首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial genomes encode fundamental subunits of the basic energy producing machinery of eukaryotic cells that are under strong functional constraint. Paradoxically, these genes evolve rapidly in general, and there is substantial variation in evolutionary rates among genes within genomes. In order to investigate spatial variation in selection intensity, we conducted tests of neutrality using ratios of synonymous to nonsynonymous substitutions (dN/dS = omega) on numerous protein gene segments from fishes and mammals. Values of omega were very low for nearly all genomic regions. However, values of both omega and dN varied in a clinal pattern with increasing distance from the light-strand origin of replication. Spatial heterogeneity of nonsynonymous substitution rates exhibits a significantly positive correlation with variation in mutation rates that are related to the mode of mitochondrial DNA replication. The finding that nonsynonymous substitution rates are proportional to mutation rates is expected if a majority of substitutions are selectively neutral or slightly deleterious. Spatial patterns of among-gene variation in nonsynonymous rates were highly similar between fishes and mammals, suggesting that forces governing mitochondrial gene evolution have remained relatively constant over 450 Myr of vertebrate evolution. Conservation of substitution patterns despite major shifts in thermal habit and metabolic demands among taxa implicates a conserved replication mechanism controlling relative mutation rates as a major determinant of mitochondrial protein evolution.  相似文献   

2.
Houliston GJ  Olson MS 《Genetics》2006,174(4):1983-1994
Knowledge of mitochondrial gene evolution in angiosperms has taken a dramatic shift within the past decade, from universal slow rates of nucleotide change to a growing realization of high variation in rates among lineages. Additionally, evidence of paternal inheritance of plant mitochondria and recombination among mitochondrial genomes within heteroplasmic individuals has led to speculation about the potential for independent evolution of organellar genes. We report intraspecific mitochondrial and chloroplast sequence variation in a cosmopolitan sample of 42 Silene vulgaris individuals. There was remarkably high variation in two mitochondrial genes (atp1, atp9) and additional variation within a third gene (cob). Tests for patterns of nonneutral evolution were significant for atp1 and atp9, indicative of the maintenance of balanced polymorphisms. Two chloroplast genes (matK, ndhF) possessed less, but still high, variation and no divergence from neutral expectations. Phylogenetic patterns of organelle genes in both the chloroplast and mitochondria were incongruent, indicating the potential for independent evolutionary trajectories. Evidence indicated reassociation among cytoplasmic genomes and recombination between mitochondrial genes and within atp1, implying transient heteroplasmy in ancestral lineages. Although the mechanisms for long-term maintenance of mitochondrial polymorphism are currently unknown, frequency-dependent selection on linked cytoplasmic male sterility genes is a potential candidate.  相似文献   

3.
We examined patterns of mitochondrial polymorphism and divergence in the angiosperm genus Silene and found substantial variation in evolutionary rates among species and among lineages within species. Moreover, we found corresponding differences in the amount of polymorphism within species. We argue that, along with our earlier findings of rate variation among genes, these patterns of rate heterogeneity at multiple phylogenetic scales are most likely explained by differences in underlying mutation rates. In contrast, no rate variation was detected in nuclear or chloroplast loci. We conclude that mutation rate heterogeneity is a characteristic of plant mitochondrial sequence evolution at multiple biological scales and may be a crucial determinant of how much polymorphism is maintained within species. These dramatic patterns of variation raise intriguing questions about the mechanisms driving and maintaining mutation rate heterogeneity in plant mitochondrial genomes. Additionally, they should alter our interpretation of many common phylogenetic and population genetic analyses.  相似文献   

4.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. The genome contains no introns involved in recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely low and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as the inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophila made it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

5.
Evolution of mitochondrial genes is far from clock-like. The substitution rate varies considerably between species, and there are many species that have a significantly increased rate with respect to their close relatives. There is also considerable variation among species in the rate of gene order rearrangement. Using a set of 55 complete arthropod mitochondrial genomes, we estimate the evolutionary distance from the common ancestor to each species using protein sequences, tRNA sequences, and breakpoint distances (a measure of the degree of genome rearrangement). All these distance measures are correlated. We use relative rate tests to compare pairs of related species in several animal phyla. In the majority of cases, the species with the more highly rearranged genome also has a significantly higher rate of sequence evolution. Species with higher amino acid substitution rates in mitochondria also have more variable amino acid composition in response to mutation pressure. We discuss the possible causes of variation in rates of sequence evolution and gene rearrangement among species and the possible reasons for the observed correlation between the two rates. [Reviewing Editor: Dr. David Pollock]  相似文献   

6.
7.
Faith JJ  Pollock DD 《Genetics》2003,165(2):735-745
Protein-coding genes in mitochondrial genomes have varying degrees of asymmetric skew in base frequencies at the third codon position. The variation in skew among genes appears to be caused by varying durations of time that the heavy strand spends in the mutagenic single-strand state during replication (D(ssH)). The primary data used to study skew have been the gene-by-gene base frequencies in individual taxa, which provide little information on exactly what kinds of mutations are responsible for the base frequency skew. To assess the contribution of individual mutation components to the ancestral vertebrate substitution pattern, here we analyze a large data set of complete vertebrate mitochondrial genomes in a phylogeny-based likelihood context. This also allows us to evaluate the change in skew continuously along the mitochondrial genome and to directly estimate relative substitution rates. Our results indicate that different types of mutation respond differently to the D(ssH) gradient. A primary role for hydrolytic deamination of cytosines in creating variance in skew among genes was not supported, but rather linearly increasing rates of mutation from adenine to hypoxanthine with D(ssH) appear to drive regional differences in skew. Substitutions due to hydrolytic deamination of cytosines, although common, appear to quickly saturate, possibly due to stabilization by the mitochondrial DNA single-strand-binding protein. These results should form the basis of more realistic models of DNA and protein evolution in mitochondria.  相似文献   

8.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. Mitochondrial genes lack introns and recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely high and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophilamade it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

9.
Popescu CE  Lee RW 《Genetics》2007,175(2):819-826
The mitochondrial genomes of the Chlorophyta exhibit significant diversity with respect to gene content and genome compactness; however, quantitative data on the rates of nucleotide substitution in mitochondrial DNA, which might help explain the origin of this diversity, are lacking. To gain insight into the evolutionary forces responsible for mitochondrial genome diversification, we sequenced to near completion the mitochondrial genome of the chlorophyte Chlamydomonas incerta, estimated the evolutionary divergence between Chlamydomonas reinhardtii and C. incerta mitochondrial protein-coding genes and rRNA-coding regions, and compared the relative evolutionary rates in mitochondrial and nuclear genes. Synonymous and nonsynonymous substitution rates do not differ significantly between the mitochondrial and nuclear protein-coding genes. The mitochondrial rRNA-coding regions, however, are evolving much faster than their nuclear counterparts, and this difference might be explained by relaxed functional constraints on the mitochondrial translational apparatus due to the small number of proteins synthesized in Chlamydomonas mitochondria. Substitution rates at synonymous sites in a nonstandard mitochondrial gene (rtl) and at intronic and synonymous sites in nuclear genes expressed at low levels suggest that the mutation rate is similar in these two genetic compartments. Potential evolutionary forces shaping mitochondrial genome evolution in Chlamydomonas are discussed.  相似文献   

10.
The human genome exhibits extensive regional variation both in base composition and in the synonymous and nonsynonymous substitution rates of protein-coding genes. If such regional variation is due to variation in mutation rates, then levels of polymorphism should also vary across the human genome. Building on recent advances in mapping the human genome, we demonstrate regional variation in single nucleotide polymorphism density extending over many megabases. The range of local similarity in polymorphism shown by our genome-wide study is similar to the range of local similarity in base composition, and occurs over much longer distances than the variation in polymorphism revealed by studies of linkage disequilibrium.  相似文献   

11.
《Comptes Rendus Palevol》2014,13(7):611-621
Salamanders have some of the largest genomes among vertebrates, and also some of the lowest reported levels of genetic diversity. Paedomorphs, in particular, have the largest genomes on average among urodela, and display exceptionally low levels of nucleotide and protein variation. Here, we address the question of genetic variation in relation to genome size in eight different salamander families. Using the rag1 gene as a probe for evolutionary rates, we found that rates of substitution are exceptionally low in obligate paedomorphs (neotenes) and other salamander species. Substitution rates in some cases are as low as those reported for cartilaginous fish, which have the slowest mutation rates recorded so far in vertebrates. Confirming and extending an earlier study, we also found that genome size is correlated with phylogenetic age in Plethodontidae, indicating a more general trend in genome size evolution in urodela. The Plethodontidae, furthermore, display much higher levels of genetic variance than the obligate neotene families, consistent with greater habitat heterogeneity in terrestrial salamanders. Finally, we present the first direct evidence of a gene, rag1, whose substitution rate is negatively associated with genome size. Based on these and other observations, we propose a hypothesis according to which mutation rates in nuclear genes tend to increase as genome size decreases during the course of vertebrate evolution.  相似文献   

12.
Surprisingly, few studies have described evolutionary rate variation among plant nuclear genes, with little investigation of the causes of rate variation. Here, we describe evolutionary rates for 11,492 ortholog pairs between Arabidopsis thaliana and A. lyrata and investigate possible contributors to rate variation among these genes. Rates of evolution at synonymous sites vary along chromosomes, suggesting that mutation rates vary on genomic scales, perhaps as a function of recombination rate. Rates of evolution at nonsynonymous sites correlate most strongly with expression patterns, but they also vary as to whether a gene is duplicated and retained after a whole-genome duplication (WGD) event. WGD genes evolve more slowly, on average, than nonduplicated genes and non-WGD duplicates. We hypothesize that levels and patterns of expression are not only the major determinants that explain nonsynonymous rate variation among genes but also a critical determinant of gene retention after duplication.  相似文献   

13.
Microsatellite variation and recombination rate in the human genome   总被引:13,自引:0,他引:13  
Payseur BA  Nachman MW 《Genetics》2000,156(3):1285-1298
Background (purifying) selection on deleterious mutations is expected to remove linked neutral mutations from a population, resulting in a positive correlation between recombination rate and levels of neutral genetic variation, even for markers with high mutation rates. We tested this prediction of the background selection model by comparing recombination rate and levels of microsatellite polymorphism in humans. Published data for 28 unrelated Europeans were used to estimate microsatellite polymorphism (number of alleles, heterozygosity, and variance in allele size) for loci throughout the genome. Recombination rates were estimated from comparisons of genetic and physical maps. First, we analyzed 61 loci from chromosome 22, using the complete sequence of this chromosome to provide exact physical locations. These 61 microsatellites showed no correlation between levels of variation and recombination rate. We then used radiation-hybrid and cytogenetic maps to calculate recombination rates throughout the genome. Recombination rates varied by more than one order of magnitude, and most chromosomes showed significant suppression of recombination near the centromere. Genome-wide analyses provided no evidence for a strong positive correlation between recombination rate and polymorphism, although analyses of loci with at least 20 repeats suggested a weak positive correlation. Comparisons of microsatellites in lowest-recombination and highest-recombination regions also revealed no difference in levels of polymorphism. Together, these results indicate that background selection is not a major determinant of microsatellite variation in humans.  相似文献   

14.
Regional biases in substitution pattern are likely to be responsible for the large-scale variation in base composition observed in vertebrate genomes. However, the evolutionary forces responsible for these biases are still not clearly defined. In order to study the processes of mutation and fixation across the entire human genome, we analyzed patterns of substitution in Alu repeats since their insertion. We also studied patterns of human polymorphism within the repeats. There is a highly significant effect of recombination rate on the pattern of substitution, whereas no such effect is seen on the pattern of polymorphism. These results suggest that regional biases in substitution are caused by biased gene conversion, a process that increases the probability of fixation of mutations that increase GC content. Furthermore, the strongest correlate of substitution patterns is found to be male recombination rates rather than female or sex-averaged recombination rates. This indicates that in addition to sexual dimorphism in recombination rates, the sexes also differ in the relative rates of crossover and gene conversion.  相似文献   

15.
The mitochondrial genome is one of the most frequently used loci in phylogenetic and phylogeographic analyses, and it is becoming increasingly possible to sequence and analyze this genome in its entirety from diverse taxa. However, sequencing the entire genome is not always desirable or feasible. Which genes should be selected to best infer the evolutionary history of the mitochondria within a group of organisms, and what properties of a gene determine its phylogenetic performance? The current study addresses these questions in a Bayesian phylogenetic framework with reference to a phylogeny of plethodontid and related salamanders derived from 27 complete mitochondrial genomes; this topology is corroborated by nuclear DNA and morphological data. Evolutionary rates for each mitochondrial gene and divergence dates for all nodes in the plethodontid mitochondrial genome phylogeny were estimated in both Bayesian and maximum likelihood frameworks using multiple fossil calibrations, multiple data partitions, and a clock-independent approach. Bayesian analyses of individual genes were performed, and the resulting trees compared against the reference topology. Ordinal logistic regression analysis of molecular evolution rate, gene length, and the G-shape parameter a demonstrated that slower rate of evolution and longer gene length both increased the probability that a gene would perform well phylogenetically. Estimated rates of molecular evolution vary 84-fold among different mitochondrial genes and different salamander lineages, and mean rates among genes vary 15-fold. Despite having conserved amino acid sequences, cox1, cox2, cox3, and cob have the fastest mean rates of nucleotide substitution, and the greatest variation in rates, whereas rrnS and rrnL have the slowest rates. Reasons underlying this rate variation are discussed, as is the extensive rate variation in cox1 in light of its proposed role in DNA barcoding.  相似文献   

16.
Genome size and complexity vary tremendously among eukaryotic species and their organelles. Comparisons across deeply divergent eukaryotic lineages have suggested that variation in mutation rates may explain this diversity, with increased mutational burdens favoring reduced genome size and complexity. The discovery that mitochondrial mutation rates can differ by orders of magnitude among closely related angiosperm species presents a unique opportunity to test this hypothesis. We sequenced the mitochondrial genomes from two species in the angiosperm genus Silene with recent and dramatic accelerations in their mitochondrial mutation rates. Contrary to theoretical predictions, these genomes have experienced a massive proliferation of noncoding content. At 6.7 and 11.3 Mb, they are by far the largest known mitochondrial genomes, larger than most bacterial genomes and even some nuclear genomes. In contrast, two slowly evolving Silene mitochondrial genomes are smaller than average for angiosperms. Consequently, this genus captures approximately 98% of known variation in organelle genome size. The expanded genomes reveal several architectural changes, including the evolution of complex multichromosomal structures (with 59 and 128 circular-mapping chromosomes, ranging in size from 44 to 192 kb). They also exhibit a substantial reduction in recombination and gene conversion activity as measured by the relative frequency of alternative genome conformations and the level of sequence divergence between repeat copies. The evolution of mutation rate, genome size, and chromosome structure can therefore be extremely rapid and interrelated in ways not predicted by current evolutionary theories. Our results raise the hypothesis that changes in recombinational processes, including gene conversion, may be a central force driving the evolution of both mutation rate and genome structure.  相似文献   

17.
Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings.  相似文献   

18.

Background

The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of these extreme characteristics, and to explore the relationship between mitochondrial genome molecular evolution, genome architecture, and molecular function. We sequenced complete mitochondrial genomes from Slowinski's corn snake (Pantherophis slowinskii) and two cottonmouths (Agkistrodon piscivorus) to complement previously existing mitochondrial genomes, and to provide an improved comparative view of how genome architecture affects molecular evolution at contrasting levels of divergence.

Results

We present a Bayesian genetic approach that suggests that the duplicated control region can function as an additional origin of heavy strand replication. The two control regions also appear to have different intra-specific versus inter-specific evolutionary dynamics that may be associated with complex modes of concerted evolution. We find that different genomic regions have experienced substantial accelerated evolution along early branches in snakes, with different genes having experienced dramatic accelerations along specific branches. Some of these accelerations appear to coincide with, or subsequent to, the shortening of various mitochondrial genes and the duplication of the control region and flanking tRNAs.

Conclusion

Fluctuations in the strength and pattern of selection during snake evolution have had widely varying gene-specific effects on substitution rates, and these rate accelerations may have been functionally related to unusual changes in genomic architecture. The among-lineage and among-gene variation in rate dynamics observed in snakes is the most extreme thus far observed in animal genomes, and provides an important study system for further evaluating the biochemical and physiological basis of evolutionary pressures in vertebrate mitochondria.  相似文献   

19.
Although plant mitochondrial genomes typically show low rates of sequence evolution, levels of divergence in certain angiosperm lineages suggest anomalously high mitochondrial mutation rates. However, de novo mutations have never been directly analyzed in such lineages. Recent advances in high-fidelity DNA sequencing technologies have enabled detection of mitochondrial mutations when still present at low heteroplasmic frequencies. To date, these approaches have only been performed on a single plant species (Arabidopsis thaliana). Here, we apply a high-fidelity technique (Duplex Sequencing) to multiple angiosperms from the genus Silene, which exhibits extreme heterogeneity in rates of mitochondrial sequence evolution among close relatives. Consistent with phylogenetic evidence, we found that Silene latifolia maintains low mitochondrial variant frequencies that are comparable with previous measurements in Arabidopsis. Silene noctiflora also exhibited low variant frequencies despite high levels of historical sequence divergence, which supports other lines of evidence that this species has reverted to lower mitochondrial mutation rates after a past episode of acceleration. In contrast, S. conica showed much higher variant frequencies in mitochondrial (but not in plastid) DNA, consistent with an ongoing bout of elevated mitochondrial mutation rates. Moreover, we found an altered mutational spectrum in S. conica heavily biased towards AT→GC transitions. We also observed an unusually low number of mitochondrial genome copies per cell in S. conica, potentially pointing to reduced opportunities for homologous recombination to accurately repair mismatches in this species. Overall, these results suggest that historical fluctuations in mutation rates are driving extreme variation in rates of plant mitochondrial sequence evolution.  相似文献   

20.
Correlated rates of synonymous site evolution across plant genomes   总被引:5,自引:5,他引:0  
Synonymous substitution rates have been shown to vary among evolutionary lineages of both nuclear and organellar genes across a broad range of taxonomic groups. In animals, rate heterogeneity does not appear to be correlated across nuclear and mitochondrial genes. In this paper, we contrast substitution rates in two plant groups and show that grasses evolve more rapidly than palms at synonymous sites in a mitochondrial, a nuclear, and a plastid gene. Furthermore, we show that the relative rates of synonymous substitution between grasses and palms are similar at the three loci. The correlation in synonymous substitution rates across genes is particularly striking because the three genes evolve at very different absolute rates. In contrast, relative rates of nonsynonymous substitution are not conserved among the three genes.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号