共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata 总被引:1,自引:0,他引:1
Zhang C Xie L Huang J Liu X Zhang R 《Biochemical and biophysical research communications》2006,344(3):735-740
Understanding the molecular composition and the formation mechanism of shell matrix framework is of great interest for biomineralization in mollusk shell. The cDNAs encoding a novel matrix protein family (KRMP) were cloned from the mantle of pearl oyster, Pinctada fucata. Analysis of the deduced amino acid sequences revealed that KRMP have a high proportion of lysine, glycine, and tyrosine, and their predict isoelectric points are higher than any other identified shell matrix protein to our knowledge. The deduced amino acid sequences of KRMP can be divided into three regions, including an N-terminal signal peptide, a lysine-rich basic region interacting with acidic proteins or CO(3)(2-), and a Gly/Tyr-rich region involved in the protein cross-link via quinone-tanning process. RT-PCR and in situ hybridization demonstrated that KRMP mRNA was specifically expressed in the mantle edge, involved in the prismatic layer formation. Taken together, it seems that KRMP is a matrix protein family participating in the framework formation of prismatic layer. 相似文献
2.
We have cloned the cDNAs that encode two kinds of molluscan shell matrix proteins, namely N66 and N14, in the nacreous layer of Pinctada maxima. N66 is composed of carbonic anhydrase-like and repeat domains, as described for nacrein (1) in the pearls of P. fucata. N14 is homologous to N16, recently found in the nacreous layer of P. fucata (2) and is characterized by high proportions of Gly, Tyr, and Asn together with NG repeat sequences. The molecular weights of these proteins were estimated as 59,814 and 13,734 Da, respectively. Structural differences were clearly indicated in the alignment and length of the repeat sequences of the sets of the homogeneous proteins (N66/nacrein and N14/N16). The longer repeat sequences of N66 and N14 may be responsible for P. maxima's excellent property of calcification. The in vitro crystallization experiments revealed that the mixture of N66 and N14 could induce platy aragonite layers highly similar to the nacreous layer, once adsorbed onto the membrane of the water-insoluble matrix. 相似文献
3.
Zhang Y Xie L Meng Q Jiang T Pu R Chen L Zhang R 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2003,135(3):565-573
Understanding the molecular composition is of great interest for both nacre formation mechanism and biomineralization in mollusk shell. A cDNA clone encoding an MSI31 relative, termed MSI7 because of its estimated molecular mass of 7.3 kDa, was isolated from the pearl oyster, Pinctada fucata. This novel protein shares similarity with MSI31, a prismatic framework protein of P. fucata. It is peculiar that MSI7 is much shorter in size, harboring only the Gly-rich sequence that has been proposed to be critical for Ca(2+) binding. In situ hybridization result showed that MSI7 mRNA was expressed specifically at the folds and outer epithelia of the mantle, indicating that MSI7 participates in the framework formation of both the nacreous layer and prismatic layer. In vitro experiment on the function of MSI7 suggested that it accelerates the nucleation and precipitation of CaCO(3). Taken together, we have identified a novel matrix protein of the pearl oyster, which may play an important role in determining the texture of nacre. 相似文献
4.
Lucilia Pereira-Mouriès Maria-José Almeida Cristina Ribeiro Jean Peduzzi Michel Barthélemy Christian Milet Evelyne Lopez 《European journal of biochemistry》2002,269(20):4994-5003
Nacre organic matrix has been conventionally classified as both 'water-soluble' and 'water-insoluble', based on its solubility in aqueous solutions after decalcification with acid or EDTA. Some characteristics (aspartic acid-rich, silk-fibroin-like content) were specifically attributed to either one or the other. The comparative study on the technique of extraction (extraction with water alone vs. demineralization with EDTA) presented here, seems to reveal that this generally accepted classification may need to be reconsidered. Actually, the nondecalcified soluble organic matrix, extracted in ultra-pure water, displays many of the characteristics of what until now has been called 'insoluble matrix'. We present the results obtained on this extract and on a conventional EDTA-soluble matrix, with various characterization methods: fractionation by size-exclusion and anion-exchange HPLC, amino acid analysis, glycosaminoglycan and calcium quantification, SDS/PAGE and FTIR spectroscopy. We propose that the model for the interlamellar matrix sheets of nacre given by Nakahara [In: Biomineralization and Biological Metal Accumulation, Westbroek, P. & deJong, E.W., eds, (1983) pp. 225-230. Reidel, Dordrecht, Holland] and Weiner and Traub [Phil. Trans. R. Soc. Lond. B (1984) 304, 425-434] may no longer be valid. The most recent model, proposed by Levi-Kalisman et al. [J. Struct. Biol. (2001) 135, 8-17], seemed to be more in accordance with our findings. 相似文献
5.
The role of matrix proteins in the control of nacreous layer deposition during pearl formation 总被引:2,自引:0,他引:2
Liu X Li J Xiang L Sun J Zheng G Zhang G Wang H Xie L Zhang R 《Proceedings. Biological sciences / The Royal Society》2012,279(1730):1000-1007
To study the function of pearl oyster matrix proteins in nacreous layer biomineralization in vivo, we examined the deposition on pearl nuclei and the expression of matrix protein genes in the pearl sac during the early stage of pearl formation. We found that the process of pearl formation involves two consecutive stages: (i) irregular calcium carbonate (CaCO(3)) deposition on the bare nucleus and (ii) CaCO(3) deposition that becomes more and more regular until the mature nacreous layer has formed on the nucleus. The low-expression level of matrix proteins in the pearl sac during periods of irregular CaCO(3) deposition suggests that deposition may not be controlled by the organic matrix during this stage of the process. However, significant expression of matrix proteins in the pearl sac was detected by day 30-35 after implantation. On day 30, a thin layer of CaCO(3), which we believe was amorphous CaCO(3), covered large aragonites. By day 35, the nacreous layer had formed. The whole process is similar to that observed in shells, and the temporal expression of matrix protein genes indicated that their bioactivities were crucial for pearl development. Matrix proteins controlled the crystal phase, shape, size, nucleation and aggregation of CaCO(3) crystals. 相似文献
6.
Qiaoli Feng ;Zi Fang ;Zhenguang Yan ;Rui Xing ;Liping Xie ;Rongqing Zhang 《Acta biochimica et biophysica Sinica》2009,(11):955-962
We previously identified a matrix protein, MSI7, from pearl oyster Pinctada fucata. According to the structural analysis, the DGD site in the N-terminal of MSI7 is crucial for its role in the shell formation. In this study, we expressed a series of recombinant MSI7 proteins, including the wild-type and several mutants directed at the DGD site, using an Escherichia coli expression system to reveal the structure-function relationship of MSI7. Furthermore, in vitro crystallization, crystallization speed assay, and circular dichroism spectrometry were carried out. Results indicated that wild-type MSI7 could induce the nucleation of aragonite and inhibit the crystallization of calcite. However, none of the mutants could induce the nucleation of aragonite, but all of them could inhibit the crystallization of calcite to some extent. And all the proteins accelerated the crystallization process. Taken together, the results indicated that MSI7 could contribute to aragonite crystallization by inducing the nucleation of aragonite and inhibiting the crystallization of calcite, which agrees with our prediction about its role in the nacreous layer formation of the shell. The DGD site was critical for the induction of the nucleation of aragonite. 相似文献
7.
Zhang Y Meng Q Jiang T Wang H Xie L Zhang R 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2003,135(1):43-54
Iron is one of the most important minor elements in the shell of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell formation. A novel ferritin cDNA from the pearl oyster (Pinctada fucata) was isolated and characterized. The ferritin cDNA encodes a 206 amino acid polypeptide, which shares high similarity with snail soma ferritin and the H-chains of mammalian ferritins. Oyster ferritin mRNA shows the highest level of expression in the mantle, the organ for shell formation. In situ hybridization analysis revealed that oyster ferritin mRNA is expressed at the highest level at the mantle fold, a region essential for metal accumulation and contributes to metal incorporation into the shell. Taken together, these results suggest that ferritin is involved in shell formation by iron storage. The identification and characterization of oyster ferritin also helps to further understand the structural and functional properties of molluscan ferritins. 相似文献
8.
Zhang C Xie L Huang J Chen L Zhang R 《Biochemical and biophysical research communications》2006,342(2):632-639
Tyrosinase (monophenol, L-DOPA: oxygen oxidoreductase, EC 1.14.18.1), a kind of copper-containing phenoloxidase, arouses great interests of scientists for its important role in periostracum formation. A cDNA clone encoding a putative tyrosinase, termed OT47 because of its estimated molecular mass of 47kDa, was isolated from the pearl oyster, Pinctada fucata. This novel tyrosinase shares similarity with the cephalopod tyrosinases and other type 3 copper proteins within two conserved copper-binding sites. RT-PCR analysis showed that OT47 mRNA was expressed only in the mantle edge. Further in situ hybridization analysis and tyrosinase activity staining revealed that OT47 was expressed at the outer epithelial cells of the middle fold, different from early histological results in Mercenaria mercenaria, suggesting a different model of periostracum secretion in P. fucata. Taken together, these results suggest that OT47 is most likely involved in periostracum formation. The identification and characterization of oyster tyrosinase also help to further understand the structural and functional properties of molluscan tyrosinase. 相似文献
9.
A novel extrapallial fluid protein controls the morphology of nacre lamellae in the pearl oyster, Pinctada fucata 总被引:2,自引:0,他引:2
Ma Z Huang J Sun J Wang G Li C Xie L Zhang R 《The Journal of biological chemistry》2007,282(32):23253-23263
Mollusk shell nacre is known for its superior mechanical properties and precisely controlled biomineralization process. However, the question of how mollusks control the morphology of nacre lamellae remains unresolved. Here, a novel 38-kDa extrapallial fluid (EPF) protein, named amorphous calcium carbonate-binding protein (ACCBP), may partially answer this question. Although sequence analysis indicated ACCBP is a member of the acetylcholine-binding protein family, it is actively involved in the shell mineralization process. In vitro, ACCBP can inhibit the growth of calcite and induce the formation of amorphous calcium carbonate. When ACCBP functions were restrained in vivo, the nacre lamellae grew in a screw-dislocation pattern, and low crystallinity CaCO(3) precipitated from the EPF. Crystal binding experiments further revealed that ACCBP could recognize different CaCO(3) crystal phases and crystal faces. With this capacity, ACCBP could modify the morphology of nacre lamellae by inhibiting the growth of undesired aragonite crystal faces and meanwhile maintain the stability of CaCO(3)-supersaturated body fluid by ceasing the nucleation and growth of calcite. Furthermore, the crystal growth inhibition capacity of ACCBP was proved to be directly related to its acetylcholine-binding site. Our results suggest that a "safeguard mechanism" of undesired crystal growth is necessary for shell microstructure formation. 相似文献
10.
Yano M Nagai K Morimoto K Miyamoto H 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2006,144(2):254-262
Random sequencing of molecules from a cDNA library constructed from mantle mRNA of the pearl oyster Pinctada fucata was used to obtain information on organic matrix proteins in the shell. In the determined sequences, we identified 7 distinct cDNAs encoding similar glycine-rich domains. Complete sequence analysis of these cDNAs showed that the predicted sequences of the proteins, which we named shematrins, possessed similar domains comprising repeat sequences of two or more glycines, followed by a hydrophobic amino acid. In addition, in shematrin-1, -2 and -3, a repeat domain designated as XGnX (where X is a hydrophobic amino acid) was conserved. It is of further note that all the shematrin proteins have RKKKY, RRKKY or RRRKY as their C-terminal sequence. According to northern blot analysis, all shematrins are exclusively expressed in the mantle, and particularly in the edge region of the mantle; furthermore, peptide fragments similar to shematrin-1 and -2 were detected in the prismatic layer of shells by MALDI-TOF/TOF MS analysis. These findings suggest that many of shematrins are synthesized in the mantle edge and secreted into the prismatic layer of the shell, where the protein family is thought to provide a framework for calcification. 相似文献
11.
The mollusk shell is a hard tissue consisting of calcium carbonate and organic matrices. The organic matrices are considered to play important roles in shell formation. We have previously identified a prismatic layer-specific protein named Prismalin-14, which consists of 105 amino acid residues and includes four structurally characteristic regions; a repeated sequence of Pro-Ile-Tyr-Arg, a Gly/Tyr-rich region and N- and C-terminal Asp-rich regions. Prismalin-14 showed an inhibitory activity on calcium carbonate precipitation and a calcium-binding ability in vitro. In this study, we prepared some molecular species of recombinant proteins including Prismalin-14 and its truncated proteins in an Escherichia coli expression system to reveal a structure-function relationship of Prismalin-14. The results showed that the Gly/Tyr-rich region was responsible for chitin binding and was identified as a novel chitin-binding sequence. On the other hand, both N- and C-terminal Asp-rich regions are related to inhibitory activity on calcium carbonate precipitation in vitro. Immunohistological observation revealed that Prismalin-14 was localized at the acid-insoluble organic framework including chitin. All these results strongly suggest that Prismalin-14 is a framework protein that mediates chitin and calcium carbonate crystals by using its acidic and chitin-binding regions. 相似文献
12.
cDNA cloning and characterization of a novel calmodulin-like protein from pearl oyster Pinctada fucata 总被引:1,自引:0,他引:1
Calcium metabolism in oysters is a very complicated and highly controlled physiological and biochemical process. However, the regulation of calcium metabolism in oyster is poorly understood. Our previous study showed that calmodulin (CaM) seemed to play a regulatory role in the process of oyster calcium metabolism. In this study, a full-length cDNA encoding a novel calmodulin-like protein (CaLP) with a long C-terminal sequence was identified from pearl oyster Pinctada fucata, expressed in Escherichia coli and characterized in vitro. The oyster CaLP mRNA was expressed in all tissues tested, with the highest levels in the mantle that is a key organ involved in calcium secretion. In situ hybridization analysis reveals that CaLP mRNA is expressed strongly in the outer and inner epithelial cells of the inner fold, the outer epithelial cells of the middle fold, and the dorsal region of the mantle. The oyster CaLP protein, with four putative Ca(2+)-binding domains, is highly heat-stable and has a potentially high affinity for calcium. CaLP also displays typical Ca(2+)-dependent electrophoretic shift, Ca(2+)-binding activity and significant Ca(2+)-induced conformational changes. Ca(2+)-dependent affinity chromatography analysis demonstrated that oyster CaLP was able to interact with some different target proteins from those of oyster CaM in the mantle and the gill. In summary, our results have demonstrated that the oyster CaLP is a novel member of the CaM superfamily, and suggest that the oyster CaLP protein might play a different role from CaM in the regulation of oyster calcium metabolism. 相似文献
13.
T Suzuki K Mori 《Comparative biochemistry and physiology. B, Comparative biochemistry》1989,92(3):455-462
1. A lectin in the serum of Pinctada fucata martensii was purified by a combination of affinity chromatography on Sepharose 4B coupled with bovine submaxillary gland mucine, anion exchange chromatography on Mono Q and gel filtration on Superose 6. 2. The purified lectin was indicated to be homogeneous by polyacrylamide electrophoresis and rechromatography on Mono Q. 3. The purified lectin was approximately 440,000 in molecular weight and was composed of identical subunits with a molecular weight of approximately 20,000. 4. D-galactose and N-acetylgalactosamine gave a 50% inhibition of agglutination of horse erythrocytes by the lectin at 0.3 and 1.2 mM, respectively. 5. The antibody obtained from rabbit immunized with the purified lectin was monospecific to the lectin judged from the hemagglutination blocking test, immunoelectrophoresis and immunoblotting. 相似文献
14.
To elucidate the mechanism of nacre biomineralization, the mantle of Pinctada fucata (P. fucata) from the South China Sea was used. Using the mantle cDNA library and the ESTs we have cloned through suppression subtractive hybridization (SSH), ten novel genes including PFMG1 were obtained through nested PCR. Bioinformative results showed that PFMG1 had a high homology (40%) with Onchocerca volvulus calcium-binding protein CBP-1 and had two EF-hand calcium-binding domains from the 81st to the 93rd amino acid and from the 98th to the 133rd amino acid in the deduced amino acid sequence. The results of multitissue RT-PCR and in situ hybridization demonstrated the high expression of PFMG1 in the mantle of P. fucata and confirmed the SSH method. The results of GST-PFMG1 on CaCO3 crystallization showed significant effects on nucleation and precipitation of CaCO3. PFMG1 was cloned into the pcDNA.3.1/myc-HisA vector and was subsequently transfected into MC3T3-E1 cells. RT-PCR revealed upregulation of the marker genes related to cell growth, differentiation, and mineralization, and BMP-2, osterix, and osteopontin were upregulated as a result. This research work suggests that PFMG1 plays an important role in the nacre biomineralization, and the SSH method can pave the way for the bulk cloning and characterization of new genes involved in biomineralization in P. fucata and may accelerate research on the mechanism of pearl formation. 相似文献
15.
Nudelman F Shimoni E Klein E Rousseau M Bourrat X Lopez E Addadi L Weiner S 《Journal of structural biology》2008,162(2):290-300
A key to understanding control over mineral formation in mollusk shells is the microenvironment inside the pre-formed 3-dimensional organic matrix framework where mineral forms. Much of what is known about nacre formation is from observations of the mature tissue. Although these studies have elucidated several important aspects of this process, the structure of the organic matrix and the microenvironment where the crystal nucleates and grows are very difficult to infer from observations of the mature nacre. Here, we use environmental- and cryo-scanning electron microscopy to investigate the organic matrix structure at the onset of mineralization in the nacre of two mollusk species: the bivalves Atrina rigida and Pinctada margaritifera. These two techniques allow the visualization of hydrated biological materials coupled with the preservation of the organic matrix close to physiological conditions. We identified a hydrated gel-like protein phase filling the space between two interlamellar sheets prior to mineral formation. The results are consistent with this phase being the silk-like proteins, and show that mineral formation does not occur in an aqueous solution, but in a hydrated gel-like medium. As the tablets grow, the silk-fibroin is pushed aside and becomes sandwiched between the mineral and the chitin layer. 相似文献
16.
A tandem-repeat galectin involved in innate immune response of the pearl oyster Pinctada fucata 总被引:2,自引:0,他引:2
The cDNA of a tandem-repeat galectin from the pearl oyster Pinctada fucata (designated PfGal) was cloned by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of PfGal was 1386 bp, consisting of a 5′ untranslated region (UTR) of 26 bp, a 3′ UTR of 313 bp, and an open reading frame (ORF) of 1047 bp encoding a polypeptide of 348 amino acids with a predicted molecular weight of 38.09 kDa and theoretical isoelectric point of 8.49. Similar to other tandem-repeat galectins, PfGal contained two tandem carbohydrate recognition domains (CRDs), with typical conserved motifs which were important for carbohydrate recognition, and it appeared to possess neither a signal peptide nor a transmembrane domain. Fluorescent quantitative real-time PCR analyses indicated that PfGal mRNA was highly expressed in hemocytes, digestive gland and mantle, and its expression was increased in all studied tissues after Vibrio alginolyticus challenge. The temporal expression of PfGal mRNA in hemocytes challenged by V. alginolyticus was clearly time-dependent and reached the maximum level at 6 h post-challenge, and then recovered to the original level. These results collectively indicated that PfGal may be involved in the immune response against bacterial infection and clearance of bacterial pathogens in P. fucata. 相似文献
17.
The production of a cultured pearl is the result of a complex interplay between the donor and recipient oysters. However, there is a paucity of information on the relationship between donor and recipient oyster gene expression patterns and pearl quality. Shell matrix proteins affect not only the formation of the shell, but also that of the pearls. We compared the gene expression patterns of five shell matrix proteins (msi60, nacrein, msi31, prismalin-14, and aspein) in the mantle edge (ME), which forms the prismatic layer, and the mantle center (MC), which forms the nacreous layer, between high- (HP) and low quality pearl- (LP) producing recipient oysters. After culturing for about two months, ME and MC tissues were collected from nine recipient oysters: four with HP, five with LP. In the ME, the average threshold cycle (ΔC(T)) for aspein was higher in HP than in LP (t-test, p = 0.03). Additionally, in the MC, the average ΔC(T) for msi60 was lower in HP than in LP (p = 0.06). This means the relative expression level of msi60 in the mantle of HP was higher than that of LP, and expression level of aspein in the mantle of HP was lower than that of LP. Pearl quality was closely related to the expression patterns of shell matrix protein genes of recipient oysters. 相似文献
18.
Yu Z Xie L Lee S Zhang R 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2006,143(2):190-194
A novel carbonic anhydrase (CA) has been purified from the mantle of the pearl oyster, Pinctada fucata, by ammonium sulfate precipitation and affinity chromatography. Its molecular mass was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to be approximately 38 kDa. Native-PAGE shows that the novel CA can bind a fluorescent probe, 5-dimethylamino-1-naphthalenesulfonamide (DNSA), known to specifically bind carbonic anhydrase. Compared to carbonic anhydrase I (CAI) from human erythrocytes, the novel CA migrates faster indicating that it is more acidic. The effect of an inhibitor on the enzyme activity was also examined. The CA from the mantle showed a weak resistance to acetazolamide (AZ), a specific inhibitor of CA. When DNSA was bound to CA, it caused the wavelength of emission maximum intensity to blue shift to 454 nm upon excitation at 326 nm. Histochemical data indicates that the enzyme is distributed widely throughout the mantle tissue, being concentrated at the edge of the mantle. The evidence presented indicates a function for CA in the process of pearl formation and biomineralization. 相似文献
19.
Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the 'aragonitic line'. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P. fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the 'aragonitic line', and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth. 相似文献
20.
Tohru Suzuki Reiji Yoshinaka Shoshi Mizuta Shoji Funakoshi Koji Wada 《Cell and tissue research》1991,266(1):75-82
Summary To identify the cells which produce the extracellular matrix during bivalve wound healing, we observed epithelial regeneration inPinctada fucata and evaluated the ability of amebocytes to produce the matrix in vitro. Between days 1 and 3 after an ovary was implanted with abiotic material (a shell ball) via an incision, agranular amebocytes formed a sheath, consisting of 10–20 cell layers, between the implant and incised ovarian tissue. Extracellular matrix was deposited in the spaces between the amebocytes in the sheath. At the incised follicle, gonadal epithelial cells were attached to the newly formed matrix. When a mantle allograft (2 mm square) was implanted with abiotic material to bring them into close contact, epithelial cells emigrated from the allograft along the surface of the abiotic material where they attached to the newly formed matrix at the sheath of amebocytes. In vitro, agranular amebocytes formed a matrix composed of fibrils with a diameter of 20 nm during a 6-day culture period. Pepsin-digested extract of the cell layer forming the matrix gave protein bands with electrophoretic mobilities identical to - and -sized components of a collagen purified from this animal. The matrix exhibited immunoreaction to antiserum raised against the collagen and was stained by alcian bluc. Thus, the agranular amebocyte apparently has the ability to produce an extracellular matrix containing collagen and possibly proteoglycan(s). 相似文献