首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To better understand the mechanism of divergent electron transfer from ubiquinol to the iron-sulfur protein and cytochrome b(L) within the cytochrome bc(1) complex, we have examined the effects of antimycin on the presteady state reduction kinetics of the bc(1) complex in the presence or absence of endogenous ubiquinone. When ubiquinone is present, antimycin slows the rate of cytochrome c(1) reduction by approximately 10-fold but had no effect upon the rate of cytochrome c(1) reduction in bc(1) complex lacking endogenous ubiquinone. In the absence of endogenous ubiquinone cytochrome c(1), reduction was slower than when ubiquinone was present and was similar to that in the presence of ubiquinone plus antimycin. These results indicate that the low potential redox components, cytochrome b(H) and b(L), exert negative control on the rate of reduction of cytochrome c(1) and the Rieske iron-sulfur protein at center P. If electrons cannot equilibrate from cytochrome b(H) and b(L) to ubiquinone, partial reduction of the low potential components slows reduction of the high potential components. We also examined the effects of decreasing the midpoint potential of the iron-sulfur protein on the rates of cytochrome b reduction. As the midpoint potential decreased, there was a parallel decrease in the rate of b reduction, demonstrating that the rate of b reduction is dependent upon the rate of ubiquinol oxidation by the iron-sulfur protein. Together these results indicate that ubiquinol oxidation is a concerted reaction in which both the low potential and high potential redox components control ubiquinol oxidation at center P, consistent with the protonmotive Q cycle mechanism.  相似文献   

2.
To confirm that the cytochrome bc(1) complex exists as a dimer with intertwining Rieske iron-sulfur proteins in solution, four Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes containing two pairs of cysteine substitutions, one in the interface between the head domain of iron-sulfur protein (ISP) and cytochrome b and the other between the tail domain of ISP and cytochrome b, were generated and characterized. They are: K70C(ISP)/A185C(cytb).P33C(ISP)/G89C(cytb), K70C(ISP)/A185C(cytb).P33C(ISP)/M92C (cytb), K70C (ISP)/A185C(cytb).L34C(ISP)/V64C(cytb), and K70C(ISP)/A185C(cytb).N36C(ISP)/G89C(cytb). The K70C(ISP)/A185C(cytb) cysteine pair cross-links the head domain of ISP and cytochrome b; the P33C(ISP)/G89C(cytb), P33C(ISP)/M92C (cytb), L34C(ISP)/V64C(cytb), and N36C(ISP)/G89C(cytb) cysteine pairs cross-link the tail domain of ISP and cytochrome b. An adduct protein with an apparent molecular mass of 128 kDa containing two cytochrome b and two ISP proteins is detected in the K70C(ISP)/A185C(cytb).P33C(ISP)/G89C(cytb) and K70C(ISP)/A185C(cytb).N36C(ISP)/G89C(cytb) mutant complexes, confirming that the bc(1) complex exists as a dimer with intertwining ISPs. The loss of activity in these two double-cysteine-pair mutant complexes was attributed to the disulfide bond between the head domain of ISP and cytochrome b and not the one between the tail domain of ISP and cytochrome b.  相似文献   

3.
Structural analysis of the dimeric mitochondrial cytochrome bc1 complex suggests that electron transfer between inter-monomer hemes bL-bL may occur during bc1 catalysis. Such electron transfer may be facilitated by the aromatic pairs present between the two bL hemes in the two symmetry-related monomers. To test this hypothesis, R. sphaeroides mutants expressing His6-tagged bc1 complexes with mutations at three aromatic residues (Phe-195, Tyr-199, and Phe-203), located between two bL hemes, were generated and characterized. All three mutants grew photosynthetically at a rate comparable to that of wild-type cells. The bc1 complexes prepared from mutants F195A, Y199A, and F203A have, respectively, 78%, 100%, and 100% of ubiquinol-cytochrome c reductase activity found in the wild-type complex. Replacing the Phe-195 of cytochrome b with Tyr, His, or Trp results in mutant complexes (F195Y, F195H, or F195W) having the same ubiquinol-cytochrome c reductase activity as the wild-type. These results indicate that the aromatic group at position195 of cytochrome b is involved in electron transfer reactions of the bc1 complex. The rate of superoxide anion (O2*) generation, measured by the chemiluminescence of 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-alpha]pyrazin-3-one hydrochloride-O2* adduct during oxidation of ubiquinol, is 3 times higher in the F195A complex than in the wild-type or mutant complexes Y199A or F203A. This supports the idea that the interruption of electron transfer between the two bL hemes enhances electron leakage to oxygen and thus decreases the ubiquinol-cytochrome c reductase activity.  相似文献   

4.
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.  相似文献   

5.
6.
A protein named oxidation factor can be reversibly removed from succinate-cytochrome c reductase complex and shown to be required for electron transfer between succinate and cytochrome c. This protein is required for reduction of cytochrome c1 and, in the presence of antimycin, for reduction of both cytochromes b and c1. These results are consistent with a protonmotive Q cycle mechanism in which the oxidation factor catalyzes electron transfer from reduced quinone to cytochrome c1 and thus liberates from reduced quinone one of two protons required for energy conservation during electron transfer through the cytochrome b-c1 complex.  相似文献   

7.
The ubisemiquinone stabilized at the Qi-site of the bc1 complex of Rhodobacter sphaeroides forms a hydrogen bond with a nitrogen from the local protein environment, tentatively identified as ring N from His-217. The interactions of 14N and 15N have been studied by X-band (approximately 9.7 GHz) and S-band (3.4 GHz) pulsed EPR spectroscopy. The application of S-band spectroscopy has allowed us to determine the complete nuclear quadrupole tensor of the 14N involved in H-bond formation and to assign it unambiguously to the Nepsilon of His-217. This tensor has distinct characteristics in comparison with H-bonds between semiquinones and Ndelta in other quinone-processing sites. The experiments with 15N showed that the Nepsilon of His-217 was the only nitrogen carrying any considerable unpaired spin density in the ubiquinone environment, and allowed calculation of the isotropic and anisotropic couplings with the Nepsilon of His-217. From these data, we could estimate the unpaired spin density transferred onto 2s and 2p orbitals of nitrogen and the distance from the nitrogen to the carbonyl oxygen of 2.38+/-0.13A. The hyperfine coupling of other protein nitrogens with semiquinone is <0.1 MHz. This did not exclude the nitrogen of the Asn-221 as a possible hydrogen bond donor to the methoxy oxygen of the semiquinone. A mechanistic role for this residue is supported by kinetic experiments with mutant strains N221T, N221H, N221I, N221S, N221P, and N221D, all of which showed some inhibition but retained partial turnover.  相似文献   

8.
We have measured the rates of superoxide anion generation by cytochrome bc1 complexes isolated from bovine heart and yeast mitochondria and by cytochrome bc1 complexes from yeast mutants in which the midpoint potentials of the cytochrome b hemes and the Rieske iron-sulfur cluster were altered by mutations in those proteins. With all of the bc1 complexes the rate of superoxide anion production was greatest in the absence of bc1 inhibitor and ranged from 3% to 5% of the rate of cytochrome c reduction. Stigmatellin, an inhibitor that binds to the ubiquinol oxidation site in the bc1 complex, eliminated superoxide anion formation, while myxothiazol, another inhibitor of ubiquinol oxidation, allowed superoxide anion formation at a low rate. Antimycin, an inhibitor that binds to the ubiquinone reduction site in the bc1 complex, also allowed superoxide anion formation and at a slightly greater rate than myxothiazol. Changes in the midpoint potentials of the cytochrome b hemes had no significant effect on the rate of cytochrome c reduction and only a small effect on the rate of superoxide anion formation. A mutation in the Rieske iron-sulfur protein that lowers its midpoint potential from +285 to +220 mV caused the rate of superoxide anion to decline in parallel with a decline in cytochrome c reductase activity. These results indicate that superoxide anion is formed by similar mechanisms in mammalian and yeast bc1 complexes. The results also show that changes in the midpoint potentials of the redox components that accept electrons during ubiquinol oxidation have only small effects on the formation of superoxide anion, except to the extent that they affect the activity of the enzyme.  相似文献   

9.
The cytochrome bc1 complex of photosynthetic bacteria   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membrane, with protons being carried across the membrane as hydrogens on the quinol. The linkage of proton chemistry to electron transfer during quinol oxidation and quinone reduction requires pathways for moving protons to and from the aqueous phase and the hydrophobic environment in which the quinol and quinone redox reactions occur. Crystal structures of the mitochondrial cytochrome bc(1) complexes in various conformations allow insight into possible proton conduction pathways. In this review we discuss pathways for proton conduction linked to ubiquinone redox reactions with particular reference to recently determined structures of the yeast bc(1) complex.  相似文献   

12.
Fei Zhou  Ying Yin  Ting Su  Linda Yu  Chang-An Yu 《BBA》2012,1817(12):2103-2109
The effect of molecular oxygen on the electron transfer activity of the cytochrome bc1 complex was investigated by determining the activity of the complex under the aerobic and anaerobic conditions. Molecular oxygen increases the activity of Rhodobacter sphaeroides bc1 complex up to 82%, depending on the intactness of the complex. Since oxygen enhances the reduction rate of heme bL, but shows no effect on the reduction rate of heme bH, the effect of oxygen in the electron transfer sequence of the cytochrome bc1 complex is at the step of heme bL reduction during bifurcated oxidation of ubiquinol.  相似文献   

13.
Pulsed EPR spectroscopy was used to explore the structural neighborhood of the semiquinone (SQ) stabilized at the Qi site of the bc1 complex of Rhodobacter sphaeroides (EC 1.10.2.2) and to demonstrate that the nitrogen atom of a histidine imidazole group donates an H-bond to the SQ. Crystallographic structures show two different configurations for the binding of ubiquinone at the Qi site of mitochondrial bc1 complexes in which histidine (His-201 in bovine sequence) is either a direct H-bond donor or separated by a bridging water. The paramagnetic properties of the SQ formed at the site provide an independent method for studying the liganding of this intermediate species. The antimycin-sensitive SQ formed at the Qi site by either equilibrium redox titration, reduction of the oxidized complex by ascorbate, or addition of decylubihydroquinone to the oxidized complex in the presence of myxothiazol all showed similar properties. The electron spin echo envelope modulation spectra in the 14N region were dominated by lines with frequencies at 1.7 and 3.1 MHz. Hyperfine sublevel correlation spectroscopy spectra showed that these were contributed by a single nitrogen. Further analysis showed that the 14N nucleus was characterized by an isotropic hyperfine coupling of approximately 0.8 MHz and a quadrupole coupling constant of approximately 0.35 MHz. The nitrogen was identified as the N-epsilon or N-delta imidazole nitrogen of a histidine (it is likely to be His-217, or His-201 in bovine sequence). A distance of 2.5-3.1 A for the O-N distance between the carbonyl of SQ and the nitrogen was estimated. The mechanistic significance is discussed in the context of a dynamic role for the movement of His-217 in proton transfer to the site.  相似文献   

14.
The cytochrome bc1 complex recycles one of the two electrons from quinol (QH2) oxidation at center P by reducing quinone (Q) at center N to semiquinone (SQ), which is bound tightly. We have analyzed the properties of SQ bound at center N of the yeast bc1 complex. The EPR-detectable signal, which reports SQ bound in the vicinity of reduced bH heme, was abolished by the center N inhibitors antimycin, funiculosin, and ilicicolin H, but was unchanged by the center P inhibitors myxothiazol and stigmatellin. After correcting for the EPR-silent SQ bound close to oxidized bH, we calculated a midpoint redox potential (Em) of approximately 90 mV for all bound SQ. Considering the Em values for bH and free Q, this result indicates that center N preferentially stabilizes SQ.bH(3+) complexes. This favors recycling of the electron coming from center P and also implies a >2.5-fold higher affinity for QH2 than for Q at center N, which would potentially inhibit bH oxidation by Q. Using pre-steady-state kinetics, we show that Q does not inhibit the initial rate of bH reduction by QH2 through center N, but does decrease the extent of reduction, indicating that Q binds only when bH is reduced, whereas QH2 binds when bH is oxidized. Kinetic modeling of these results suggests that formation of SQ at one center N in the dimer allows stabilization of SQ in the other monomer by Q reduction after intradimer electron transfer. This model allows maximum SQ.bH(3+) formation without inhibition of Q binding by QH2.  相似文献   

15.
Isolated rat hepatocytes were labeled with [35S]methionine in the absence or presence of cycloheximide or chloramphenicol. The cytochrome bc1 complex was isolated from labeled cells by a micromethod and analyzed by SDS-polyacrylamide gel electrophoresis and fluorography. All subunits except the two smallest, subunits VII and VIII, were labeled in the absence of translational inhibitors. In the presence of cycloheximide only subunit III (molecular weight, 30 000) was labeled. This polypeptide, identified as an apo-cytochrome b, was weakly labeled with [35S]methionine in the presence of cycloheximide, indicating a strict dependence of cytoplasmically synthesized products for its assembly. In the presence of chloramphenicol, labeling was inhibited only in subunit III.  相似文献   

16.
To determine the effect of the redox state of the Rieske protein on ligand binding to the quinol oxidation site of the bc(1) complex, we measured the binding rate constants (k(1)) for stigmatellin and myxothiazol, at different concentrations of decylbenzoquinone or decylbenzoquinol, in the bovine bc(1) complex with the Rieske protein in the oxidized or reduced state. Stigmatellin and myxothiazol bound tightly and competitively with respect to quinone or quinol, independently of the redox state of the Rieske protein. In the oxidized bc(1) complex, the k(1) values for stigmatellin ( approximately 2.6 x 10(6) m(-1)s(-1)) and myxothiazol ( approximately 8 x 10(5) m(-1)s(-1)), and the dissociation constant (K(d)) for quinone, were similar between pH 6.5 and 9, indicating that ligand binding is independent of the protonation state of histidine 161 of the Rieske protein (pK(a) approximately 7.6). Reduction of the Rieske protein increased the k(1) value for stigmatellin and decreased the K(d) value for quinone by 50%, without modifying the k(1) for myxothiazol. These results indicate that reduction of the Rieske protein and protonation of histidine 161 do not induce a strong stabilization of ligand binding to the quinol oxidation site, as assumed in models that propose the existence of a highly stabilized semiquinone as a reaction intermediate during quinol oxidation.  相似文献   

17.
A detergent-solubilized, three-subunit-containing cytochrome bc1 complex, isolated from the photosynthetic bacterium R. rubrum, has been shown to be highly sensitive to stigmatellin, myxothiazol, antimycin A and UHDBT, four specific inhibitors of these complexes. Oxidation-reduction titrations have allowed the determination of Em values for all the electron-carrying prosthetic groups in the complex. Antimycin A has been shown to produce a red shift in the alpha-band absorbance maximum of one of the cytochrome b hemes in the complex and stigmatellin has been shown to alter both the Em and EPR g-values of the Rieske iron-sulfur protein in the complex. Western blots have revealed antigenic similarities between the cytochrome subunits of the R. rubrum complex and those of the related photosynthetic bacteria, Rb. capsulatus and Rb. sphaeroides. The R. rubrum complex has been incorporated into liposomes. These liposomes exhibit respiratory control and are able to couple electron transfer from quinol to cytochrome c to proton translocation across the liposome membrane in a manner consistent with a Q-cycle mechanism. It can thus be concluded that neither electron transport nor coupled proton translocation by the cytochrome bc1 complex requires more than three subunits in R. rubrum.  相似文献   

18.
The three-dimensional structure of the mitochondrial cytochrome bc1 complex suggests that movement of the extramembrane domain (head) of the Rieske iron-sulfur protein (ISP) may play an important role in electron transfer. Such movement requires flexibility in the neck region of ISP, since the head and transmembrane domains of the protein are rather rigid. To test this hypothesis, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc1 complexes with cysteine substitution at various positions in the ISP neck (residues 39-48) were generated and characterized. The mutants with a single cysteine substitution at Ala42 or Val44 and a double cysteine substitution at Val44 and Ala46 (VQA-CQC) or at Ala42 and Ala46 (ADVQA-CDVQC) have photosynthetic growth rates comparable with that of complement cells. Chromatophore membrane and intracytoplasmic membrane (ICM) prepared from these mutants have cytochrome bc1 complex activity similar to that in the complement membranes, indicating that flexibility of the neck region of ISP was not affected by these cysteine substitutions. Mutants with a double cysteine substitution at Ala42 and Val44 (ADV-CDC) or at Pro40 and Ala42 (PSA-CSC) have a retarded (50%) or no photosynthetic growth rate, respectively. The ADV-CDC or PSA-CSC mutant ICM contains 20 or 0% of the cytochrome bc1 complex activity found in the complement ICM. However, activity can be restored by the treatment with beta-mercaptoethanol (beta-ME). The restored activity is diminished upon removal of beta-ME but is retained if the beta-ME-treated membrane is treated with the sulfhydryl reagent N-ethylmaleimide or p-chloromercuribenzoic acid. These results indicate that the loss of bc1 complex activity in the ADV-CDC or PSA-CSC mutant membranes is due to disulfide bond formation, which increases the rigidity of ISP neck and, in turn, decreases the mobility of the head domain. Using the conditions developed for the isolation of His-tagged complement cytochrome bc1 complex, a two-subunit complex (cytochromes b and c1) is obtained from all of the double cysteine-substituted mutants. This suggests that introduction of two cysteines in the neck region of ISP weakens the interactions between cytochromes b, ISP, and subunit IV.  相似文献   

19.
Chromatophore membranes isolated from the bacteriochlorophyll b-containing, photosynthetic purple nonsulfur bacterium, Rhodopseudomonas viridis, have been shown to contain a Rieske iron-sulfur protein, a cytochrome similar to cytochrome c1, and also at least one b-type cytochrome. These observations suggest the presence of a previously undetected cytochrome bc1 complex in this bacterium.  相似文献   

20.
Reduction of cytochrome b-560 (analogous to cyt b-562 of mitochondria) via an antimycin-sensitive route has been revealed in chromatophores of the photosynthetic bacterium, Rhodopseudomonas sphaeroides Ga. Indeed, the results suggest that two reductive mechanisms can be operative. One is consistent with the idea that the quinol generated at the reaction center QB site enters the Q pool and, via the Qc site, equilibrates with cytochrome b-560. The other reductive mode circumvents redox equilibrium with the pool; we consider that this could result from a direct encounter of the reaction center with the bc1 complex perhaps involving a direct QB-Qc site interaction. This latter reaction is suppressed by occupancy of the Qc site, not only by antimycin but by ubiquinol and ubiquinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号