首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Specific oxidation of D-galactose present in the carbohydrate moiety of glucose oxidase from Aspergillus niger by galactose oxidase in the presence of catalase (48% efficiency) did not change the activity of the enzyme. Oxidized enzyme was coupled to hydrazide derivatives of O--D-galactosyl Separon H 1000 or of Sepharose 4B. Both solid supports were modified with adipic acid dihydrazide after their activation with galactose oxidase. Each immobilized preparation of glucose oxidase showed higher activity than was achieved by other immobilizing procedures.  相似文献   

2.
In order to obtain an active and stable oxidation reactor for daily use in biochemical laboratory we decided to immobilize galactose oxidase orientedly through a carbohydrate chain to the magnetic carriers. We used hydrazide derivatives of non-magnetic and magnetic bead cellulose and of magnetic and non-magnetic poly(HEMA-co-EDMA) microspheres. Activation of the enzyme molecules was done by sodium periodate in the presence of supplements (fucose, CuSO4, catalase). Orientedly immobilized galactose oxidase presents high storage stability and lower susceptibility to inappropriate microenvironmental conditions. Reactor reactivated by three pulses of D-galactose retained practically 100% of its native activity after 6 months. The positive properties of both magnetic carriers were entirely confirmed.  相似文献   

3.
Glucose oxidase from Aspergillus niger was immobilized on nonporous glass beads by covalent bonding and its kinetics were studied in a packed-column recycle reactor. The optimum pH of the immobilized enzyme was the same as that of soluble enzyme; however, immobilized glucose oxidase showed a sharper pH-activity profile than that of the soluble enzyme. The kinetic behavior of immobilized glucose oxidase at optimum pH and 25 degrees C was similar to that of the soluble enzyme, but the immobilized material showed increased temperature sensitivity. Immobilized glucose oxidase showed no loss in activity on storage at 4 degrees C for nearly ten weeks. On continuous use for 60 hr, the immobilized enzyme showed about a 40% loss in activity but no change in the kinetic constant.  相似文献   

4.
Xanthine dehydrogenase (EC 1.2.1.37) was isolated from chicken livers and immobilized by adsorption to a Sepharose derivative, prepared by reaction of n-octylamine with CNBr-activated Sepharose 4B. Using a crude preparation of enzyme for immobilization it was observed that relatively more activity was adsorbed than protein, but the yield of immobilized activity increased as a purer enzyme preparation was used. As more activity and protein were bound, relatively less immobilized activity was recovered. This effect was probably due to blocking of active xanthine dehydrogenase by protein impurities. The kinetics of free and immobilized xanthine dehydrogenase were studied in the pH range 7.5-9.1. The Km and V values estimated for free xanthine dehydrogenase increase as the pH increase; the K'm and V values for the immobilized enzyme go through a minimum at pH 8.1. By varying the amount of enzyme activity bound per unit volume of gel, it was shown that K'm is larger than Km are result of substrate diffusion limitation in the pores of the support material. Both free and immobilized xanthine dehydrogenase showed substrate activation at low concentrations (up to 2 microM xanthine). Immobilized xanthine dehydrogenase was more stable than the free enzyme during storage in the temperature range of 4-50 degrees C. The operational stability of immobilized xanthine dehydrogenase at 30 degrees C was two orders of magnitude smaller than the storage stability, t 1/2 was 9 and 800 hr, respectively. The operational stability was, however, better than than of immobilized milk xanthine oxidase (t 1/2 = 1 hr). In addition, the amount of product formed per unit initial activity in one half-life, was higher for immobilized xanthine dehydrogenase than for immobilized xanthine oxidase. Unless immobilized milk xanthine oxidase can be considerable stabilized, immobilized chicken liver xanthine dehydrogenase is more promising for application in organic synthesis.  相似文献   

5.
The stability of immobilized preparations of xanthine oxidase and urate oxidase was studied, and optimized, because of the potential joint use of both enzymes in clinical analysis. Xanthine oxidase was immobilized on cellulose, Sepharose, hornblende, Enzacryl-TIO, and porous glass. Thehalf-lives of these preparations at 30 degree C ranged from 40 min to 5.0 hr. In this respect immobilized enzyme resembled soluble enzyme in dilute solution (0.11 mg/ml), when the half-live was about 3.5 hr. More concentrated enzyme solution (1 mg/ml) had a half-life of 64 hr, and was, therefore, considerably more stable than the untreated immobilized xanthine oxidase preparations. Inclusion of albumen in storage and assay buffer increased the half-life of bound xanthine oxidase. So also did treatment with glutaraldehyde: in the case of xanthine oxidase bound to Enzarcyl-TIO such treatment increased the half-life at 30 degree C from 3 hr to about 100 hr. Immobilized xanthine dehydrogenase was more stable than immobilized xanthine oxidase: the dehydrogenase lost no activity during continuous assay for 5 hr at 30 degree C. The stability of immobilized urate oxidase depended on the quantity of enzyme used and on the time of stirring during immobilization: thus a preparation was made (by stirring urate oxidase (48 mg/g support) with Enzacryl-TIO for 24 hr) which lost no activity during 350 hr at 30 degree C.  相似文献   

6.
Galactose oxidase preparations are obtained from Fusarium graminearum IMV-F-N 1060 immobilized on aminoorganosilochromes activated by cyanuron chloride and 2.4-toluylene diizocyanate. The immobilized preparations were studied for their selective action on different carbohydrate substrates and for the pH-medium dependence of the obtained preparation activity. Potassium ferricyanide is established to have an activating effect on the immobilized enzyme. It is shown that the immobilized galactose oxidase preparations may be used for the analysis of galactose and lactose.  相似文献   

7.
Phenol oxidase (EC 1.14.18.1) from the microscopic fungus Mycelia sterilia IBR 35219/2 was immobilized using glutaraldehyde on macroporous silica carriers. The enzyme immobilized on amino-Silochrome SKh-2 or aminopropyl-Silochrome 350/80 exhibited maximum activity. Soluble and immobilized phenol oxidases were compared. Compared to the soluble enzyme, the activity of which was optimum at pH 5.5, immobilized phenol oxidase exhibited optimum activity under slightly more acidic conditions (pH 5.2). Immobilization considerably increased the enzyme stability. Both soluble and immobilized forms of phenol oxidase from M. sterilia IBR 35219/2 catalyze oxidative conversion of phenolic compounds of the green tea extract.  相似文献   

8.
Summary The whole cell ofHumicola spp. ATCC 20620 with rifamycin oxidase activity was immobilized by copolymerization with acrylamide. The whole cell was defatted by treatment with acetone to reduce the diffusional resistance through the cell membrane. The recovery of enzyme activity after the immobilization step was about 50%. The acetone-defatted cell showed the maximum activity at pH 7.5 for both free and the immobilized forms. No appreciable activity loss could be detected when stored at 4 °C and pH 7.8 for one month, while the half life at 40 °C and pH 8 was decreased to about 8 days. The apparent Km values of rifamycin oxidase for the free and immobilized acetonedefatted cells were 0.3mM and 0.6mM, respectively. The enzyme demonstrated substrate inhibition, but the degree of substrate inhibition was different between two forms of the enzyme preparation. A complete substrate inhibition was observed for the immobilized cell, whereas the enzyme activity was partially inhibited at high substrate concentration in the acetone-defatted cells.  相似文献   

9.
Phenol oxidase (EC 1.14.18.1) from the microscopic fungusMycelia sterilia IBR 35219/2 was immobilized using glutaraldehyde on macroporous silica carriers. The enzyme immobilized on amino-Silochrome SKh-2 or aminopropyl-Silochrome 350/80 exhibited maximum activity. Soluble and immobilized phenol oxidases were compared. Compared to the soluble enzyme, the activity of which was optimum at pH 5.5, immobilized phenol oxidase exhibited optimum activity under slightly more acidic conditions (pH 5.2). Immobilization considerably increased enzyme stability. Both soluble and immobilized forms of phenol oxidase fromM. sterilia IBR 35 219/2 catalyze oxidative conversion of phenolic compounds of green tea extract.  相似文献   

10.
Optimal conditions with respect to pH, concentration of glutaraldehyde and enzyme, and order of addition of enzyme and crosslinking reagent were established for the immobilization of hog kidney D-amino acid oxidase to an attapulgite support. Yields of 40 to 70% were generally attained although when low concentrations of enzyme were used yields were consistently greater than 100%. It is suggested that this is due to a dimer leads to monomer shift at low protein concentrations. The stability of soluble D-amino acid oxidase was dependent on the buffer in which it was stored (pyrophosphate-phosphate greater than borate greater than Tris). Stability of immobilized enzyme was less than soluble in pyrophosphate-phosphate buffer, but storage in the presence of FAD improved stability. In addition, treatment of stored, immobilized enzyme with FAD before assay restored some of its activity. The immobilized D-amino acid oxidase was less stable to heat (50 degrees C) than the soluble enzyme from pH 6 to 8 but was more stable above and below these values. Apparent Km values for D-alanine, D-valine, and D-tryptophan decreased for the immobilized enzyme compared to the soluble.  相似文献   

11.
The binding of 22 human liver hydrolase activities by immobilized lectins of six different carbohydrate specificities, namely alpha-D-mannose (glucose), D-N-acetylglucosamine, D-N-acetylgalactosamine, L-fucose, alpha-D-galactose and beta-D-galactose, were examined. Differences in binding among these enzymes and within specific enzymes were observed. For example, the neutral forms of alpha-mannosidase and beta-xylosidase were bound by the Ulex europaeus lectin I (specific for L-fucose), whereas the acidic forms were not. Bandierea simplicifolia lectin (specific for alpha-galactose) bound 65% of beta-glucuronidase activity; recycling experiments demonstrated complete binding of the enzyme that had been eluted with the competitor D-galactose and no binding of the fraction that was not initially bound. These results suggested the presence of two forms of this enzyme. Similar data were obtained for acidic beta-galactosidase activity. These experiments may provide the basis for the expanded use of immobilized lectins for purification and characterization of hydrolases and other glycoproteins.  相似文献   

12.
Glucoamylase and glucose oxidase have been immobilized on carbodiimide-treated activated carbon particles of various sizes. Loading data indicate nonuniform distribution of immobilized enzyme within the porous support particles. Catalysts with different enzyme loading and overall activities have been prepared by varying enzyme concentration in the immobilizing solution. Analysis of these results by a new method based entirely upon experimentally observable catalyst properties indicates that intrinsic catalytic activity is reduced by immobilization of both enzymes. Immobilized glucoamylase intrinsic activity decreases with increasing enzyme loading, and similar behavior is suggested by immobilized glucose oxidase data analysis. The overall activity data interpretation method should prove useful in other immobilized enzyme characterization research, especially in situations where the intraparticle distribution of immobilized enzyme is nonuniform and unknown.  相似文献   

13.
利用经海藻酸钙包埋的重组大肠杆菌细胞催化D-半乳糖生产D-塔格糖,考察了细胞包埋量、反应条件对固定化细胞催化效率以及对D-塔格糖生产稳定性的影响。确定的最优转化条件为:温度65℃,pH 6.5,添加终浓度为1 mmol/L Mn2+,底物(D-半乳糖)浓度100 g/L,重组大肠杆菌细胞用量40 g/L。固定化小球在0.3%戊二醛溶液中交联30 min可以显著提高其在高温下的机械强度。考察了异构化反应体系中硼酸与底物间的摩尔比对产率的影响。研究结果表明,添加适量的硼酸可以改变原有的化学反应平衡,实现D-塔格糖的高产。利用D-半乳糖为底物在最优的反应条件下催化24 h,固定化细胞对D-半乳糖的转化率最高,可达65.8%,连续转化8批次的平均转化率为60.6%,为工业化生产D-塔格糖奠定了基础。  相似文献   

14.
The continuous enzymatic conversion of D-galactose to D-tagatose with an immobilized thermostable L-arabinose isomerase in packed-bed reactor and a novel method for D-tagatose purification were studied. L-arabinose isomerase from Thermoanaerobacter mathranii (TMAI) was recombinantly overexpressed and immobilized in calcium alginate. The effects of pH and temperature on D-tagatose production reaction catalyzed by free and immobilized TMAI were investigated. The optimal condition for free enzyme was pH 8.0, 60°C, 5 mM MnCl(2). However, that for immobilized enzyme was pH 7.5, 75°C, 5 mM MnCl(2). In addition, the catalytic activity of immobilized enzyme at high temperature and low pH was significantly improved compared with free enzyme. The optimum reaction yield with immobilized TMAI increased by four percentage points to 43.9% compared with that of free TMAI. The highest productivity of 10 g/L h was achieved with the yield of 23.3%. Continuous production was performed at 70°C; after 168 h, the reaction yield was still above 30%. The resultant syrup was then incubated with Saccharomyces cerevisiae L1 cells. The selective degradation of D-galactose was achieved, obtaining D-tagatose with the purity above 95%. The established production and separation methods further potentiate the industrial production of D-tagatose via bioconversion and biopurification processes.  相似文献   

15.
A biosensor system for continuous flow determination of enzyme activity was developed and applied to the determination of glucose oxidase and lactic dehydrogenase activities. The glucose oxidase activity sensor was prepared from the combination of an oxygen electrode and a flow cell. Similarly, the lactic dehydrogenase activity sensor was prepared from the combination of a pyruvate oxidase membrane, an oxygen electrode, and a flow cell. Pyruvate oxidase was covalently immobilized on a membrane prepared from cellulose triacetate, 1,8-diamino-4-aminomethyloctane, and glutaraldehyde. Glucose oxidase activity was determined from the oxygen consumed upon oxidation of glucose catalyzed by glucose oxidase. Lactic dehydrogenase activity was determined from the pyruvic acid formed upon dehydrogenation of lactic acid catalyzed by lactic dehydrogenase. The amount of pyruvic acid was determined from the oxygen consumed upon oxidation of pyruvic acid by pyruvate oxidase. Calibration curves for activity of glucose oxidase and lactic dehydrogenase were linear up to 81 and 300 units, respectively. One assay could be completed within 15 min for both sensors and these were stable for more than 25 days at 5°C. The relative errors were ±4 and ±6% for glucose oxidase and lactic dehydrogenase sensors, respectively. These results suggest that the sensor system proposed is a simple, rapid, and economical method for the determination of enzyme activities.  相似文献   

16.
Identification of the material present in human serum which is responsible for inhibition of binding of desialylated glycoproteins to rat hepatocyte membranes was accomplished by means of affinity chromatography using Sephadex to which the galactose-specific lectin, Ricinus Communis Agglutinin (RCAI) was covalently bound. RCAI-Sephadex was capable of extraction of virtually all of the inhibitory activity from cirrhotic serum. The RCA I-bound inhibitory activity could be eluted with 0.05 M D-galactose. The D-galactose eluate when subjected to radioimmunoelectrophoresis against a number of specific antibodies to human serum glycoproteins produced arcs corresponding to alpha 1-acid glycoprotein, alpha2-macroglobulin, IgG, IgA, and IgM. In another experiment putative terminal galactosyl groups of desialylated glycoproteins in the D-galactose eluate from cirrhotic serum exposed to RCAI-Sephadex were labelled with tritiated borohydride after treatment with galactose oxidase. Subsequent gel electrophoresis showed peaks of radioactivity throughout the area of the gel corresponding to protein molecular weights of the 19 S, 7 S, and 4 S classes. It thus appears that a heterogeneous population of desialylated serum glycoproteins accounts for the inhibition of binding of desialylated glycoprotein to the hepatocyte membrane and that these desialylated glycoproteins are present in small amounts in normal human serum and in greatly increased quantities in serum from patients with cirrhosis.  相似文献   

17.
Glucose oxidase (GOD) was immobilized on cellulose acetate-polymethylmethacrylate (CA-PMMA) membrane. The immobilized GOD showed better performance as compared to the free enzyme in terms of thermal stability retaining 46% of the original activity at 70 degrees C where the original activity corresponded to that obtained at 20 degrees C. FT-IR and SEM were employed to study the membrane morphology and structure after treatment at 70 degrees C. The pH profile of the immobilized and the free enzyme was found to be similar. A 2.4-fold increase in Km value was observed after immobilization whereas Vmax value was lower for the immobilized GOD. Immobilized glucose oxidase showed improved operational stability by maintaining 33% of the initial activity after 35 cycles of repeated use and was found to retain 94% of activity after 1 month storage period. Improved resistance against urea denaturation was achieved and the immobilized glucose oxidase retained 50% of the activity without urea in the presence of 5M urea whereas free enzyme retained only 8% activity.  相似文献   

18.
Galactose transport was studied in membrane vesicles, prepared by fusion of plasma membranes from the yeast Kluyveromyces marxianus with proteoliposomes containing beef heart cytochrome c oxidase as a proton-motive force-generating system. Sugar transport studies performed under nonenergized conditions revealed that, even at high protein to phospholipid ratios, not all vesicles contained a D-galactose-specific transporter. The amount of vesicles containing an active carrier proved to be proportional to the amount of plasma membrane protein present in the fusion mixture. By addition of a suitable electron donor system a proton-motive force of -160 mV could be generated, inside alkaline and negative. Moreover, D-galactose accumulation was observed. It was found that D-galactose accumulation was highly dependent on the phospholipid composition of the vesicles, whereas generation of a proton-motive force was not. Best results were obtained with vesicles prepared with Escherichia coli phospholipid, giving a galactose accumulation of 14 times. Uphill transport could be established under conditions where only the pH gradient or the electrical gradient was present. Moreover, kinetic analysis of the galactose transport activity in energized vesicles revealed influx with a Km value of 540 microM, which is in good agreement with the apparent affinity constant obtained with whole cells. These results establish that galactose transport of K. marxianus is a proton-motive force-driven process. Moreover it demonstrates that plasma membrane vesicles co-reconstituted with cytochrome c oxidase are a valuable resource for the analysis of proton-motive force-driven sugar transport systems of yeast.  相似文献   

19.
Yeast microbodies containing FAD-dependent alcohol oxidase, catalase and D-amino acid oxidase were isolated from methanol-grown cells of Kloeckera sp. 2201 and immobilized intact in matrices formed by a short-time illumination of photo-crosslinkable resin oligomers. The relative activities of catalase, alcohol oxidase and D-amino acid oxidase of the gel-entrapped microbodies were 36, 76 and 31% respectively as compared with those of free microbodies. Immobilization enhance d the stability of catalase to a certain degree, but not that of alcohol oxidase. The pH/activity profiles of catalase and alcohol oxidase of the entrapped organelles showed more narrow pH optima than those of the free counterparts. D-Amino acid oxidase in immobilized microbodies showed a somewhat higher Km value for D-alanine than that in free ones. Immobilized microbodies oxidized two moles of methanol to form two moles of formaldehyde with consumption of one mole of molecular oxygen. Addition of 3-amino-1,2,4-triazole, an inhibitor of catalase, reduced the formation of formaldehyde to half the amount without change in the amount of oxygen consumed, indicating the synergic action of alcohol oxidase and catalase in methanol oxidation in the microbodies of living yeast cells.  相似文献   

20.
Bostrycin, a red antibacterial agent with tetrahydroanthraquinone structure, has been isolated from Nigrospora sp. No. 407. This study investigated the potential antibacterial and multifunctional properties of matrixes through immobilization of bostrycin on their surface for immobilization of protein and prevention of bacterial growth. Bostrycin was immobilized on nonwoven polypropylene (PP) fabric by a technique using glutaraldehyde and polyethyleneimine for the activation of the surface. Glucose oxidase immobilized on bostrycin-treated nonwoven PP fabric showed high activity. The immobilization process improved thermal stability of the enzymes. During repeated assay for 30 cycles, the enzyme activity dropped to only 70% of the initial activity. Both bostrycin-treated nonwoven PP fabric sample and subsequently immobilized glucose oxidase sample on the surface also still exhibited a bacteriostatic effect. This is the first study to show that bostrycin is a promising coupling agent for surface modification on matrix and its potential applications in protein immobilization and biomaterial-centered infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号