首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To become mature and infectious, many viruses and insects require proteolytic cleavage, which can be specifically inhibited by proteinase inhibitors. Oryzacystatin (OC), the first-described cystatin originating from rice seed, consists of two molecular species, OC-I and OC-II, both of which have antiviral activity. These intrinsic rice cystatins show a narrow inhibition spectrum and ordinarily are present in rice seeds at insufficient levels for inhibiting the cysteine proteinases of rice insect pests. In addition, our comparison of inhibitory activity (Ki value) showed that chicken cystatin (Ki 5 × 10-12 M) was more powerful than other cystatins, such as OC-I (Ki 3.02 × 10-8 M) and OC-II (l(i 0.83 × 10-8 M). Chicken cystatin also possesses a wide inhibitory spectrum against various cysteine proteinases. Here, we introduced the insecticidal chicken cystatin 8ene into rice plants to improve their insect resistance. Four highly expressive, independent transgenic lines were identified. Molecular analyses revealed that the transferred 8ene was expressed stably in the independent transgenic lines. Therefore, introducing the insecticidal cysteine proteinase inhibitor 8ene into rice plants can be part of a general development strategy for pest control.  相似文献   

2.
The gene encoding a cowpea trypsin inhibitor (CpTI), which confers insect resistance in trangenic tobacco, was introduced into rice. Expression of the CpTi gene driven by the constitutively active promoter of the rice actin 1 gene (Act1) leads to high-level accumulation of the CpTI protein in transgenic rice plants. Protein extracts from transgenic rice plants exhibit a strong inhibitory activity against bovine trypsin, suggesting that the proteinase inhibitor produced in transgenic rice is functionally active. Small-scale field tests showed that the transgenic rice plants expressing the CpTi gene had significantly increased resistance to two species of rice stem borers, which are major rice insect pests. Our results suggest that the cowpea trypsin inhibitor may be useful for the control of rice insect pests.  相似文献   

3.
Plant cystatins show great potential as tools to genetically engineer resistance of crop plants against pests. Two important potential targets are the bean weevils Acanthoscelides obtectus and Zabrotes subfasciatus, which display major activities of digestive cysteine proteinases in midguts. In this study a cowpea cystatin, a cysteine proteinase inhibitor found in cowpea (Vigna unguiculata) seeds, was expressed in Escherichia coli and purified with a Ni-NTA agarose column. It strongly inhibited papain and proteinases from midguts of both A. obtectus and Z. subfasciatus bruchids, as seen by in vitro assays. When the protein was incorporated into artificial seeds at concentrations as low as 0.025%, and seeds were consumed by the bruchids larva, dramatic reductions in larval weight, and increases in insect mortality were observed. Molecular modeling studies of cowpea cystatin in complex with papain revealed that five N-terminal residues responsible for a large proportion of the hydrophobic interactions involved in the stabilization of the enzyme-inhibitor complex are absent in the partial N-terminal amino acid sequencing of soybean cystatin. We suggest that this structural difference could be the reason for the much higher effectiveness of cowpea cystatin when compared to that previously tested phytocystatin. The application of this knowledge in plant protein mutation programs aiming at enhancement of plant defenses to pests is discussed.  相似文献   

4.
5.
Protein engineering approaches are currently being devised to improve the inhibitory properties of plant proteinase inhibitors against digestive proteinases of herbivorous insects. Here we engineered a potent hybrid inhibitor of aspartate and cysteine digestive proteinases found in the Colorado potato beetle, Leptinotarsa decemlineata Say. Three cathepsin D inhibitors (CDIs) from stressed potato and tomato were first compared in their potency to inhibit digestive cathepsin D-like activity of the insect. After showing the high inhibitory potency of tomato CDI (M(r) approximately 21 kDa), an approximately 33-kDa hybrid inhibitor was generated by fusing this inhibitor to the N terminus of corn cystatin II (CCII), a potent inhibitor of cysteine proteinases. Inhibitory assays with recombinant forms of CDI, CCII, and CDI-CCII expressed in Escherichia coli showed the CDI-CCII fusion to exhibit a dual inhibitory effect against cystatin-sensitive and cathepsin D-like enzymes of the potato beetle, resulting in detrimental effects against 3rd-instar larvae fed the hybrid inhibitor. The inhibitory potency of CDI and CCII was not altered after their fusion, as suggested by IC(50) values for the interaction of CDI-CCII with target proteinases similar to those measured for each inhibitor. These observations suggest the potential of plant CDIs and cystatins as functional inhibitory modules for the design of effective broad-spectrum, hybrid inhibitors of herbivorous insect cysteine and aspartate digestive proteinases.  相似文献   

6.
The effects of the cystatins, human stefin A (HSA) and oryzacystatin I (OCI) on digestive cysteine proteinases of the Colorado potato beetle (CPB), Leptinotarsa decemlineata, and the black vine weevil (BVW), Otiorynchus sulcatus, were assessed using complementary inhibition assays, cystatin-affinity chromatography, and recombinant forms of the two inhibitors. For both insects, either HSA and OCI used in excess (10 or 20 μM) caused partial and stable inhibition of total proteolytic (azocaseinase) activity, but unlike for OCI the HSA-mediated inhibitions were significantly increased when the inhibitor was used in large excess (100 μM). As demonstrated by complementary inhibition assays, this two-step inhibition of the insect proteases by HSA was due to the differential inactivation of two distinct cysteine proteinase populations in either insect extracts, the rapidly (strongly) inhibited population corresponding to the OCI-sensitive fraction. After removing the cystatin-sensitive proteinases from CPB and BVW midgut extracts using OCI- (or HSA-) affinity chromatography, the effects of the insect “non-target” proteases on the structural integrity of the two cystatins were assessed. While OCI remained essentially stable, HSA was subjected to hydrolysis without the accumulation of detectable stable intermediates, suggesting the presence of multiple exposed cleavage sites sensitive to the action of the insect proteases on this cystatin. This apparent susceptibility of HSA to proteolytic cleavage may partially explain its low efficiency to inactivate the insect OCI-insensitive cysteine proteinases when not used in large excess. It could also have major implications when planning the use of cystatin-expressing transgenic plants for the control of coleopteran pests. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Cystatin CsC, a cysteine proteinase inhibitor from chestnut (Castanea sativa) seeds, has been purified and characterized. Its full-length cDNA clone was isolated from an immature chestnut cotyledon library. The inhibitor was expressed in Escherichia coli and purified from bacterial extracts. Identity of both seed and recombinant cystatin was confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis, two-dimensional electrophoresis and N-terminal sequencing. CsC has a molecular mass of 11275 Da and pI of 6.9. Its amino acid sequence includes all three motifs that are thought to be essential for inhibitory activity, and shows significant identity to other phytocystatins, especially that of cowpea (70%). Recombinant CsC inhibited papain (Ki 29 nM), ficin (Ki 65 nM), chymopapain (Ki 366 nM), and cathepsin B (Ki 473 nM). By contrast with most cystatins, it was also effective towards trypsin (Ki 3489 nM). CsC is active against digestive proteinases from the insect Tribolium castaneum and the mite Dermatophagoides farinae, two important agricultural pests. Its effects on the cysteine proteinase activity of two closely related mite species revealed the high specificity of the chestnut cystatin.  相似文献   

8.
Proteinase inhibitors are widely distributed in animals, plants and microorganisms and their roles in plants are associated with defense against pests. The utilization of proteinase inhibitors for crop protection has been actively investigated with a variety of proteinase inhibitors. Soybean Kunitz trypsin inhibitor (SKTI), one of the major seed storage protein, is synthesized for a short period during seed development. To investigate the role of SKTI in a plant's defense system against insect predation, a recombinant plasmid containing the full-length cDNA of SKTI under control of the CaMV 35S promoter was introduced into rice protoplasts by using the PEG direct gene transfer method and a large number of transgenic rice plants were regenerated. The integration, expression, and inheritance of this gene was demonstrated in R1 and R2 generations by Southern, northern, and western analyses. Accumulation levels (0.05–2.5% of soluble proteins) of SKTI protein were detected in R1 and R2 plants. Bioassay with R1 and R2 transgenic plants revealed that transgenic plants are more resistant to destructive insect pest of rice, brown planthopper (Nilaparvata lugens Stål), than the control plants. Thus, introduction of SKTI into rice plants can be used to control insect pests.  相似文献   

9.
The maize proteinase inhibitor (mpi) gene was introduced into two elite japonica rice varieties. Both constitutive expression of the mpi gene driven by the maize ubiquitin 1 promoter and wound-inducible expression of the mpi gene driven by its own promoter resulted in the accumulation of MPI protein in the transgenic plants. No effect on plant phenotype was observed in mpi-expressing lines. The stability of transgene expression through successive generations of mpi rice lines (up to the T(4) generation) and the production of functional MPI protein were confirmed. Expression of the mpi gene in rice enhanced resistance to the striped stem borer (Chilo suppressalis), one of the most important pests of rice. In addition, transgenic mpi plants were evaluated in terms of their effects on the growth of C. suppressalis larvae and the insect digestive proteolytic system. An important dose-dependent reduction of larval weight of C. suppressalis larvae fed on mpi rice, compared with larvae fed on untransformed rice plants, was observed. Analysis of the digestive proteolytic activity from the gut of C. suppressalis demonstrated that larvae adapted to mpi transgene expression by increasing the complement of digestive proteolytic activity: the serine and cysteine endoproteinases as well as the exopeptidases leucine aminopeptidase and carboxypeptidases A and B. However, the induction of such proteolytic activity did not prevent the deleterious effects of MPI on larval growth. The introduction of the mpi gene into rice plants can thus be considered as a promising strategy to protect rice plants against striped stem borer.  相似文献   

10.
Cysteine proteinases from larvae of the common bean weevil, Acanthoscelides obtectus (Coleoptera: Bruchidae), were isolated by ion exchange affinity chromatography on a CM-Cellulose column and used to select mutant cystatins from a library made with the filamentous M13 phage display system. The library contained variant cystatins derived from the nematode Onchocerca volvulus cystatin through mutagenesis of loop 1, which contains the QVVAG motif that is involved in binding to proteinases. After three rounds of selection, the activity of variant cystatins against papain and cysteine proteinases from A. obtectus was assayed by ELISA. Two different variant cystatins (presenting amino acids DVVSA and NTSSA at positions 65-69) bound to A. obtectus cysteine proteinases more tightly than to papain. In contrast, the wild type had similar affinity for A. obtectus proteinases and for papain. These two selected variants cystatins have greater specificity towards A. obtectus cysteine proteinases than the original sequence and could represent good candidate genes for the production of transgenic plants resistant to this insect pest.  相似文献   

11.
Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to discover new ones with the capability to reduce the digestion process. The present study describes a novel proteinase inhibitor from chickpea seeds (Cicer arietinum L.) and its effects against A. grandis. This inhibitor, named CaTI, was purified by using affinity Red-Sepharose Cl-6B chromatography, followed by reversed-phase HPLC (Vydac C18-TP). SDS-PAGE and MALDI-TOF analyses, showed a unique monomeric protein with a mass of 12,877 Da. Purified CaTI showed significant inhibitory activity against larval cotton boll weevil serine proteinases (78%) and against bovine pancreatic trypsin (73%), when analyzed by fluorimetric assays. Although the molecular mass of CaTI corresponded to alpha-amylase/trypsin bifunctional inhibitors masses, no inhibitory activity against insect and mammalian alpha-amylases was observed. In order to observe CaTI in vivo effects, an inhibitor rich fraction was added to an artificial diet at different concentrations. At 1.5% (w/w), CaTI caused severe development delay, several deformities and a mortality rate of approximately 45%. These results suggested that CaTI could be useful in the production of transgenic cotton plants with enhanced resistance toward cotton boll weevil.  相似文献   

12.
A member of the potato proteinase inhibitor II (PPI II) gene family that encodes for a chymotrypsin iso-inhibitor has been introduced into tobacco (Nicotiana tabacum) usingAgrobacterium tumefaciens-mediated T-DNA transfer. Analysis of the primary transgenic plants (designated R0) confirmed that the introduced gene is being expressed and the inhibitor accumulates as an intact and fully functional protein. For insect feeding trials, progeny from the self-fertilization of R0 plants (designated R1) were used. Leaf tissue, either from transgenic or from control (non-transgenic) plants, was fed to larvae ofChrysodeixis eriosoma (Lepidoptera: Noctuidae, green looper),Spodoptera litura (F.) (Lepidoptera: Noctuidae) andThysanoplusia orichalcea (F.) (Lepidoptera: Noctuidae) and insect weight gain (increase in fresh weight) measured. Consistently,C. eriosoma larvae fed leaf tissue from transgenic plants expressing thePPI II gene grew slower than insects fed leaf tissue from non-transgenic plants or transgenic plants with no detectablePPI II protein accumulation. However, larvae of bothS. litura andT. orichalcea consistently demonstrated similar or faster growth when fed leaf tissue from transgenic plants compared with those fed non-transgenic plants. In agreement with the feeding trials, the chymotrypsin iso-inhibitor extracted from transgenic tobacco effectively retarded chymotrypsin-like activity measured inC. eriosoma digestive tract extracts, but not in extracts fromS. litura. We conclude, therefore, that for certain insects the use of chymotrypsin inhibitors should now be evaluated as an effective strategy to provide field resistance against insect pests in transgenic plants, but further, that a single proteinase inhibitor gene may not be universally effective against a range of insect pests. The significance of these observations is discussed with respect to the inclusion of chymotrypsin inhibitors in the composite of insect pest resistance factors that have been proposed for introduction into crop plants.  相似文献   

13.
为研究鱼类半胱氨酸蛋白酶抑制剂(Cystatin)的功能并探索其在水产加工和病害防治中的应用潜力,将PCR改造后的编码成熟肽中华鲟(Acipenser sinensis)cystatin 基因亚克隆到毕赤酵母整合型表达载体pPICZαA,氯化锂法转化毕赤酵母菌株GS115,构建表达cystatin的酵母基因工程菌。经甲醇诱导、SDSPAGE检测培养基上清液,表明中华鲟cystatin在毕赤酵母中实现了高效表达,重组cystatin表达量约为215mg·L-1。纯化后重组蛋白纯度达94.2%。生物活性检测结果表明,1μg重组中华鲟cystatin约能抑制15μg木瓜蛋白酶的水解活性。  相似文献   

14.
The plant cystatins or phytocystatins comprise a family of specific inhibitors of cysteine proteinases. Such inhibitors are thought to be involved in the regulation of several endogenous processes and in defence against pests and pathogens. Extensive searches in the complete rice and Arabidopsis genomes and in barley EST collections have allowed us to predict the presence of twelve different cystatin genes in rice, seven in Arabidopsis, and at least seven in barley. Structural comparisons based on alignments of all the protein sequences using the CLUSTALW program and searches for conserved motifs using the MEME program have revealed broad conservation of the main motifs characteristic of the plant cystatins. Phylogenetic analyses based on their deduced amino acid sequences have allowed us to identify groups of orthologous cystatins, and to establish homologies and define examples of gene duplications mainly among the rice and barley cystatin genes. Moreover, the absence of a counterpart between the two monocots, as well as strong variations in the motifs that interact with the cysteine proteinases, may be related to a species-specific evolutionary process. This cystatin classification should facilitate the assignment of proteinase specificities and functions to other cystatins as new information is obtained.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

15.
Phytocystatins are cysteine proteinase inhibitors in plants that are implicated in the endogenous regulation of protein turnover and defense mechanisms against insects and pathogens. A cDNA encoding a phytocystatin called AtCYS6 (Arabidopsis thaliana phytocystatin6) has been isolated. We show that AtCYS6 is highly expressed in dry seeds and seedlings and that it also accumulates in flowers. The persistence of AtCYS6 protein expression in seedlings was promoted by abscisic acid (ABA), a seed germination and post-germination inhibitory phytohormone. This finding was made in transgenic plants bearing an AtCYS6 promoter–β-glucuronidase (GUS) reporter construct, where we found that expression from the AtCYS6 promoter persisted after ABA treatment but was reduced under control conditions and by gibberellin4+7 (GA4+7) treatment during the germination and post-germinative periods. In addition, constitutive over-expression of AtCYS6 retarded germination and seedling growth, whereas these were enhanced in an AtCYS6 knock-out mutant (cys6-2). Additionally, cysteine proteinase activities stored in seeds were inhibited by AtCYS6 in transgenic Arabidopsis. From these data, we propose that AtCYS6 expression is enhanced by the germination inhibitory phytohormone ABA and that it participates in the control of germination rate and seedling growth by inhibiting the activity of stored cysteine proteinases.  相似文献   

16.
The resistance of a transgenic line of oilseed rape expressing constitutively the cysteine proteinase inhibitor oryzacystatin I (OCI) was assessed against Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae). The levels of OCI expression in the transformed line averaged 0.2% and 0.05% of total soluble protein in leaves and petioles respectively. In vitro analyses showed that P. chrysocephala larvae use both cysteine and serine proteinases for protein digestion, and that all the cysteine proteolytic activity is OCI-sensitive. However, bioassays showed that adults fed identically on leaf discs from control or transformed plants. When larvae were reared on transgenic plants expressing OCI, they showed an increase in weight gain compared to those reared on control plants. Furthermore, those larvae from transgenic plants exhibited a 2-fold increase in both cysteine and serine proteolytic activity as a reponse to the presence of OCI. The plasticity of insect digestive physiology and feeding behaviour are discussed, as well as the relevance of engineering a genotype expressing both types of proteinase inhibitors.  相似文献   

17.
Oryzacystatin (oryzacystatin-I) is a proteinaceous cysteine proteinase inhibitor (cystatin) in rice seeds and is the first well defined cystatin of plant origin. In this study we isolated cDNA clones for a new type of cystatin (oryzacystatin-II) in rice seeds by screening with the oryzacystatin-I cDNA probe. The newly isolated cDNA clone encodes 107 amino acid residues whose sequence is similar to that of oryzacystatin-I (approximately 55% of identity). These oryzacystatins have no disulfide bonds, and so could be classified as family-I cystatins; however, the amino acid sequences resemble those of family-II members more than family-I members. Oryzacystatin-I and -II are remarkably distinct in two respects: 1) their specificities against cysteine proteinases; and 2) the expression patterns of their mRNAs in the ripening stage of rice seeds. Oryzacystatin-I inhibits papain more effectively (Ki 3.0 x 10(-8) M) than cathepsin H (Ki 0.79 x 10(-6) M), while oryzacystatin-II inhibits cathepsin H (Ki 1.0 x 10(-8) M) better than papain (Ki 0.83 x 10(-6) M). The mRNA for oryzacystatin-I is expressed maximally at 2 weeks after flowering and is not detected in mature seeds, whereas the mRNA for oryzacystatin-II is constantly expressed throughout the maturation stages and is clearly detected in mature seeds. Western blotting analysis using antibody to oryzacystatin-II showed that, as is the case with oryzacystatin-I, oryzacystatin-II occurs in mature rice seeds. Thus, these two oryzacystatin species are believed to be involved in the regulation of proteolysis caused by different proteinases.  相似文献   

18.
Larvae of Baris coerulescens Scop. (Coleoptera: Curculionidæ) exhibit a complex array of gut proteinase activities comprising cysteine and serine proteinases. The major cysteine proteinase activity, showing an optimum at pH 6.0, corresponds to at least 4 different proteinases. On the contrary, the minor serine proteinase activity, with an optimum at pH 9.0, seems to be due essentially to a single proteinase. The cysteine proteinase inhibitor oryzacystatin I (OC-I) inhibits completely the cysteine proteinase activity in vitro. However, larval growth and survival were not significantly different on control and transgenic oilseed rape plants expressing high levels of active OC-I. In larvae grown on transgenic plants, cysteine proteinase activity was dramatically decreased, whereas serine proteinase activity was increased by more than 2-fold, when compared to larvae raised on control plants. For both activities, no new proteinase was detected in insects fed plants expressing OC-I. These results suggest that partial compensation of the inhibition of cysteine proteinase activity by the increase in serine proteinase activity allowed the larvae to overcome the effects of OC-I consumption. This case illustrates problems that could arise when trying to achieve high levels of protection for plants against Coleopteran pests possessing a complex digestive proteinase pool.  相似文献   

19.
We observed recently that the rice cysteine proteinase inhibitor, oryzacystatin I (OCI) expressed in transgenic potato does not affect growth and development of the two-spotted stinkbug predator (Perillus bioculatus) via its herbivorous prey feeding on the plant. Here we monitored the inhibitory activity of recombinant OCI along this potato --> herbivore --> predator continuum, to determine if the absence of effect was associated with a digestive compensatory response of the predator following inhibition of its proteinases by the recombinant cystatin. After confirming that OCI is present in the plant, and ingested in an active form by potato beetle larvae, quantitative and electrophoretic assays allowed us to determine that the recombinant cystatin (representing about 0.8% of total soluble proteins in leaves) was entirely bound to a approximately 30-kDa target proteinase in the prey's midgut, forming a sodium dodecyl sulphate (SDS)-stable complex detected on immunoblots with an anti-OCI polyclonal antibody. Despite the apparent absence of free, residual OCI in the beetle's midgut, digestive protease activity in the predator, known to include OCI-sensitive activity, was altered negatively when the prey was fed the modified plant. This inhibitory process at the third trophic level was accompanied by a compensatory response in the predator, by which serine-type proteinases were synthesized de novo. Overall, our data suggest that the affinity between OCI and the predator's OCI-sensitive proteinases is: (i) as strong as (or stronger than) the affinity between OCI and the potato beetle 30-kDa-sensitive proteinase; and (ii) stronger than the affinity between these enzymes and the plant endogenous homologue of OCI, potato multicystatin, induced in the plant by potato beetle feeding. Our results also show that predatory organisms can adapt their digestive metabolism to the presence of plant antidigestive proteins ingested by their herbivorous preys. In a broader context, this study stresses the need to monitor the inhibitory effects of PI-expressing plants not only on the herbivorous insects targeted, but also on the organisms likely to consume these pests in the environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号