首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The oxidation of plastoquinol by the cytochrome bf complex is commonly believed to be the rate limiting step in photosynthetic electron transport. When input of electrons from PS II exceeds electron flow through the cytochrome bf complex the plastoquinone pool becomes reduced. A voltammetric technique previously used to measure the redox state of the ubiquinone pool in plant mitochondria, was modified to measure the redox state of the plastoquinone pool in thylakoids. The presence or absence of a proton gradient strongly influenced the relationship between the redox state of the plastoquinone pool and other photosynthetic parameters. A linear relationship between the rate of electron transport and the reduction of plastoquinone was found. The slope of this relationship was greater in coupled than in uncoupled thylakoids, indicating that under coupled conditions the plastoquinone pool is more reduced at any given rate of electron flow. A complex relationship was found between QA reduction, calculated as 1 – q_p, and the redox state of the plastoquinone pool. The extent of Q_A reduction was similar in coupled and uncoupled thylakoids, but at any given level of Q_A reduction, PQ was always more reduced in coupled thylakoids. These results suggest that the presence of a proton gradient changes the equilibrium constant between Q_A and PQ.  相似文献   

3.
4.
Joly D  Carpentier R 《Biochemistry》2007,46(18):5534-5541
The effect of exogenous plastoquinone (PQ) on the different deexcitation pathways of photosystem I (PSI) was investigated. Addition of oxidized decyl-plastoquinone (dPQ) and PQ-2 strongly quenched the chlorophyll (Chl) emission spectra of PSI submembrane fractions over all wavelengths. This quenching increased with the concentration of exogenous PQ added and followed the modified Stern-Volmer law. The Stern-Volmer constants found for dPQ and PQ-2 were 1.25 x 10(6) M-1 and 0.55 x 10(6) M-1, respectively, and the fraction of fluorescence accessible to the quencher was 0.7 for both exogenous PQ. dPQ and PQ-2 also retarded the P700 photooxidation measured under limiting actinic light irradiances. Photoacoustic measurements showed that addition of dPQ increased the heat dissipation and decreased the photochemical capacity of PSI. From these results, exogenous oxidized PQ were shown to efficiently quench the Chl excited state in the PSI antenna and change the balance between Chl deexcitation pathways. Moreover, reduction of the endogenous PQ pool in whole thylakoid membranes by NADPH increased PSI fluorescence by 65%, indicating the importance of the redox state of the PQ pool on PSI energy dissipation.  相似文献   

5.
Riccardi D  König P  Guo H  Cui Q 《Biochemistry》2008,47(8):2369-2378
Combined quantum mechanical/molecular mechanical (QM/MM) simulations are carried out to analyze factors that dictate the proton transfer in carbonic anhydrase II (CAII), an enzyme that has been used as a prototypical example of long-range proton transfers in biomolecules. In contrast to the long-held conjecture in the experimental literature, the computed potentials of mean force (PMF) suggest that the proton transfer in CAII is not very sensitive to the orientation of the acceptor group (His 64) and, therefore, the number of water molecules that bridge the donor (zinc-water) and acceptor groups. Perturbative analysis indicates that a series of polar and charged residues close to the transfer pathways make the dominant contribution to the barrier and exothermicity of the proton transfer reaction, thus supporting the proposal from previous studies of Warshel and co-workers using a somewhat simpler QM/MM model that electrostatic interactions play a major role in the proton transfer in CAII. The PMF results are in striking contrast to previous analysis using the same QM/MM method but an ensemble of minimum energy path (MEP) calculations, which found a steep dependence of the barrier height on the number of bridging water molecules. Analysis of the configurations sampled in the PMF and MEP simulations suggests that this difference arises because the PMF simulations sample a largely stepwise mechanism while the local MEP calculations artificially favored concerted transfers due to the specific protocol used to generate the initial configurations. Therefore, this study presents a compelling argument for carrying out proper conformational sampling in the study of long-range proton transfers. Finally, we illustrate that Phi analysis, which has been widely used in protein folding studies, can potentially generate new mechanistic information for long-range proton transfers regarding the sequence of events. The results of the perturbation analysis and the Phi analysis provide opportunities for experimentally testing the mechanistic proposals from this study and our recent work in which a stepwise "proton hole" transfer pathway has been proposed.  相似文献   

6.
7.
8.
9.
The review covers data representing the plastoquinone pool as the component integrated in plant antioxidant defense and plant signaling. The main goal of the review is to discuss the evidence describing the plastoquinone‐involved biochemical reactions, which are incorporated in maintaining the sustainability of higher plants to stress conditions. In this context, the analysis of the reactions of various redox forms of plastoquinone with oxygen species is presented. The review describes how these reactions can constitute both the antioxidant and signaling functions of the pool. Special attention is paid to the reaction of superoxide anion radicals with plastohydroquinone molecules, producing hydrogen peroxide as signal molecules. Attention is also given to the processes affecting the redox state of the plastoquinone pool because the redox state of the pool is of special importance for antioxidant defense and signaling.  相似文献   

10.
11.
12.
13.
We have described a direct, high-performance liquid chromatography-based method of estimation of the total level of plastoquinone (PQ) in leaves, the redox state of total (photoactive and non-photoactive) PQ, as well as the redox state of the PQ-pool that is applicable to any illumination conditions. This method was applied to Arabidopsis thaliana leaves but it can be applied to any other plant species. The obtained results show that the level of total PQ was 25+/-3 molecules/1000 chlorophyll (Chl) molecules in relation to foliar total Chl content. The level of the photoactive PQ, i.e., the PQ-pool, was about 31% of the total PQ present in Arabidopsis leaves that corresponds to about 8 PQ molecules/1000 Chl molecules. The reduction level of the non-photoactive PQ fraction, present outside thylakoids in chloroplasts, was estimated to account for about 49%. The measurements of the redox state of the PQ-pool showed that the pool was reduced during the dark period in about 24%, and during the light period (150 micromol/m(2).s) the reduction of the PQ-pool increased to nearly 100%. The obtained results were discussed in terms of the activity of chlororespiration pathways in Arabidopsis and the regulatory role of the redox state of PQ-pool in various physiological and molecular processes in plants.  相似文献   

14.
15.
16.
17.
18.
Jerzy Kruk  Stanislaw Karpinski 《BBA》2006,1757(12):1669-1675
We have described a direct, high-performance liquid chromatography-based method of estimation of the total level of plastoquinone (PQ) in leaves, the redox state of total (photoactive and non-photoactive) PQ, as well as the redox state of the PQ-pool that is applicable to any illumination conditions. This method was applied to Arabidopsis thaliana leaves but it can be applied to any other plant species. The obtained results show that the level of total PQ was 25 ± 3 molecules/1000 chlorophyll (Chl) molecules in relation to foliar total Chl content. The level of the photoactive PQ, i.e., the PQ-pool, was about 31% of the total PQ present in Arabidopsis leaves that corresponds to about 8 PQ molecules/1000 Chl molecules. The reduction level of the non-photoactive PQ fraction, present outside thylakoids in chloroplasts, was estimated to account for about 49%. The measurements of the redox state of the PQ-pool showed that the pool was reduced during the dark period in about 24%, and during the light period (150 μmol/m2·s) the reduction of the PQ-pool increased to nearly 100%. The obtained results were discussed in terms of the activity of chlororespiration pathways in Arabidopsis and the regulatory role of the redox state of PQ-pool in various physiological and molecular processes in plants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号