首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Disulphide bridges of bovine factor X.   总被引:6,自引:0,他引:6       下载免费PDF全文
Evidence is presented for the disulphide bridges in bovine Factor X. The protein was degraded by chemical and enzymic means, and all 12 disulphide bridges were isolated in separate peptides except for bridges nos. 6/7 in the light chain. All the disulphide bridges were found to be in positions corresponding to those found in other homologous domains. This report is the first verification of an epidermal-growth-factor-homologous domain having the same disulphide-bonding pattern as that found in mouse epidermal growth factor.  相似文献   

3.
4.
5.
Zymogen factor IX potentiates factor IXa-catalyzed factor X activation   总被引:3,自引:0,他引:3  
London FS  Walsh PN 《Biochemistry》2000,39(32):9850-9858
Intrinsic factor X activation is accelerated >10(7)-fold by assembly of the entire complex on the activated platelet surface. We have now observed that increasing the concentration of zymogen factor IX to physiologic levels ( approximately 100 nM) potentiates factor IXa-catalyzed activation of factor X on both activated platelets and on negatively charged phospholipid vesicles. In the presence and absence of factor VIIIa, factor IX (100 nM) lowered the K(d,appFIXa) approximately 4-fold on platelets and 2-10-fold on lipid vesicles. Treatment of two factor IX preparations with active-site inhibitors did not affect these observations. Autoradiographs of PAGE-separated reactions containing either (125)I-labeled factor IX or (125)I-labeled factor X showed that the increased factor X activation was not due to factor Xa-mediated feedback activation of factor IX and that there was increased cleavage of factor X heavy chain in the presence of factor IX in comparison with control reactions but only in the presence of both the enzyme and the surface. Since plasma concentrations of prothrombin, factor VII, protein C, or protein S did not by themselves potentiate factor Xa generation and did not interfere with the potentiation of the reaction of factor IX, the effect is specific for factor IX and is not attributable to the Gla domain of all vitamin K-dependent proteins. These observations indicate that under physiologic conditions, plasma levels of the zymogen factor IX specifically increase the affinity of factor IXa for the intrinsic factor X activation complex.  相似文献   

6.
R Gentry  L Ye    Y Nemerson 《Biophysical journal》1995,69(2):362-371
Blood coagulation proceeds via reactions in which zymogen coagulation factors are activated to proteases. An essential step is the activation of factor X by a complex of tissue factor and factor VIIa. This complex usually is studied using phospholipid vesicles into which tissue factor is inserted. Because factor X exists free in solution and bound to the lipid-surface, it is difficult to establish experimentally the kinetic contribution of surfaces. We therefore developed a stochastic model to simulate such reactions and generate initial velocity data from which Michaelis-Menten parameters are estimated. Simulated Km values decrease slightly when substrate binding to lipid is increased and by a factor of four when the rates of surface diffusion are increased to that of fluid phase-diffusion. Simulations with various size planar surfaces established an enzyme capture radius of 32-64 nm. Simulations with different modes of enzyme-substrate complex assembly show that if the true substrate is lipid-bound, under certain conditions, the true Kcat is not measured; rather, the product "leaving rate" from the complex is the rate-limiting step that is measured as substrate is taken to infinity. This model is applicable to any surface-bound enzyme reaction.  相似文献   

7.
Pathways in the activation of human coagulation factor X.   总被引:4,自引:3,他引:1       下载免费PDF全文
Purified human Factor X (apparent mol.wt. 72000), which consists of two polypeptide chains (mol.wt. 55000 and 19000), was activated by both Russell's-viper venom and the purified physiological activators (Factor VII/tissue factor and Factor IXa/Factor VIII). They all convert Factor X to catalytically active Factor Xa (mol.wt. 54000) by cleaving the heavy chain at a site on the N-terminal region. In the presence of Ca2+ and phospholipid, the Factor Xa formed catalyses (a) the cleavage of a small peptide (mol.wt. 4000) from the C-terminal region of the heavy chain of Factor Xa, resulting in a second active form (mol.wt. 50000), and (b) the cleavage of a peptide containing the active-site serine residue (mol.wt. 13000) from the C-terminal region of the heavy chain of Factor X, resulting in an inactivatable component (mol.wt. 59000). A nomenclature for the various products is proposed.  相似文献   

8.
The X factor: skewing X inactivation towards cancer   总被引:1,自引:0,他引:1  
Medema RH  Burgering BM 《Cell》2007,129(7):1253-1254
  相似文献   

9.
10.
11.
Factor Xa is the enzymatically active constituent of the prothrombinase complex, which catalyzes the conversion of prothrombin to thrombin. We have isolated fragments, from tryptic digests of factor X, that consists of the gamma-carboxyglutamic acid (Gla) region linked to one or two epidermal growth factor (EGF)-like domains. Calcium ion binding measurements indicated that these fragments have a native conformation. The factor X-GlaEGF fragments inhibit factor Xa-induced blood clotting in a manner suggesting that they compete with factor Xa for phospholipid binding sites. The same conclusion was reached when thrombin generation was studied in a system of purified components (factor Xa, factor Va, prothrombin, phospholipid, and Ca2+). There was no evidence for a strong interaction between the EGF-like domains of factor Xa and factor Va in either system. However, experiments in the purified system without phospholipid indicated a direct, albeit weak, interaction between the Gla region of factor Xa and factor Va and between the COOH-terminal EGF-like domain of factor Xa and factor Va. Using domain-specific Fab fragments, we have confirmed that the conformation of the serine protease region alters dramatically upon activation of factor X. Furthermore, we have demonstrated that the conformation of the Gla region is affected by the activation, whereas the EGF-like domains appear to be unaltered. The association constant for factor X binding to endothelial cells was two orders of magnitude lower than that for binding of factor IX to these cells. Binding of the Gla and GlaEGF fragments suggested Gla-mediated binding to phospholipid rather than binding to a specific receptor.  相似文献   

12.
1. By a procedure involving adsorption to barium sulfate, chromatography on DEAE-Sephadex and QAE-Sephadex and preparative polyacrylamide gel electrophoresis, decarboxyfactor X was purified from plasma of phenprocoumon-treated cows. No contaminants could be detected in the final preparation by polyacrylamide gel electrophoresis and zone-electrophoresis. 2. The molecular weight of decarboxyfactor X, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis is approximately 55 000, which is equal to that of factor X. The protein consists of two polypeptide chains with molecular weights of 44 000 and 17 000. 3. Decarboxyfactor X has antigenic determinants in common with normal factor X. 4. The amino acid composition and aminoterminal amino acids of normal factor X and decarboxyfactor X are identical. 5. Less than one residue of gamma-carboxyglutamate could be detected per mole of decarboxyfactor X. 6. In the absence of Ca2+, normal factor X has a slightly higher electrophoretic mobility than decarboxyfactor X. In the presence of Ca2+ the mobility of factor X decreases considerably while the mobility of decarboxyfactor X remains unaltered.  相似文献   

13.
Factor IX is a vitamin K-dependent zymogen of a serine protease. The NH2-terminal half of the molecule consists of a Ca(2+)-binding gamma-carboxyglutamic acid (Gla)-containing module and two modules homologous to the epidermal growth factor (EGF) precursor. To elucidate the role of these non-catalytic modules of factor IXa beta in factor X activation, we have isolated and characterized fragments of bovine factor IX, containing one or both of the EGF-like modules as well as these modules linked to the Gla module. The fragments were used as inhibitors of factor IXa beta-mediated factor X activation in a plasma clotting system and in systems with purified components of the Xase complex. Fragments consisting of either the two EGF-like modules of factor IX linked together or the NH2-terminal EGF-like module alone were found to inhibit factor Xa generation both in the presence and absence of the cofactor, factor VIIIa. Moreover, a fragment consisting of the corresponding modules of factor X had a similar effect. We therefore propose that factor IXa beta and factor X interact directly through their EGF-like modules on or in the vicinity of a phospholipid surface. We have also found that the isolated Gla module of factor IX inhibits the formation of factor Xa both in the presence and absence of phospholipid but not in the absence of factor VIIIa. Our results are compatible with a model of the Xase complex, in which both the serine protease part and the Gla module of factor IXa beta interact with factor VIIIa.  相似文献   

14.
15.
The cell surface receptor tissue factor (TF) initiates coagulation by supporting the proteolytic activation of factors X and IX as well as VII to active serine proteases. Architectural similarity of TF to the cytokine receptor family suggests a strand-loop-strand structure for TF residues 151-174. Site-directed Ala exchanges in the predicted surface loop demonstrated that residues Tyr157, Lys159, Ser163, Gly164, Lys165, and Lys166 are important for function. Addition of side chain atoms at the Ser162 position decreased function, whereas the Ala exchange was tolerated. The dysfunctional mutants bound VII with high affinity and fully supported the catalysis of small peptidyl substrates by the mutant TF.VIIa complex. Lys159-->Ala substitution was compatible with efficient activation of factor X, whereas the Try157-->Ala exchange and mutations in the carboxyl aspect of the predicted loop resulted in diminished activation of factor X. The specific plasma procoagulant activity of all functionally deficient mutants increased 7- to 200-fold upon the supplementation of VIIa suggesting that TF residues 157-167 also provide important interactions that accelerate the activation of VII to VIIa. These data are consistent with assignment of the TF 157-167 region as contributing to protein substrate recognition and cleavage by the TF.VIIa complex.  相似文献   

16.
The physiological inhibitor of tissue factor (TF).factor VIIa (FVIIa), full-length tissue factor pathway inhibitor (TFPI(FL)) in complex with factor Xa (FXa), has a high affinity for anionic phospholipid membranes. The role of anionic phospholipids in the inhibition of TF.FVIIa-catalyzed FX activation was investigated. FXa generation at a rotating disc coated with TF embedded in a membrane composed of pure phosphatidylcholine (TF.PC) or 25% phosphatidylserine and 75% phosphatidylcholine (TF.PSPC) was measured in the presence of preformed complexes of FXa.TFPI(FL) or FXa.TFPI(1-161) (TFPI lacking the third Kunitz domain and C terminus). At TF.PC, FXa.TFPI(FL) and FXa.TFPI(1-161) showed similar rate constants of inhibition (0.07 x 10(8) M(-1) s(-1) and 0.1 x 10(8) M(-1) s(-1), respectively). With phosphatidylserine present, the rate constant of inhibition for FXa.TFPI(FL) increased 3-fold compared with a 9-fold increase in the rate constant for FXa. TFPI(1-161). Incubation of TF.PSPC with FXa.TFPI(FL) in the absence of FVIIa followed by depletion of solution FXa.TFPI(FL) showed that FXa.TFPI(FL) remained bound at the membrane and pursued its inhibitory activity. This was not observed with FXa.TFPI(1-161) or at TF.PC membranes. These data suggest that the membrane-bound pool of FXa.TFPI(FL) may be of physiological importance in an on-site regulation of TF.FVIIa activity.  相似文献   

17.
Kinetics of coagulation factor X activation by platelet-bound factor IXa   总被引:5,自引:0,他引:5  
Thrombin-activated human platelets, in the presence of factors VIIIa and X, have specific, high-affinity (Kd approximately 0.5 nM), saturable binding sites for factor IXa that are involved in factor X activation [Ahmad, S.S., Rawala-Sheikh, R., & Walsh, P.N. (1989) J. Biol. Chem. 264, 3244-3251]. To determine the functional consequences of factor IXa binding to platelets, a detailed kinetic analysis of the effects of platelets, phospholipids, and factor VIII on factor IXa catalyzed factor X activation was done. In the absence of platelets, phospholipids, or factor VIII, the Michaelis constant (Km = 81 microM) was greater than 500-fold higher than the factor X concentration in human plasma. Unactivated platelets and thrombin-activated factor VIII, alone or in combination, had no effect on the kinetic parameters, whereas thrombin-activated platelets caused a major decrease in Km (0.39 microM) with no significant effect on kcat (0.052 min-1) and allowed factor VIIIa to decrease the Km further to a concentration (0.16 microM) near that of factor X in plasma and to increase the kcat 24,000-fold to 1240 min-1. Sonicated mixed phosphatidylserine/phosphatidylcholine vesicles (25/75, mol/mol) had kinetic effects similar to those of activated platelets. When factor IXa binding to thrombin-activated platelets and rates of factor X activation were measured simultaneously at saturating concentrations of factor X and factor VIIIa, the kcat was independent of factor IXa concentration, and the mean kcat value was 2391 min-1. The increase in catalytic efficiency (kcat/Km) in the presence of thrombin-activated platelets and factor VIIIa was (17.4 x 10(6))-fold.  相似文献   

18.
Platelet receptor occupancy with factor IXa promotes factor X activation   总被引:3,自引:0,他引:3  
To investigate the activated platelet surface as a locus for factor X activation, the functional consequences of factor IXa binding to platelets were studied. The concentration of factor IXa required for half-maximal rates of factor X activation in the presence of factor VIIIa and thrombin-activated platelets was 0.53 nM, which is close to the Kd (0.56 nM) for factor IXa binding to platelets under identical conditions, determined from equilibrium binding studies. In direct comparative experiments, there was a close correspondence between equilibrium binding of factor IXa to thrombin-activated platelets in the presence of factor VIIIa and kinetic determinations of factor X activation rates. Analysis by polyacrylamide gel electrophoresis revealed that 125I-labeled factor IXa bound to platelets was structurally intact and did not form covalent complexes with platelet proteins. Factor IXa active site-inhibited by 5-dimethylaminonaphthalene-1-sulfonyl glutamyl-glycylarginyl chloromethyl ketone was shown to be a competitive inhibitor of factor IXa binding in the absence (Ki = 2.3 nM) and presence (Ki = 0.43 nM) of factor VIIIa and factor X and of factor X activation (Ki = 0.4 nM) by factor IXa in the presence of factor VIIIa, indicating that the generation of factor Xa is not required for factor IXa binding and that factor IXa bound to activated platelets in the presence of factor VIIIa is closely coupled with rates of factor X activation. We conclude that factor IXa bound tightly to a platelet receptor in the presence of factor VIIIa is the enzyme active in factor X activation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号