首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amyloid precursor protein (APP) is an ubiquitous receptor-like molecule involved in the pathogenesis of Alzheimer's disease (AD). APP and some of its C-terminal proteolytic fragments (CTFs) have been shown to be phosphorylated and to interact with cytosolic phosphotyrosine binding (PTB) domain containing proteins involved in cell signaling and vesicular transport. Among others, the interaction between tyrosine-phosphorylated CTFs and ShcA-Grb2 adaptors is highly enhanced in AD brain. Here we have identified in SH-SY5Y neuroblastoma cells an interaction between APP holoprotein and the adaptor Grb2. Upon activation of apoptotic cell death this interaction is rapidly degraded, APP is partially cleaved and the complex APP/Grb2 is replaced by a new complex between CTFs and ShcA that still involves Grb2. The formation of these complexes is regulated by beta-site APP-cleaving enzyme 1 and influences the phosphorylation of mitogen-activated protein kinase p44/42 extracellular signal-regulated kinase as well as the level of apoptotic death of the cells. These data suggest a dual role in cell signaling for APP and its CTFs in neuroblastoma cells, in a manner similar to that previously reported for other tyrosine kinase receptor, through a tightly regulated coupling with alternative intracellular adaptors to control the signaling of the cell.  相似文献   

2.
The amyloid beta-protein (Abeta) deposited in brains of Alzheimer's disease (AD) patients is proteolytically derived from a large Abeta precursor protein (APP). APP gene expression patterns in the AD brain region indicate that abnormalities of gene regulation may be important in AD pathology. To understand the contribution of different cell types to APP gene expression, we studied it at four levels: promoter activity (by reporter gene assay of transfected cells), DNA-nuclear protein interaction (by electrophoretic mobility shift assay), RNA message and protein (by northern and western blotting, respectively). APP mRNA and protein expression levels were greater in neuroblastoma and PC12 cells than in glial or cervix epithelial cells. Relative activity among 12 different promoter regions and within single regions varied according to cell type/cell line. An upstream regulatory region containing a GATA-1 site is necessary for activity in PC12 and glial cells but not in neuroblastoma cells. DNA-protein interactions were examined in three distal and one proximal promoter elements in nuclear extracts belonging to neuronal and non-neuronal cells. The proximal promoter region is important for cell line-specific APP gene expression. Characterization of the APP regulatory region's interaction with cell type-specific nuclear factor(s) is important to understand tissue-specific expression of APP seen in AD subjects.  相似文献   

3.
The cerebral amyloid deposited in Alzheimer's disease (AD) contains a 4.2 kDa beta amyloid polypeptide (beta AP) that is derived from a larger beta amyloid protein precursor (beta APP). Three beta APP mRNAs encoding proteins of 695, 751, and 770 amino acids have previously been identified. In each of these, there is a single membrane-spanning domain close to the carboxyl-terminus of the beta APP, and the 42 amino acid beta AP sequence extends from within the membrane-spanning domain into the large extracellular region of the beta APP. We raised rabbit antisera to a peptide corresponding to amino acids 45-62 near the amino-terminus of the beta APP. We show that these antisera detect the beta APP by demonstrating that they (i) label a set of approximately 120 kDa membrane-associated proteins in human brain previously detected by antisera to the carboxyl-terminus of beta APP and (ii) label a set of approximately 120 kDa membrane-associated proteins that are selectively overexpressed in cells transfected with a full length beta APP expression construct. The beta APP45-62 antisera specifically stain senile plaques in AD brains. This finding, along with the previous demonstration that antisera to the carboxyl-terminus of the beta APP label senile plaques, indicates that both near amino-terminal and carboxyl-terminal domains of the beta APP are present in senile plaques and suggests that proteolytic processing of the full length beta APP molecule into insoluble amyloid fibrils occurs in a highly localized fashion at the sites of amyloid deposition in AD brains.  相似文献   

4.
The amyloid precursor protein (APP) and its pathogenic by-product amyloid-beta protein (Abeta) play central roles in Alzheimer disease (AD) neuropathogenesis. APP can be cleaved by beta-secretase (BACE) and alpha-secretase to produce APP-C99 and APP-C83. These C-terminal fragments can then be cleaved by gamma-secretase to produce Abeta and p3, respectively. p3 has been reported to promote apoptosis, and Abeta is the key component of senile plaques in AD brain. APP adaptor proteins with phosphotyrosine-binding domains, including ShcA (SHC1), ShcC (SHC3), and Fe65 (APBB1), can bind to and interact with the conserved YENPTY motif in the APP-C terminus. Here we have described for the first time the effects of RNA interference (RNAi) silencing of ShcA, ShcC, and Fe65 expression on APP processing and Abeta production. RNAi silencing of ShcC led to reductions in the levels of APP-C-terminal fragments (APP-CTFs) and Abeta in H4 human neuroglioma cells stably overexpressing full-length APP (H4-FL-APP cells) but not in those expressing APP-C99 (H4-APP-C99 cells). RNAi silencing of ShcC also led to reductions in BACE levels in H4-FL-APP cells. In contrast, RNAi silencing of the homologue ShcA had no effect on APP processing or Abeta levels. RNAi silencing of Fe65 increased APP-CTF levels, although also decreasing Abeta levels in H4-FL-APP cells. These findings suggest that pharmacologically blocking interaction of APP with ShcC and Fe65 may provide novel therapeutic strategies against AD.  相似文献   

5.
Calnuc, a Golgi calcium binding protein, plays a key role in the constitution of calcium storage. Abnormal calcium homeostasis has been linked to Alzheimer's disease (AD). Excessive production and/or accumulation of beta-amyloid (Abeta) peptides that are proteolytically derived from the beta-amyloid precursor protein (APP) have been linked to the pathogenesis of AD. APP has also been indicated to play multiple physiological functions. In this study, we demonstrate that calnuc interacts with APP through direct binding to the carboxyl-terminal region of APP, possibly in a calcium-sensitive manner. Immunofluorescence study revealed that the two proteins co-localize in the Golgi in both cultured cells and mouse brains. Over-expression of calnuc in neuroblastoma cells significantly reduces the level of endogenous APP. Conversely, down-regulation of calnuc by siRNA increases cellular levels of APP. Additionally, we show that over-expression of calnuc down-regulates the APP mRNA level and inhibits APP biosynthesis, which in turn results in a parallel reduction of APP proteolytic metabolites, sAPP, CTFs and Abeta. Furthermore, we found that the level of calnuc was significantly decreased in the brain of AD patients as compared with that of age-matched non-AD controls. Our results suggest a novel function of calnuc in modulating the levels of APP and its proteolytic metabolites, which may further affect the patho/physiological functions of APP including AD pathogenesis.  相似文献   

6.
阿尔茨海默病(AD)是一种神经退行性疾病,严重影响老年患者的生活质量。AD最主要的致病机制是淀粉样β蛋白(Aβ)对神经细胞的损伤。Aβ前体淀粉样前体蛋白(APP)由β和γ剪切酶剪切而来,另外α剪切酶也可剪切APP,从而减少Aβ的产量。因此上调α剪切酶ADAM10/17的活性有可能成为AD的治疗策略之一。该研究实验数据证实,ADAM10/17不仅参与APP的剪切,还参与神经胶质细胞的激活和神经炎症反应;ADAM10/17可能参与胶质细胞炎症因子翻译后的修饰和剪切。该研究的结果为APPα剪切酶激活剂的研究提供了研究基础,在APPα剪切酶激活剂的研发过程中,不应只局限于神经细胞的作用,还必须考虑神经胶质细胞神经炎症的参与,以有效规避药物的不良反应。  相似文献   

7.
The 39-43 amino acid beta amyloid protein (A beta) that deposits as amyloid in the brains of patients with Alzheimer's disease (AD) is encoded as an internal sequence within a larger membrane-associated protein known as the amyloid protein precursor (APP). In cultured cells, the APP is normally cleaved within the A beta to generate a large secreted derivative and a small membrane-associated fragment. Neither of these derivatives can produce amyloid because neither contains the entire A beta. Our study was designed to determine whether the soluble APP derivatives in human brain end within the A beta as described in cell culture or whether AD brain produces potentially amyloidogenic soluble derivatives that contain the entire A beta. We find that both AD and control brain contain nonamyloidogenic soluble derivatives that end at position 15 of the A beta. We have been unable to detect any soluble derivatives that contain the entire A beta in either the AD or control brain.  相似文献   

8.
In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-β precursor protein (APP) and the APP-processing products, C-terminal fragments (CTFs) and amyloid-β (Aβ). We investigated the secretion of full-length APP (flAPP) and APP CTFs via the exosome secretory pathway in vivo. To this end, we developed a novel protocol designed to isolate exosomes secreted into mouse brain extracellular space. Exosomes with typical morphology were isolated from freshly removed mouse brains and from frozen mouse and human brain tissues, demonstrating that exosomes can be isolated from post-mortem tissue frozen for long periods of time. flAPP, APP CTFs, and enzymes that cleave both flAPP and APP CTFs were identified in brain exosomes. Although higher levels of both flAPP and APP CTFs were observed in exosomes isolated from the brains of transgenic mice overexpressing human APP (Tg2576) compared with wild-type control mice, there was no difference in the number of secreted brain exosomes. These data indicate that the levels of flAPP and APP CTFs associated with exosomes mirror the cellular levels of flAPP and APP CTFs. Interestingly, exosomes isolated from the brains of both Tg2576 and wild-type mice are enriched with APP CTFs relative to flAPP. Thus, we hypothesize that the exosome secretory pathway plays a pleiotropic role in the brain: exosome secretion is beneficial to the cell, acting as a specific releasing system of neurotoxic APP CTFs and Aβ, but the secretion of exosomes enriched with APP CTFs, neurotoxic proteins that are also a source of secreted Aβ, is harmful to the brain.  相似文献   

9.
APP, amyloid beta precursor protein, is linked to the onset of Alzheimer's disease (AD). We have here found that transforming growth factor beta2 (TGFbeta2), but not TGFbeta1, binds to APP. The binding affinity of TGFbeta2 to APP is lower than the binding affinity of TGFbeta2 to the TGFbeta receptor. On binding to APP, TGFbeta2 activates an APP-mediated death pathway via heterotrimeric G protein G(o), c-Jun N-terminal kinase, NADPH oxidase, and caspase 3 and/or related caspases. Overall degrees of TGFbeta2-induced death are larger in cells expressing a familial AD-related mutant APP than in those expressing wild-type APP. Consequently, superphysiological concentrations of TGFbeta2 induce neuronal death in primary cortical neurons, whose one allele of the APP gene is knocked in with the V642I mutation. Combined with the finding indicated by several earlier reports that both neural and glial expression of TGFbeta2 was upregulated in AD brains, it is speculated that TGFbeta2 may contribute to the development of AD-related neuronal cell death.  相似文献   

10.
The amyloid precursor protein (APP) is cleaved by β- and γ-secretases to generate the β-amyloid (Aβ) peptides, which are present in large amounts in the amyloid plaques of Alzheimer disease (AD) patient brains. Non-amyloidogenic processing of APP by α-secretases leads to proteolytic cleavage within the Aβ peptide sequence and shedding of the soluble APP ectodomain (sAPPα), which has been reported to be endowed with neuroprotective properties. In this work, we have shown that activation of the purinergic receptor P2X7 (P2X7R) stimulates sAPPα release from mouse neuroblastoma cells expressing human APP, from human neuroblastoma cells and from mouse primary astrocytes or neural progenitor cells. sAPPα shedding is inhibited by P2X7R antagonists or knockdown of P2X7R with specific small interfering RNA (siRNA) and is not observed in neural cells from P2X7R-deficient mice. P2X7R-dependent APP-cleavage is independent of extracellular calcium and strongly inhibited by hydroxamate-based metalloprotease inhibitors, TAPI-2 and GM6001. However, knockdown of a disintegrin and metalloproteinase-9 (ADAM9), ADAM10 and ADAM17 by specific siRNA, known to have α-secretase activity, does not block the P2X7R-dependent non-amyloidogenic pathway. Using several specific pharmacological inhibitors, we demonstrate that the mitogen-activated protein kinase modules Erk1/2 and JNK are involved in P2X7R-dependent α-secretase activity. Our study suggests that P2X7R, which is expressed in hippocampal neurons and glial cells, is a potential therapeutic target in AD.  相似文献   

11.
Increased expression and altered processing of the amyloid precursor protein (APP) and generation of beta-amyloid peptides is important in the pathogenesis of amyloid plaques in Alzheimer's disease (AD). Transgenic Tg2576 mice overexpressing the Swedish mutation of human APP exhibit beta-amyloid deposition in the neocortex and limbic areas, accompanied by gliosis and dystrophic neurites. However, murine plaques appear to be less cross-linked and the mice show a lower degree of inflammation and neurodegeneration than AD patients. 'Advanced glycation endproducts (AGEs)', formed by reaction of proteins with reactive sugars or dicarbonyl compounds, are able to cross-link proteins and to activate glial cells, and are thus contributing to plaque stability and plaque-induced inflammation in AD. In this study, we analyze the tissue distribution of AGEs and the pro-inflammatory cytokines IL-1beta and TNF-alpha in 24-month-old Tg2576 mice, and compare the AGE distribution in these mice with a younger age group (13 months old) and a typical Alzheimer's disease patient. Around 70% of the amyloid plaque cores in the 24-month-old mice are devoid of AGEs, which might explain their solubility in physiological buffers. Plaque associated glia, which express IL-1beta and TNF-alpha, contain a significant amount of AGEs, suggesting that plaques, i.e. Abeta as its major component, can induce intracellular AGE formation and the expression of the cytokines on its own. In the 13-month-old transgenic mice, AGEs staining can neither be detected in plaques nor in glial cells. In contrast, AGEs are present in high amounts in both plaques and glia in the human AD patient. The data obtained in this show interesting differences between the transgenic mouse model and AD patients, which should be considered using the transgenic approach to test therapeutical strategies to eliminate plaques or to attenuate the inflammatory response in AD.  相似文献   

12.
Woo JA  Roh SE  Lakshmana MK  Kang DE 《FASEB journal》2012,26(4):1672-1681
Accumulation of the amyloid β (Aβ) peptide derived from the amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's disease (AD). We previously reported that the scaffolding protein RanBP9 is markedly increased in AD brains and promotes Aβ generation by scaffolding APP/BACE1/LRP complexes together and accelerating APP endocytosis. Because APP, LRP, and RanBP9 all physically interact with β-integrins, we investigated whether RanBP9 alters integrin-dependent cell adhesion and focal adhesion signaling. Here, we show that RanBP9 overexpression dramatically disrupts integrin-dependent cell attachment and spreading in NIH3T3 and hippocampus-derived HT22 cells, concomitant with strongly decreased Pyk2/paxillin signaling and talin/vinculin localization in focal adhesion complexes. Conversely, RanBP9 knockdown robustly promotes cell attachment, spreading, and focal adhesion signaling and assembly. Cell surface biotinylation and endocytosis assays reveal that RanBP9 overexpression and RanBP9 siRNA potently reduces and increases surface β1-integrin and LRP by accelerating and inhibiting their endocytosis, respectively. Primary hippocampal neurons derived from RanBP9-transgenic mice also demonstrate severely reduced levels of surface β1-integrin, LRP, and APP, as well as neurite arborization. Therefore, these data indicate that RanBP9 simultaneously inhibits cell-adhesive processes and enhances Aβ generation by accelerating APP, LRP, and β1-integrin endocytosis.  相似文献   

13.
Gamma-secretase facilitates the regulated intramembrane proteolysis of select type I membrane proteins that play diverse physiological roles in multiple cell types and tissue. In this study, we used biochemical approaches to examine the distribution of amyloid precursor protein (APP) and several additional gamma-secretase substrates in membrane microdomains. We report that APP C-terminal fragments (CTFs) and gamma-secretase reside in Lubrol WX detergent-insoluble membranes (DIM) of cultured cells and adult mouse brain. APP CTFs that accumulate in cells lacking gamma-secretase activity preferentially associate with DIM. Cholesterol depletion and magnetic immunoisolation studies indicate recruitment of APP CTFs into cholesterol- and sphingolipid-rich lipid rafts, and co-residence of APP CTFs, PS1, and syntaxin 6 in DIM patches derived from the trans-Golgi network. Photoaffinity cross-linking studies provided evidence for the preponderance of active gamma-secretase in lipid rafts of cultured cells and adult brain. Remarkably, unlike the case of APP, CTFs derived from Notch1, Jagged2, deleted in colorectal cancer (DCC), and N-cadherin remain largely detergent-soluble, indicative of their spatial segregation in non-raft domains. In embryonic brain, the majority of PS1 and nicastrin is present in Lubrol WX-soluble membranes, wherein the CTFs derived from APP, Notch1, DCC, and N-cadherin also reside. We suggest that gamma-secretase residence in non-raft membranes facilitates proteolysis of diverse substrates during embryonic development but that the translocation of gamma-secretase to lipid rafts in adults ensures processing of certain substrates, including APP CTFs, while limiting processing of other potential substrates.  相似文献   

14.
Altered production of Aβ (amyloid-β peptide), derived from the proteolytic cleavage of APP (amyloid precursor protein), is believed to be central to the pathogenesis of AD (Alzheimer's disease). Accumulating evidence reveals that APPc (APP C-terminal domain)-interacting proteins can influence APP processing. There is also evidence to suggest that APPc-interacting proteins work co-operatively and competitively to maintain normal APP functions and processing. Hence, identification of the full complement of APPc-interacting proteins is an important step for improving our understanding of APP processing. Using the yeast two-hybrid system, in the present study we identified GULP1 (engulfment adaptor protein 1) as a novel APPc-interacting protein. We found that the GULP1-APP interaction is mediated by the NPTY motif of APP and the GULP1 PTB (phosphotyrosine-binding) domain. Confocal microscopy revealed that a proportion of APP and GULP1 co-localized in neurons. In an APP-GAL4 reporter assay, we demonstrated that GULP1 altered the processing of APP. Moreover, overexpression of GULP1 enhanced the generation of APP CTFs (C-terminal fragments) and Aβ, whereas knockdown of GULP1 suppressed APP CTFs and Aβ production. The results of the present study reveal that GULP1 is a novel APP/APPc-interacting protein that influences APP processing and Aβ production.  相似文献   

15.
The accumulation of beta-amyloid protein in specific brain regions is a central pathological feature of Alzheimer's disease (AD). The 4 kd beta-amyloid protein derives from a larger amyloid precursor protein (APP) by as yet unknown mechanisms. In the absence of a laboratory animal model of AD, transgenic mice expressing various APP gene products may provide new insights into the relationship between APP and beta-amyloid formation and the pathogenesis of AD. beta-amyloid accumulation in AD brain may result from interactions between APP and other molecules. Such interactions are likely to be developmentally regulated and tissue-specific. A transgenic mouse model of AD, therefore, would aim for APP transgene expression that mimics the endogenous APP gene. As an initial step in developing an animal model, we have identified a 4.5 kb DNA fragment from the 5' end of the human APP gene, which mediates neuron-specific gene expression in the CNS of transgenic mice, using E. coli lacZ as a reporter gene. Detectable levels of transgene expression are found in most neurons but not in glial and vascular endothelial cells. The expression pattern of this reporter gene closely resembles the distribution of endogenous APP mRNA in both the human and mouse CNS.  相似文献   

16.
To date there is no effective therapy for Alzheimer disease (AD). High levels of circulating high density lipoprotein (HDL) and its main protein, apolipoprotein A-I (apoA-I), reduce the risk of cardiovascular disease. Clinical studies show that plasma HDL cholesterol and apoA-I levels are low in patients with AD. To investigate if increasing plasma apoA-I/HDL levels ameliorates AD-like memory deficits and amyloid-β (Aβ) deposition, we generated a line of triple transgenic (Tg) mice overexpressing mutant forms of amyloid-β precursor protein (APP) and presenilin 1 (PS1) as well as human apoA-I (AI). Here we show that APP/PS1/AI triple Tg mice have a 2-fold increase of plasma HDL cholesterol levels. When tested in the Morris water maze for spatial orientation abilities, whereas APP/PS1 mice develop age-related learning and memory deficits, APP/PS1/AI mice continue to perform normally during aging. Interestingly, no significant differences were found in the total level and deposition of Aβ in the brains of APP/PS1 and APP/PS1/AI mice, but cerebral amyloid angiopathy was reduced in APP/PS1/AI mice. Also, consistent with the anti-inflammatory properties of apoA-I/HDL, glial activation was reduced in the brain of APP/PS1/AI mice. In addition, Aβ-induced production of proinflammatory chemokines/cytokines was decreased in mouse organotypic hippocampal slice cultures expressing human apoA-I. Therefore, we conclude that overexpression of human apoA-I in the circulation prevents learning and memory deficits in APP/PS1 mice, partly by attenuating neuroinflammation and cerebral amyloid angiopathy. These findings suggest that elevating plasma apoA-I/HDL levels may be an effective approach to preserve cognitive function in patients with AD.  相似文献   

17.
Progressive accumulation of the amyloid β protein in extracellular plaques is a neuropathological hallmark of Alzheimer disease. Amyloid β is generated during sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. In addition to the proteolytic processing by secretases, APP is also metabolized by lysosomal proteases. Here, we show that accumulation of intracellular sphingosine-1-phosphate (S1P) impairs the metabolism of APP. Cells lacking functional S1P-lyase, which degrades intracellular S1P, strongly accumulate full-length APP and its potentially amyloidogenic C-terminal fragments (CTFs) as compared with cells expressing the functional enzyme. By cell biological and biochemical methods, we demonstrate that intracellular inhibition of S1P-lyase impairs the degradation of APP and CTFs in lysosomal compartments and also decreases the activity of γ-secretase. Interestingly, the strong accumulation of APP and CTFs in S1P-lyase-deficient cells was reversed by selective mobilization of Ca2+ from the endoplasmic reticulum or lysosomes. Intracellular accumulation of S1P also impairs maturation of cathepsin D and degradation of Lamp-2, indicating a general impairment of lysosomal activity. Together, these data demonstrate that S1P-lyase plays a critical role in the regulation of lysosomal activity and the metabolism of APP.  相似文献   

18.
Amyloid beta (Aβ) is a major component of amyloid plaques, which are a key pathological hallmark found in the brains of Alzheimer’s disease (AD) patients. We show that statins are effective at reducing Aβ in human neurons from nondemented control subjects, as well as subjects with familial AD and sporadic AD. Aβ is derived from amyloid precursor protein (APP) through sequential proteolytic cleavage by BACE1 and γ-secretase. While previous studies have shown that cholesterol metabolism regulates APP processing to Aβ, the mechanism is not well understood. We used iPSC-derived neurons and bimolecular fluorescence complementation assays in transfected cells to elucidate how altering cholesterol metabolism influences APP processing. Altering cholesterol metabolism using statins decreased the generation of sAPPβ and increased levels of full-length APP (flAPP), indicative of reduced processing of APP by BACE1. We further show that statins decrease flAPP interaction with BACE1 and enhance APP dimerization. Additionally, statin-induced changes in APP dimerization and APP-BACE1 are dependent on cholesterol binding to APP. Our data indicate that statins reduce Aβ production by decreasing BACE1 interaction with flAPP and suggest that this process may be regulated through competition between APP dimerization and APP cholesterol binding.  相似文献   

19.
Recent studies indicated that the formation of a major constituent of Alzheimer's disease (AD) senile plaques, called beta A4-peptide, does not result from normal processing of its precursor, amyloid precursor protein (APP). Since proteolytic cleavage of APP inside its beta A4 sequence was found to be part of APP processing the formation of the beta A4-peptide seems to be prevented under normal conditions. We considered whether in AD one of the endogenous proteinase inhibitors might interfere with APP processing. After we had recently found that cultured human neuronal cells synthesize the most potent of the known human proteinase inhibitors, alpha-2-macroglobulin (alpha 2M), upon stimulation with the inflammatory mediator interleukin-6 (IL-6) we now investigated whether alpha 2M and IL-6 could be detected in AD brains. Here we report that AD cortical senile plaques display strong alpha 2M and IL-6 immunoreactivity while no such immunoreactivity was found in age-matched control brains. Strong perinuclear alpha 2M immunoreactivity in hippocampal CA1 neurons of Alzheimer's disease brains indicates that neuronal cells are the site of alpha 2M synthesis in AD brains. We did not detect elevated IL-6 or alpha 2M levels in the cerebrospinal fluid of AD patients. Our data indicate that a sequence of immunological events which seem to be restricted to the local cortical environment is part of AD pathology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号