共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptidoglycan association of bacteriophage T5 receptor in Escherichia coli K-12. 总被引:2,自引:1,他引:1 下载免费PDF全文
A total of 50% of the FhuA proteins (also called TonA proteins) present in Escherichia coli cells were associated with the peptidoglycan and 50% were free, whether or not this protein was overproduced. This FhuA-peptidoglycan association was made via the lipoprotein. 相似文献
2.
Role of lipopolysaccharide and outer membrane protein of Escherichia coli K-12 in the receptor activity for bacteriophage T4. 总被引:7,自引:12,他引:7 下载免费PDF全文
Lipopolysaccharide isolated from Escherichia coli K-12 did not inactivate phage T4, although the cell envelopes with 1% sodium deoxycholate resulted in the release of cytoplasmic membrane proteins, 70% of the lipopolysaccharide, and almost all of the phospholipid. The reconstitution of phage receptor activity was achieved from deoxycholate-soluble and -insoluble fractions by dialysis against a solution of magnesium chloride. Lipopolysaccharide was the only essential component in the deoxycholate-soluble fraction. PhageT4-resistant mutants YA21-6 and YA21-82, having defects in the deoxycholate-soluble and -insoluble fractions, respectively, were isolated. The deoxycholate-soluble fraction of YA21-6 possessed heptoseless lipopolysaccharide, and this defect was responsible for the phage resistance. The deoxycholate-insoluble fraction of YA21-82 lacked outer membrane protein O-8. The addition of O-8 to this fraction together with the wild-type lipopolysaccharide resulted in the appearance of the receptor activity. Furthermore, the reconstitution was successfully achieved with only O-8 and the wild-type lipopolysaccharide, indicating that O-8 was an essential component in the deoxycholate-insoluble fraction. 相似文献
3.
Interaction of bacteriophage T4 with reconstituted cell envelopes of Escherichia coli K-12. 总被引:2,自引:0,他引:2 下载免费PDF全文
The interaction with bacteriophage T4 of the cell surface of Escherichia coli K-12 reconstituted from outer membrane protein O-8, lipopolysaccharide, and the lipoprotein-bearing peptidoglycan sacculus was studied. The reconstituted cell surface was active as a receptor for the phage, resulting in the contraction of the tail sheath, a morphological change in the base plate which was accompanied by the extension of short tail pins down to the cell surface and the penetration of the needle through the cell surface. However, the ejection of phage deoxyribonucleic acid did not take place. Both O-8 and lipopolysaccharide were essential for the interaction. In the reconstitution, the wild-type lipopolysaccharide could not be replaced by either heptoseless lipopolysaccharide or lipid A. The lipoprotein-bearing peptidoglycan sacculus was also found to be an active component for the phage adsorption. The sacculus most likely functioned as a basal framework on which O-8 and lipopolysaccharide assembled to form a flat sheet which is large enough to interact with individual distal ends of long tail fibers of a single phage particle. 相似文献
4.
Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. 总被引:23,自引:40,他引:23 下载免费PDF全文
Mutants affected in lamB, the structural gene for phage lambda receptor, are unable to utilize maltose when it is present at low concentrations (less than or equal 10 muM). During growth in a chemostat at limiting maltose concentrations, the lamB mutants tested were selected against in the presence of the wild-type strain. Transport studies demonstrate that most lamB mutants have deficient maltose transport capacities at low maltose concentrations. When antibodies against purified phage lambda receptor are added to a wild-type strain, transport of maltose at low concentrations is significantly reduced. These results strongly suggest that the phage lambda receptor molecule is involved in maltose transport. 相似文献
5.
Recombination-promoting activity of the bacteriophage lambda Rap protein in Escherichia coli K-12 下载免费PDF全文
The rap gene of bacteriophage lambda was placed in the chromosome of an Escherichia coli K-12 strain in which the recBCD gene cluster had previously been replaced by the lambda red genes and in which the recG gene had been deleted. Recombination between linear double-stranded DNA molecules and the chromosome was tested in variants of the recGDelta red(+) rap(+) strain bearing mutations in genes known to affect recombination in other cellular pathways. The linear DNA was a 4-kb fragment containing the cat gene, with flanking lac sequences, released from an infecting phage chromosome by restriction enzyme cleavage in the cell. Replacement of wild-type lacZ with lacZ::cat was monitored by measuring the production of Lac-deficient chloramphenicol-resistant bacterial progeny. The results of these experiments indicated that the lambda rap gene could functionally substitute for the E. coli ruvC gene in Red-mediated recombination. 相似文献
6.
Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4 总被引:6,自引:5,他引:6 下载免费PDF全文
The roles of lipopolysaccharide and OmpC, a major outer membrane protein, in the receptor function for bacteriophage T4 were studied by using Escherichia coli K-12 strains having mutations in the ompC gene or in genes controlling different stages of lipopolysaccharide synthesis. The receptor activity for T4 was monitored by (i) T4 sensitivity of intact cells, (ii) phage inactivation activity of cell envelopes, and (iii) phage inactivation activity of specimens reconstituted from purified OmpC and lipopolysaccharide. It was found that (i) in the presence of the OmpC protein, the essential region of the lipopolysaccharide for the receptor activity was the core-lipid A region that includes the heptose region, whereas the glucose region was not necessarily required for the receptor function; (ii) the OmpC protein was not required at all when the distal end of the lipopolysaccharide was removed to expose a glucose residue at the distal end; and (iii) when cells lacked both the OmpC protein and the glucose region, they became extremely resistant to T4. Based on these findings, the roles of the OmpC protein and lipopolysaccharide in T4 infection are discussed. 相似文献
7.
Two-component suppression of recF143 by recA441 in Escherichia coli K-12. 总被引:15,自引:11,他引:4 下载免费PDF全文
Sensitivity to UV irradiation conferred by recF143 was partially suppressed by recA441 (also known as tif-1). A temperature-conditional component depended on uvrA function and is thought to involve thermal induction of excision repair enzymes. In a uvrA6 mutant, a temperature-independent component of suppression was seen. This is thought to indicate that recA441 also caused temperature-independent changes in recA activity. Two hypotheses are offered to explain how recA441 produced both thermosensitive and thermoindependent effects. 相似文献
8.
9.
Postinfection control by bacteriophage T4 of Escherichia coli recBC nuclease activity. 总被引:6,自引:4,他引:6 下载免费PDF全文
Infection by bacteriophage T4 has previously been shown to cause a rapid inhibition of the host recBC DNase, an ATP-dependent DNase that is required for genetic recombination in Escherichia coli. We report here the partial purification of a protein ("T4 rec inhibitor") from extracts of T4-infected cells and some characteristics of the in vitro inhibition reaction with purified inhibitor and recBC nuclease. This inhibitory activity could not be purified from extracts of uninfected E. coli. Both the ATP-dependent exonuclease and DNA-dependent ATPase activities of recBC DNase are inhibited by T4 rec inhibitor. Experiments suggest that the inhibitor interacts with the nuclease in a stoichiometric manner. The biological significance of this inhibition is discussed with respect to control reactions in phage-infected cells. 相似文献
10.
Infection of Escherichia coli K-12 (λ) by bacteriophage results in an altered labeling pattern of phospholipids in the host cell. Although the overall incorporation of 32Pi into phospholipids is decreased by infection, the relative amounts of phosphatidylglycerol and cardiolipin are increased. Phospholipid changes occurring at later stages in the lytic cycle of infected bacteria are more prominent than those at earlier time intervals. The uptake of 32Pi into phospholipids of cells infected with T4Bs and endolysin-negative mutants was similar to that observed with the wild-type phage, suggesting that the development of resistance to lysis from without and the repair of mucopeptides are not responsible for the phospholipid changes. The metabolism of phospholipids in uninfected cells treated with cyanide was similar to that of infected cells, indicating that part of the phage-induced alterations may be a consequence of impaired respiration. 相似文献
11.
Purified lipopolysaccharide (LPS) from a mutant strain ofEscherichia coli K12 altered in its LPS has been shown to serve as a receptor for bacteriophage T4, which contrasts with LPS from a wild-type strain. Studies of extragenic suppression of a mutation in the gene specifying protein 1b revealed that the galactose residue in the LPS normally masks the LPS receptor and that in the absence of this residue protein 1b is not a necessary component of the T4 receptor. 相似文献
12.
We demonstrate here that Escherichia coli K-12 synthesizes two different L-serine deaminases (L-SD) catalyzing the nonoxidative deamination of L-serine to pyruvate, one coded for by the previously described sdaA gene and a second, hitherto undescribed enzyme which we call L-SD2. A strain carrying a null mutation in sdaA made no detectable L-SD in minimal medium, but had activity in Luria broth. We describe a mutation, sdaX, which affects the regulation of L-SD2 and permits its expression in minimal medium, and an insertion mutation, sdaB, which abolishes L-SD2 activity completely. Both mutations lie near 60.5 min on the E. coli genetic map. The two L-SD enzymes have similar enzyme parameters, and both require posttranslational activation. 相似文献
13.
Permeability changes in the cytoplasmic membrane of Escherichia coli K-12 early after infection with bacteriophage T1. 总被引:2,自引:3,他引:2 下载免费PDF全文
The nature of the bacteriophage T1-induced changes in the permeability of the cytoplasmic membrane of Escherichia coli K-12 was investigated. At 20 degrees C and with glucose as a substrate, the addition of one bacteriophage per cell induced a complete and irreversible loss of K+ ions (single-hit phenomenon). K+ loss was compensated by an uptake of Na+, Li+, or choline by the cell, depending on which of these ions was the major cation in the medium. T1 depolarized the cells and inhibited 86Rb+-K+ exchange across the cytoplasmic membrane. The loss of K+ occurred independently of the Mg2+ concentration in the medium. By contrast, at low but not at high Mg2+ concentrations, T1 caused efflux of Mg2+ which in turn caused inhibition of respiration and a decrease of delta pH. 相似文献
14.
Roles of cell surface components of Escherichia coli K-12 in bacteriophage T4 infection: interaction of tail core with phospholipids. 总被引:3,自引:3,他引:3 下载免费PDF全文
The cell surface of Escherichia coli K-12, reconstituted from the OmpC protein, lipopolysaccharide, and the peptidoglycan layer, was active as a receptor for phage T4, resulting in the contraction of the tail sheath and the penetration of the core through the cell surface (Furukawa et al., J. Bacteriol. 140:1071--1080, 1979). In the present work the process of DNA ejection from the contracted T4 phage particle was studied. Contracted phage particles were adsorbed to phospholipid liposomes by the core tip. This adsorption resulted in ejection of phage DNA. Either phosphatidylglycerol or cardiolipin was active for the DNA ejection. A proton motive force across the liposome membrane was not required for these processes. The process of DNA ejection, however, was temperature dependent, whereas the adsorption of the core tip to liposomes took place at 4 degrees C. Based on these observations together with those in the previous paper, the process of T4 infection of E. coli K-12 cells is discussed with special reference to the roles of cell surface components. 相似文献
15.
A set of lambda dilv phage have been used in a deletion mapping procedure to determine the location of two previously characterized ilvO alleles. In contrast to earlier conclusions derived from three-factor crosses and episome-shortening techniques with phage P1, the order found is ilvG-ilvO-ilvEDA. A three-factor cross with phage P1 is described that is not consistent with this location for an ilvO allele. Further analysis of this particular three-factor cross revealed than an artifact attributable to a mutual syntrophism had skewed the apparent frequency of inheritance of the ilvO locus. The role of mutual syntrophism is discussed as a source of mapping errors for the ilvO locus. The value of this set of lambda dilv phage and this mapping procedure for obtaining comparatively unambiguous data on the locations of the ilv structural and regulatory genes is demonstrated. 相似文献
16.
17.
The biodegradative lysine decarboxylase of E. coli has been reported to attain a higher specific activity when grown to saturation in the presence of excess lysine under conditions
of low pH and absence of aeration. In order to examine possible sources of the pH and anaerobic regulation, a series of isogenic
strains of E. coli K-12 were constructed. The effects of cadR-, fnr
-, cya
-, crp
-and pgl
-mutations on lysine decarboxylase expression were examined. Cultures were grown in a lysine supplemented rich medium at pH
5.5, pH 6.8, and pH 8.0 with and without aeration and the enzyme was assayed from log phase cultures. The results suggested
that the pH and air responses were independent and that these known regulatory processes are not responsible for this regulation
of the biodegradative lysine decarboxylase. 相似文献
18.
The folate compound which is a structural component of the Escherichia coli T-even bacteriophage baseplates, has been identified as the hexaglutamyl form of folic acid using a new chromatographic procedure (Baugh, C.M., Braverman, E. and Nair, M.G. (1974) Biochemistry 13, 4952-4957). It has also been found that the host cell contains a variety of polyglutamyl forms of folic acid. The major form is the triglutamate (about 50%) but small amounts of higher molecular weight folates including the octaglutamate (1.8%) have been identified. Upon infection with wild-type T4D bacteriophage there is a shift in the distribution of the folate compounds so that the folyl polyglutamyl compounds having the higher molecular weights are increased. Infection of E. coli with baseplate mutants of T4D containing an amber mutation in gene 28 resulted in the formation of significant amounts (over 7%) of folate compound(s) of molecular weight much higher than those observed either in uninfected cells or cells infected with wild-type T4D. It is suggested that the T4D gene 28 product functions to cleave glutamate residues from high molecular weight folyl polyglutamates to increase the availability of the folyl hexaglutamate for virus assembly. 相似文献
19.
Properties of condensed bacteriophage T4 DNA isolated from Escherichia coli infected with bacteriophage T4. 总被引:2,自引:4,他引:2 下载免费PDF全文
Methods developed for isolating bacterial nucleoids were applied to bacteria infected with phage T4. The replicating pool of T4 DNA was isolated as a particle composed of condensed T4 DNA and certain RNA and protein components of the cell. The particles have a narrow sedimentation profile (weight-average s=2,500S) and have, on average, a T4 DNA content similar to that of the infected cell. Their dimensions observed via electron and fluorescence microscopy are similar to the dimensions of the intracellular DNA pool. The DNA packaging density is less than that of the isolated bacterial nucleoid but appears to be roughly similar to its state in vivo. Host-cell proteins and T4-specific proteins bound to the DNA were characterized by electrophoresis on polyacrylamide gels. The major host proteins are the RNA polymerase subunits and two envelope proteins (molecular weights, 36,000 and 31,000). Other major proteins of the host cell were absent or barely detectable. Single-strand breaks can be introduced into the DNA with gamma radiation or DNase without affecting its sedimentation rate. This and other studies of the effects of intercalated ethidium molecules have suggested that the average superhelical density of the condensed DNA is small. However, these studies also indicated that there may be a few domains in the DNA that become positively supercoiled in the presence of high concentrations of ethidium bromide. In contrast to the Escherichia coli nucleoid, the T4 DNA structure remains condensed after the RNA and protein components have been removed (although there may be slight relaxation in the state of condensation under these conditions). 相似文献
20.
109Cd2+ uptake by Escherichia coli occurred by means of an active transport system which has a Km of 2.1 microM Cd2+ and a Vmax of 0.83 mumol/min X g (dry weight) in uptake buffer. 109Cd2+ accumulation was both energy dependent and temperature sensitive. The addition of 20 microM Cd2+ or Zn2+ (but not Mn2+) to the cell suspensions preloaded with 109Cd2+ caused the exchange of Cd2+. 109Cd2+ (0.1 microM) uptake by cells was inhibited by the addition of 20 microM Zn2+ but not Mn2+. Zn2+ was a competitive inhibitor of 109Cd2+ uptake with an apparent Ki of 4.6 microM Zn2+. Although Mn2+ did not inhibit 109Cd2+ uptake, the addition of either 20 microM Cd2+ or Zn2+ prevented the uptake of 0.1 microM 54Mn2+, which apparently occurs by a separate transport system. The inhibition of 54Mn2+ accumulation by Cd2+ or Zn2+ did not follow Michaelis-Menten kinetics and had no defined Ki values. Co2+ was a competitive inhibitor of Mn2+ uptake with an apparent Ki of 34 microM Co2+. We were unable to demonstrate an active transport system for 65Zn2+ in E. coli. 相似文献