimetry and from steady-state fluorescence anisotropy data of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene it is shown that the transition characteristics of the phospholipids in the large unilamellar vesicles resemble more those of the multilamellar vesicles than of the small unilamellar vesicles. (2) The size and composition of the lipid-protein complex formed with α-lactalbumin around the transition temperature of the lipid are independent of the vesicle type used. Fluorescence anisotropy data indicate that in this complex the motions of the lipid molecules are strongly restricted in the presence of α-lactalbumin. (3) The previous data and a comparison of the enthalpy changes, ΔH, of the interaction of the three vesicle types with α-lactalbumin allow us to derive that the enthalpy state of the small unilamellar vesicles just below 24°C is about 24 kJ/mol lipid higher than the enthalpy state of both large vesicle types at the same temperature. The abrupt transition from endothermic to exothermic ΔH values around 24°C for large vesicles approximates the transition enthalpy of the pure phospholipid  相似文献   

13.
Intrinsic and lipid phase transition-induced conformational changes in cytochrome oxidase in phosphatidylcholine vesicle and solubilized systems were examined by the fluorescence lifetime of N-(1-anilinonaphthyl-4)-maleimide conjugated with the enzyme. The time-dependent fluorescence intensity of N-(1-anilinonaphthyl-4)-maleimide attached to cytochrome oxidase was described as a triple exponential decay. Both the intrinsic and lipid phase transition-induced conformational changes were detectable in plots of the average lifetime against temperature. In most cases a peak occurred at the temperature of the conformational change. The time-dependent emission anisotropy showed that N-(1-anilinonaphthyl-4)-maleimide embedded in cytochrome oxidase in phosphatidylcholine vesicles underwent a rapid restricted wobbling within a cone. The half-angle of the cone was around 30 degrees for cytochrome oxidase in dimyristoyl phosphatidylcholine vesicles.  相似文献   

14.
A method for the rapid incorporation of cytochrome c oxidase into membranes has been developed. This method essentially consists of obtaining a preparation of the enzyme in which it is isolated and then dissolving it in a medium containing 0.5% of the detergent Tween 20, which gives a final concentration of 0.0125% after reconstitution. These studies revealed an optimal ratio of 1 microgram of enzyme to 5 mg of phospholipids. A similar optimal ratio was found when the amount of protein was varied. The optimum temperature was found to be 30 degrees C. Without a peak value being reached, it was found that the best reconstitution was obtained at pH 7.0-8.0. When measurements were performed either with a fluorescent cyanine (DiSC3) or by the uptake of tetraphenylphosphonium, it was found that the enzyme, with cytochrome c added to the outside, was capable of generating a membrane potential that was negative inside. Using the same procedure, the enzyme could also be reconstituted into vesicles of yeast plasma membrane. The procedure, then, seems adequate for incorporating cytochrome c oxidase into different kinds of membrane vesicles.  相似文献   

15.
The effects of pH and temperature on the stability of interdomain interactions of colicin B have been studied by differential-scanning calorimetry, circular dichroism, and fluorescence spectroscopy. The calorimetric properties were compared with those of the isolated pore-forming fragment. The unfolding profile of the full-length toxin is consistent with two endothermic transitions. Whereas peak A (T(m) = 55 degrees C) most likely corresponds to the receptor/translocation domain, peak B (T(m) = 59 degrees C) is associated with the pore-forming domain. By lowering the pH from 7 to 3.5, the transition temperature of peaks A and B are reduced by 25 and 18 degrees C, respectively, due to proton exchange upon denaturation. The isolated pore-forming fragment unfolds at much higher temperatures (T(m) = 65 degrees C) and is stable throughout a wide pH range, indicating that intramolecular interactions between the different colicin B domains result in a less stable protein conformation. In aqueous solution circular dichroism spectra have been used to estimate the content of helical secondary structure of colicin B ( approximately 40%) or its pore-forming fragment ( approximately 80%). Upon heating, the ellipticities at 222 nm strongly decrease at the transition temperature. In the presence of lipid vesicles the differential-scanning calorimetry profiles of the pore-forming fragment exhibit a low heat of transition multicomponent structure. The heat of transition of membrane-associated colicin B (T(m) = 54 degrees C at pH 3.5) is reduced and its secondary structure is conserved even at intermediate temperatures indicating incomplete unfolding due to strong protein-lipid interactions.  相似文献   

16.
A low molecular weight hydrophobic protein was isolated from porcine lung lavage fluid using silicic acid and Sephadex LH-20 chromatography. The protein migrated with an apparent molecular weight of 5000-6000 on SDS-PAGE under reducing and nonreducing conditions. Gels run under reducing conditions also showed a minor band migrating with a molecular weight of 12,000. Amino acid compositional analysis and sequencing data suggest that this protein preparation contains intact surfactant protein SP-C and about 30% of truncated SP-C (N-terminal leucine absent). The surfactant protein was combined with perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) in multilamellar vesicles. The protein enhanced the rate of adsorption of the lipid at air-water interfaces. The ability of the protein to alter normal lipid organization was examined by using high-sensitivity differential scanning calorimetry (DSC) and 2H nuclear magnetic resonance spectroscopy (2H NMR). The calorimetric measurements indicated that the protein caused a decrease in the temperature maximum (Tm) and a broadening of the phase transition. At a protein concentration of 8% (w/w), the enthalpy change of transition was reduced to 4.4 kcal/mol compared to 6.3 kcal/mol determined for the pure lipid. NMR spectral moment studies indicated that protein had no effect on lipid chain order in the liquid-crystal phase but reduced orientational order in the gel phase. Two-phase coexistence in the presence of protein was observed over a small temperature range below the pure lipid transition temperature. Spin-lattice relaxation times (T1) were not substantially affected by the protein. Transverse relaxation time (T2e) studies suggest that the protein influences slow lipid motions.  相似文献   

17.
The dynamics of lipid hydrocarbon chains in phosphatidylcholine (dimyristoyl- or dipalmitoyl-) and cholesterol/dimyristoylphosphatidylcholine membranes were investigated by nanosecond time-resolved fluorescence depolarization measurements on a lipophilic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene embedded in the membranes. In the pure lipid membranes, both the range (amplitude) and the rate of the wobbling motion of the probe increased sigmoidally with temperature reflecting the thermotropic phase transition of the lipid. The rise in the rate slightly preceded the increase in the range, suggesting that the fluctuation of lipid chains is activated to a high level before the ordered array of chains melt into the liquid-crystalline phase. Above the transition temperature, incorporation of cholesterol resulted in a dramatic decrease in the range of wobbling motion while the rate remained high. Below the transition, on the other hand, cholesterol had little effect on the range, whereas the rate was greatly increased. These effects of cholesterol are remarkably similar to the effects of cytochrome oxidase on lipid chain dynamics (Kinosita, K., Jr., Kawato, S., Ikegami, A., Yoshida, S. and Orii, Y. (1981) Biochim. Biophys. Acta 647, 7–17).  相似文献   

18.
Insertion of apocytochrome c into lipid vesicles   总被引:6,自引:0,他引:6  
Apocytochrome c (cytochrome c without the heme) is synthesized in the cell cytoplasm without a cleaved signal sequence, then transported across the outer mitochondrial membrane. We have studied the interaction of apocytochrome c with lipid vesicles as a model for understanding protein translocation across membranes. Apocytochrome c (but not holocytochrome c) that has been incubated with vesicles at 37 degrees C in 0.2 M NaCl binds to the vesicles. Under these conditions, as well as upon incubation with detergent or at high protein concentrations, all the added protein remains partly accessible to externally added protease, but a COOH-terminal fragment of some of the protein molecules becomes protected against digestion. When apocytochrome c is added to azolectin vesicles with internally trapped proteases, most of the added protein can be digested, even in the presence of a large excess of protease inhibitor external to the vesicles. Thus, in spite of a lack of nonpolar stretches in its amino acid sequence, apocytochrome c is capable of binding to and inserting into lipid membranes. In this model system, transport may be driven by trapping of protease-digested apocytochrome c on one side of the membrane.  相似文献   

19.
Ubiquinol oxidase can be reconstituted from ubiquinol-cytochrome c reductase (Complex III) and cytochrome c oxidase (Complex IV) whose endogenous phosphatidylcholine and phosphatidylethanolamine have been replaced by dimyristoylglycerophosphocholine. Phase transition of the lipid has no effect on Complex III and Complex IV activities assayed separately, but ubiquinol oxidase activity rapidly decreases as the temperature is lowered through the phase transition. A spin-labelled yeast cytochrome c derivative has been synthesized. Binding of the cytochrome c to liposomes demonstrates that only cardiolipin is involved under the conditions used for the ubiquinol oxidase experiments. In liposomes consisting of cardiolipin and dimyristoylglycerophosphocholine, e.s.r. (electron-spin-resonance) measurements show that rotational diffusion of cytochrome c is slowed in the gel phase of the latter lipid. We propose that the cytochrome c pool is bound to cardiolipin molecules, whose lateral and rotational diffusion in the bilayer is adequate to account for electron-transport rates.  相似文献   

20.
The activity of cytochrome oxidase reconstituted into phospholipid vesicles has been studied as a function of orthophosphate, ATP and inositol hexakisphosphate concentrations. The respiratory-control ratio was found to be quite sensitive to these compounds and was inversely related to the anion concentration. This effect is related to a phosphate-dependent decrease in the rate constant for ferrocytochrome c oxidation observed in the presence of ionophores. The data cannot be interpreted simply on the basis of ionic strength, which is known to limit cytochrome c binding to cytochrome oxidase, since cytochrome oxidase-containing vesicles responded differently to phosphate depending on the energization state of the phospholipid membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号