首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice.  相似文献   

2.
Male NMRI-mice were subjected to exhaustive treadmill exercise. 3 and 6 days after the exertion, quadriceps femoris muscles were examined histologically and analyzed for acid hydrolases in order to follow the degree and progress of injuries. Prednisolone (PRED), an anti-inflammatory corticosteroid, was given to some of the animals in order to modify the exercise response. The PRED administration began 14 h before exercise and continued until the end of the experiment (6 days). The doses were 25 and 50 mg . kg-1 i.p. twice a day. The activities of both arylsulphatase and beta-glucuronidase increased significantly in the exercise control group after 3 and 6 days. The increase in activity correlated with fibre necrosis and an abundant infiltration of inflammatory cells, and was greatest after 3 days. After 6 days the inflammatory response decreased and regenerating muscle fibres were seen. PRED decreased the exercise-induced acid hydrolase response. The decrease was most prominent after 3 days with PRED 50 mg . kg-1 . day-1. PRED also diminished degeneration and inflammation. The results suggest that the decrease in acid hydrolase activities was due to a lesser infiltration of inflammatory cells to the injured area.  相似文献   

3.
To endure prolonged fasting, animals undergo important acute physiological adjustments. However, whether severe fasting also leads to long-term metabolic adaptations is largely unknown. Forty-eight-hour fasting caused a pronounced weight loss in adult C57BL/6 male mice. Seven days of refeeding increased body adiposity to levels above baseline, whereas fasting-induced reductions in lean body mass and energy expenditure were not fully recovered. Respiratory exchange ratio and locomotor activity also remained altered. A fasting/refeeding cycle led to persistent suppression of Pomc mRNA levels and significant changes in the expression of histone deacetylases and DNA methyltransferases in the hypothalamus. Additionally, histone acetylation in the ventromedial nucleus of the hypothalamus was reduced by prolonged fasting and remained suppressed after refeeding. Mice subjected to 48-h fasting 30 days earlier exhibited higher body weight and fat mass compared to aged-matched animals that were never food-deprived. Furthermore, a previous fasting experience altered the changes in body weight, lean mass, energy expenditure and locomotor activity induced by a second cycle of fasting and refeeding. Notably, when acutely exposed to high-palatable/high-fat diet, mice that went through cumulative fasting episodes presented higher calorie intake and reduced energy expenditure and fat oxidation, compared to mice that had never been subjected to fasting. When chronically exposed to high-fat diet, mice that experienced cumulative fasting episodes showed higher gain of body and fat mass and reduced energy expenditure and calorie intake. In summary, cumulative episodes of prolonged fasting lead to hypothalamic epigenetic changes and long-lasting metabolic adaptations in mice.  相似文献   

4.
The present study was conducted to investigate the metabolic regulation of the oxidation of branched-chain amino acids (BCAA) by exercise in human skeletal muscle. Five trained male volunteers were exercised on a cycle ergometer at 70% +/- 10% (mean +/- SD) of their maximal oxygen consumption (VO2max). Percutaneous quadriceps muscle biopsies were obtained under local anaesthesia at rest and after 30 and 120 min of exercise. In the muscle samples the active and total amount of the branched-chain 2-oxo acid dehydrogenase complex (BC-complex), the regulatory enzyme in the oxidative pathway of the BCAA, were measured. Glycogen content and activity of mitochondrial marker enzymes were also measured. Blood samples were obtained every 20 min for the measurement of metabolites. Heart rate and rated perceived exertion on the Borg scale were recorded every 10 min. At rest 4.0% +/- 2.5% of the BC complex was active, after 30 min of exercise 9.9% +/- 9.0% and after 120 min 17.5% +/- 8.5% (mean +/- SD). Exercise did not change the total activity. The largest activation was seen in two of the subjects who developed higher blood lactates early on during exercise and decreased their muscle glycogen more (indications of anaerobic metabolism). These data demonstrate that in trained individuals significant increases in the activity of the BC-complex occur only after prolonged intense exercise. In spite of the 4-fold activation, the data support the classical view that amino acids and protein do not contribute substantially as an energy source during exercise, since VO2 increased more than 20-fold.  相似文献   

5.
We studied the effects of prolonged running exercise (5 days a week, 1.5 h per day at a speed of 17.6 m/min) on the activity of some acid hydrolases (beta-glucuronidase, beta-N-acetylglucosaminidase, acid phosphatase and cathepsin D) and three enzymes of energy metabolism (cytochrome c oxidase, lactate dehydrogenase and creatine kinase) in the distal and in the proximal, the predominantly white and red parts, respectively, of the vastus lateralis-muscle from mice. The acid hydrolase activity levels were 1.24--1.69 higher in untrained red muscle compared to untrained white muscle. The light training applied increased the activity of beta-glucuronidase in both red and white muscle. No other significant training effects were observed in the enzyme activities measured.  相似文献   

6.
The effects of fasting/refeeding and untreated or insulin-treated diabetes on the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and its mRNA in rat liver were determined. Both enzymatic activities fell to 20% of control values with fasting or streptozotocin-induced diabetes and were coordinately restored to normal within 48 h of refeeding or 24 h of insulin administration. These alterations in enzymatic activities were always mirrored by corresponding changes in amount of enzyme as determined by phosphoenzyme formation and immunoblotting. In contrast, mRNA for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase did not decrease during starvation or in diabetes, but there was a 3-6-fold increase upon refeeding a high carbohydrate diet to starved rats or insulin treatment of diabetic rats. The decrease of the enzyme in starved or diabetic rats without associated changes in mRNA levels suggests a decrease in the rate of mRNA translation, an increase in enzyme degradation, or both. The rise in enzyme amount and mRNA for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with refeeding and insulin treatment suggests an insulin-dependent stimulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression. Northern blots of RNA from heart, brain, kidney, and skeletal muscle probed with restriction fragments of a full-length cDNA from liver showed that only skeletal muscle contained an RNA species that hybridized to any of the probes. Skeletal muscle mRNA for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was 2.0 kilobase pairs but in contrast to the liver message (2.2 kilobase pairs) was not regulated by refeeding.  相似文献   

7.
The glucose storage polymer glycogen is generally considered to be an important source of energy for skeletal muscle contraction and a factor in exercise endurance. A genetically modified mouse model lacking muscle glycogen was used to examine whether the absence of the polysaccharide affects the ability of mice to run on a treadmill. The MGSKO mouse has the GYS1 gene, encoding the muscle isoform of glycogen synthase, disrupted so that skeletal muscle totally lacks glycogen. The morphology of the soleus and quadriceps muscles from MGSKO mice appeared normal. MGSKO-null mice, along with wild type littermates, were exercised to exhaustion. There were no significant differences in the work performed by MGSKO mice as compared with their wild type littermates. The amount of liver glycogen consumed during exercise was similar for MGSKO and wild type animals. Fasting reduced exercise endurance, and after overnight fasting, there was a trend to reduced exercise endurance for the MGSKO mice. These studies provide genetic evidence that in mice muscle glycogen is not essential for strenuous exercise and has relatively little effect on endurance.  相似文献   

8.
Milk fermented with a starter containing Lactobacillus helveticus and Saccharomyces cerevisiae is drunk on a daily basis by many people in Japan and has several beneficial effects. We studied the influence of this fermented milk product on muscle damage after prolonged exercise in rats. Wistar rats were divided into four groups: rested controls, rested rats given fermented milk diet, exercised rats and exercised rats given fermented milk diet. After 3 weeks of acclimatization, both exercise groups were made to run on a treadmill at 26 m/min for 60 min. Exercise increased the serum creatine kinase level, as well as myeloperoxidase activity and the level of thiobarbituric-acid-reactive substances in the gastrocnemius muscle after 24 h. These changes were ameliorated by intake of fermented milk. An increase of CINC-1 was also ameliorated by fermented milk. Furthermore, milk diet increased the mRNA and protein levels of protective proteins such as antioxidants and chaperone proteins. These results indicate that fermented milk can ameliorate delayed-onset muscle damage after prolonged exercise, which is associated with an increased antioxidant capacity of muscles.  相似文献   

9.
During starvation, muscle glycogen in Boleophthalmus boddaerti was utilized preferentially over liver glycogen. In the first 10 days of fasting, the ratio of the active‘a’form of glycogen phosphorylase to total phosphorylase present in the liver was small. During this period, the active‘I’form of glycogen synthetase increased in the same tissue. In the muscle, the phosphorylase‘a’activity declined during the first 7 days and increased thereafter while the total glycogen synthetase activity showed a drastic decline during the first 13 days of fasting. The glycogen level in the liver and muscle of mudskippers starved for 21 days increased after refeeding. After 6 and 12 h refeeding, liver glycogen level was 8·5 ± 2·3 and 6·9 ± 4·5 mg·g wet wt 1, respectively, as compared to 5·8 ± l·6mg·g wet wt 1 in unfed fish. Muscle glycogen level after 6 and 12 h refeeding was 0·96±0·76 and 0·82 ± 0·50 mg·g wet wt 1, respectively, as opposed to 0·21 ± 0·12 mg·g wet wt 1 in the 21-days fasted fish. At the same time, activities of glycogen phosphorylase in the muscle and liver increased while the active‘I’form of glycogen synthetase showed higher activity in the liver. Since glycogen was resynthesized upon refeeding, this eliminated the possibility that glycogen depletion during starvation was due to stress or physical exhaustion after handling by the investigator. Throughout the experimental starvation period, the body weight of the mudskipper decreased, with a maximum of 12% weight loss after 21 days. Liver lipid reserves were utilized at the onset of fasting but were thereafter resynthesized. Muscle proteins were also metabolized as the fish were visibly thinner. However, no apparent change in protein content expressed as per gram wet weight was detected as the tissue hydration state was maintained constant. The increased degradation of liver and muscle reserves was coupled to an increase in the activities of key gluconeogenic enzymes in the liver (G6Pase, FDPase, PEPCK, MDH and PC). The increase in glucose synthesis was possibly necessary to counteract hypoglycemia brought about by starvation in B. boddaerti.  相似文献   

10.
Insulin receptor substrate (Irs) mediates metabolic actions of insulin. Here, we show that hepatic Irs1 and Irs2 function in a distinct manner in the regulation of glucose homeostasis. The PI3K activity associated with Irs2 began to increase during fasting, reached its peak immediately after refeeding, and decreased rapidly thereafter. By contrast, the PI3K activity associated with Irs1 began to increase a few hours after refeeding and reached its peak thereafter. The data indicate that Irs2 mainly functions during fasting and immediately after refeeding, and Irs1 functions primarily after refeeding. In fact, liver-specific Irs1-knockout mice failed to exhibit insulin resistance during fasting, but showed insulin resistance after refeeding; conversely, liver-specific Irs2-knockout mice displayed insulin resistance during fasting but not after refeeding. We propose the concept of the existence of a dynamic relay between Irs1 and Irs2 in hepatic insulin signaling during fasting and feeding.  相似文献   

11.
Summary Carp, Cyprinus carpio, were subjected to a short term of fasting (2 months) and 12 days of refeeding. The early changes produced in plasma metabolites and hormones (insulin and glucagon) and their respective energy contribution in liver and muscle during fasting and refeeding was studied. Two phases of fasting were differentiated. The first phase (until day 8 of fasting) was characterized by a reduction in the hepatosomatic index mainly due to glycogen mobilization. A transitory increase in plasma glucose and lactate suggested an initial increase in energy demand. No changes were produced in the percentage of glycogen and protein in muscle, but musculosomatic index and the total body muscle protein decreased. Although the most depleted tissue in this phase was the liver, the loss of energy content of total muscle was higher. Stabilization of liver glycogen content, plasma glucose and lactate levels, decreased muscle protein levels and a reduction in the rate of body weight loss characterized the second phase (from day 8 of fasting). Protein content in whole muscle decreased by 22%, similar to the first phase. The energy expenditure of both liver and muscle was lower in this phase. Plasma insulin levels decreased two-fold and plasma glucagon three-fold in the first phase and remained low in the second phase of fasting. Twelve days of refeeding produced a greater increase in daily growth rate than in the control group and a recovery of plasma insulin, glucagon and glucose levels. Liver completely recovered. In contrast, musculosomatic index, protein and lipid content indicated that muscle did not completely recover from the 2 months of fasting, although and overshoot of muscle glycogen was observed.Abbreviations ANOVA analysis of variance - bw body weight - D1, D2, D5, D8, D19, D50 1, 2, 5, 8, 19 and 50 days of fasting, respectively - GSI gonadosomatic index - HSI hepatosomatic index - MSI musculosomatic index - P-DNA deoxyribonucleic acid phosphorus  相似文献   

12.
The present study investigated the participation of the muscle gluconeogenic and glyconeogenic pathways in lactate metabolism after 15 fasting and during different periods of refeeding in Chasmagnathus granulatus previously maintained on a carbohydrate-rich (HC) or high-protein (HP) diet. In C. granulatus the metabolic adjustments during the fasting use different pathways according to the composition of the diet previously offered to the crab. During fasting, the gluconeogenic capacity is reduced in crabs maintained on the HC diet. In animals maintained on the HP diet, an increase in activity of the glyconeogenic pathway occurs after 15 days of fasting. In the animals fed HC diet, the glyconeogenesis is one of the pathways responsible for maintenance of the lactate levels in the fed and refeeding states. In crabs fed on the HP diet, the gluconeogenesis and glyconeogenesis pathways are involved in the reduction of lactate levels during the refeeding period. This study shows that protein or carbohydrates levels in the diet previously administrated to the crabs modulate the gluconeogenesis, glyconeogenesis in muscle and lactate concentration in the hemolymph in fed, fasting and refeeding states.  相似文献   

13.
14.
15.
We have investigated in vivo whether the gene expression of the beta3-adrenergic receptor (beta3-AR), perilipin A, hormone-sensitive lipase (HSL), and adipocyte lipid-binding protein (ALBP/aP2) is regulated in a site-specific manner. To induce lipolysis and discriminate between short- and long-term modifications, rats were submitted to an experimental fast for one or five days followed or not by refeeding. The mRNA encoding beta3-AR in retroperitoneal adipose tissue (RP) was significantly increased by one and five days of fasting (4-fold) and then lowered by one day of refeeding (2-fold) compared to fed rats. The reverse trend was observed for perilipin A expression in one day fasted rats. HSL mRNA concentrations were significantly induced (2.2-fold) by five days of fasting relative to fed animals and remained high after refeeding. ALBP/aP2, peroxisome proliferator-activated receptor gamma, and CAAT/enhancer binding protein alpha mRNA levels were essentially unaffected by dietary manipulations. Fasting and/or refeeding were similarly ineffective at regulating gene expression in SC. These data provide a molecular basis for regional differences at different steps of the lipolytic process.  相似文献   

16.
Autophagic response to strenuous exercise in mouse skeletal muscle fibers   总被引:3,自引:0,他引:3  
Strenuous physical exercise induces necrosis of skeletal muscle fibers and increases lysosomal enzyme activities in surviving muscle fibers. This study examines the ultrastructural basis of the stimulation of the lysosomal system in mouse vastus medialis muscle during the appearance and repair of exercise-induced (9 h of running) injuries. Necrotic fibers appeared the day after exercise and an inflammatory response with the replacement of necrotic fibers by phagocytes was highest 2-3 days after exertion. Ultrastructural study of surviving muscle fibers revealed numerous autophagic vacuoles, residual bodies, and spheromembranous structures at the periphery of myofibers, especially in fibers adjacent to necrotic fibers. The autophagic response was most prominent between 2 and 7 days after exertion. Autophagic vacuoles with double or single limiting membranes contained mitochondria at various stages of degradation. Vacuolar and multilamellar structures were also observed in regenerating muscle fibers. The structure of injured skeletal muscle fibers returned to normal within 2 weeks. It is proposed that increased autophagic activity could be related to the breakdown of cellular constituents of surviving muscle fibers to provide structural elements for regenerating muscle fibers.  相似文献   

17.
Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.  相似文献   

18.
In the rat, small intestine preparation was studied with the aid of our modification of Na(+)-dependent nutrient absorption short-circuit current method. In experiments on rats, it was shown that reaction of the gut to animal state changes (fasting, satiety and refeeding) depended on its medial or distal localization. Active Na+ absorption in medial part of small intestine after refeeding rose 3-6-fold depending on period of previous fasting (2 or 5 days). Two states of satiety were elucidated: when the rats were in cage with meal and after refeeding following a 5-day fasting; at least in distal small intestine, absorption of nutrients in the latter state was much higher. Fast nutrient adaptation (approximately 30 min) of absorption was revealed, second responses of short-circuit current to glyala were 3.4-fold higher than the first one: 33.4 +/- 9.7 (n = 6) and 9.9 +/- 2.9 microA/cm2 (n = 6) (P < 0.05). It is possible that increased nutrients (glucose and aminoacids) entering in mucose after the 5th day refeeding play role as a primary signal for change of animal behavior.  相似文献   

19.
Recent reports have shown that immediately after an acute bout of exercise the glucose transport system of rat skeletal muscle plasma membranes is characterized by an increase in both glucose transporter number and intrinsic activity. To determine the duration of the exercise response we examined the time course of these changes after completion of a single bout of exercise. Male rats were exercised on a treadmill for 1 h (20 m/min, 10% grade) or allowed to remain sedentary. Rats were killed either immediately or 0.5 or 2 h after exercise, and red gastrocnemius muscle was used for the preparation of plasma membranes. Plasma membrane glucose transporter number was elevated 1.8- and 1.6-fold immediately and 30 min after exercise, although facilitated D-glucose transport in plasma membrane vesicles was elevated 4- and 1.8-fold immediately and 30 min after exercise, respectively. By 2 h after exercise both glucose transporter number and transport activity had returned to nonexercised control values. Additional experiments measuring glucose uptake in perfused hindquarter muscle produced similar results. We conclude that the reversal of the increase in glucose uptake by hindquarter skeletal muscle after exercise is correlated with a reversal of the increase in the glucose transporter number and activity in the plasma membrane. The time course of the transport-to-transporter ratio suggests that the intrinsic activity response reverses more rapidly than that involving transporter number.  相似文献   

20.
Fasting is part of penguin's breeding constraints. During prolonged fasting, three metabolic phases occur successively. Below a threshold in body reserves, birds enter phase III (PIII), which is characterized by hormonal and metabolic shifts. These changes are concomitant with egg abandonment in the wild and increased locomotor activity in captivity. Because corticosterone (CORT) enhances foraging activity, we investigated the variations of endogenous CORT, and the effects of exogenous CORT on the behavioral, hormonal, and metabolic responses of failed breeder Adélie penguins. Untreated and treated captive male birds were regularly weighed and sampled for blood while fasting, and locomotor activity was recorded daily. Treated birds were implanted with various doses of CORT during phase II. Untreated penguins entering PIII had increased CORT (3.5-fold) and uric acid (4-fold; reflecting protein catabolism) levels, concomitantly with a rise in locomotor activity (2-fold), while prolactin (involved in parental care in birds) levels declined by 33%. In CORT-treated birds, an inverted-U relationship was obtained between CORT levels and locomotor activity. The greatest increase in locomotor activity was observed in birds implanted with a high dose of CORT (C100), locomotor activity showing a 2.5-fold increase, 4 days after implantation to a level similar to that of birds in PIII. Moreover, uric acid levels increased three-fold in C100-birds, while prolactin levels declined by 30%. The experimentally induced rise in CORT levels mimicked metabolic, hormonal, and behavioral changes, characterizing late fasting, thus supporting a role for this hormone in the enhanced drive for refeeding occurring in long-term fasting birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号