首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deletion or inactivation of anti-self (DNA) B cells has been reported in non-autoimmune mice bearing Ig transgenes that code for Abs with specificity for dsDNA or ssDNA. However, we report a case in which anti-dsDNA B cells appear to escape both deletion and inactivation. We show that B cells (B220+IgM+) can develop in non-autoimmune SCID mice bearing two site-directed transgenes, 3H9(56R) and Vkappa8, that together code for an anti-dsDNA Ab. The B cells appear inactive, because the mice (56RVkappa8 SCID mice) generally lack serum Ig. However, 56RVkappa8 SCID mice are able to produce IgG Ab with specificity for dsDNA when they become "leaky" for T cells or are reconstituted with exogenous T cells from B cell-deficient JH-/- donors. Thus, anti-dsDNA B cells that escape deletion in 56RVkappa8 SCID mice appear fully functional and can differentiate, class switch, and give rise to IgG-producing cells in the presence of T cells and self-Ag.  相似文献   

2.
Loss of tolerance is considered to be an early event that is essential for the development of autoimmune disease. In contrast to this expectation, autoimmune (type 1) diabetes develops in NOD mice that harbor an anti-insulin Ig transgene (125Tg), even though anti-insulin B cells are tolerant. Tolerance is maintained in a similar manner in both normal C57BL/6 and autoimmune NOD mice, as evidenced by B cell anergy to stimulation through their Ag receptor (anti-IgM), TLR4 (LPS), and CD40 (anti-CD40). Unlike B cells in other models of tolerance, anergic 125Tg B cells are not arrested in development, and they enter mature subsets of follicular and marginal zone B cells. In addition, 125Tg B cells remain competent to increase CD86 expression in response to both T cell-dependent (anti-CD40) and T cell-independent (anti-IgM or LPS) signals. Thus, for anti-insulin B cells, tolerance is characterized by defective B cell proliferation uncoupled from signals that promote maturation and costimulator function. In diabetes-prone NOD mice, anti-insulin B cells in this novel state of tolerance provide the essential B cell contribution required for autoimmune beta cell destruction. These findings suggest that the degree of functional impairment, rather than an overt breach of tolerance, is a critical feature that governs B cell contribution to T cell-mediated autoimmune disease.  相似文献   

3.
Anti-dsDNA Abs are specific diagnostic markers of systemic lupus erythematosus, and are also implicated in kidney pathology. Anti-dsDNA B cells have been shown to be tolerized in nonautoimmune mice. The immunodysregulation that causes these cells to break tolerance is presumably part of the fundamental defects in systemic lupus erythematosus. To explore these mechanisms, we used the chronic graft-versus-host model mediated by MHC class II differences. Induction of chronic graft-vs-host in anti-DNA H chain knockin (3H9.KI) transgenic mice on a nonautoimmune background resulted in specific activation of anti-dsDNA B cells, as evidenced by high titers of soluble Ab in sera and a high frequency (70%) of anti-dsDNA B cell clones recovered as hybridomas. In addition, the lambda(+)-anti-dsDNA B cells developed increased expression of cell surface activation markers, and concentrated in the T cell area of the follicle with an Ab-forming cell-compatible phenotype. Genetic analysis of the hybridoma clones showed strong evidence of secondary rearrangements of the L chain associated with anti-dsDNA reactivity. Thus, our study indicates that alloreactive T cell help can break tolerance in a complex manner, involving several events.  相似文献   

4.
The mechanism(s) responsible for autoimmunity to DNA and nucleosomes in SLE is largely unknown. We have demonstrated that nucleosome-polyomavirus T-Ag complexes, formed in context of productive polyomavirus infection, activate dsDNA-specific B cells and nucleosome-specific CD4(+) T cells. To investigate whether de novo expressed T-Ag is able to terminate nucleosome-specific T cell tolerance and to maintain anti-dsDNA Ab production in nonautoimmune mice, we developed two binary transgenic mouse variants in which expression of SV40 large T-Ag is controlled by tetracycline, MUP tTA/T-Ag (tet-off), and CMV rtTA/T-Ag (tet-on) mice. Data demonstrate that MUP tTA/T-Ag mice, but not CMV rtTA/T-Ag mice, are tightly controlling T-Ag expression. In MUP tTA/T-Ag transgenic mice, postnatal T-Ag expression activated CD8(+) T cells but not DNA-specific B cells, while immunization with T-Ag and nucleosome-T-Ag-complexes before T-Ag expression resulted in elevated and remarkably stable titers of anti-T-Ag and anti-dsDNA Abs and activation of T-Ag-specific CD4(+) T cells. Immunization of nonexpressing MUP tTA/T-Ag mice resulted in transient anti-T-Ag and anti-dsDNA Abs. This system reveals that a de novo expressed DNA-binding quasi-autoantigen maintain anti-dsDNA Abs and CD4(+) T cell activation once initiated by immunization, demonstrating direct impact of a single in vivo expressed molecule on sustained autoimmunity to DNA and nucleosomes.  相似文献   

5.
Mechanisms that initiate lupus nephritis and cause progression to end-stage renal disease remain poorly understood. In this study, we show that lupus-prone New Zealand Mixed 2410 mice that develop a severe glomerulosclerosis and rapidly progressive renal disease overexpress IL-4 in vivo. In these mice, STAT6 deficiency or anti-IL-4 Ab treatment decreases type 2 cytokine responses and ameliorates kidney disease, particularly glomerulosclerosis, despite the presence of high levels of IgG anti-dsDNA Abs. STAT4 deficiency, however, decreases type 1 and increases type 2 cytokine responses, and accelerates nephritis, in the absence of high levels of IgG anti-dsDNA Abs. Thus, STAT6 and IL-4 may selectively contribute to the development of glomerulosclerosis, whereas STAT4 may play a role in autoantibody production.  相似文献   

6.
Patients and rodents with Goodpasture's syndrome (GPS) develop severe autoimmune crescentic glomerulonephritis, kidney failure, and lung hemorrhage due to binding of pathogenic autoantibodies to the NC1 domain of the alpha3 chain of type IV collagen. Target epitopes are cryptic, normally hidden from circulating Abs by protein-protein interactions and the highly tissue-restricted expression of the alpha3(IV) collagen chain. Based on this limited Ag exposure, it has been suggested that target epitopes are not available as B cell tolerogens. To determine how pathogenic anti-GPS autoantibody responses are regulated, we generated an Ig transgenic (Tg) mouse model that expresses an Ig that binds alpha3(IV)NC1 collagen epitopes recognized by serum IgG of patients with GPS. Phenotypic analysis reveals B cell depletion and L chain editing in Tg mice. To determine the default tolerance phenotype in the absence of receptor editing and endogenous lymphocyte populations, we crossed Tg mice two generations with mice deficient in Rag. Resulting Tg Rag-deficient mice have central B cell deletion. Thus, development of Tg anti-alpha3(IV)NC1 collagen B cells is halted in the bone marrow, at which point the cells are deleted unless rescued by a Rag enzyme-dependent process, such as editing. The central tolerance phenotype implies that tolerizing self-Ag is expressed in bone marrow.  相似文献   

7.
Many individuals develop a single or a few brief episodes of autoimmunity from which they recover. Mechanisms that quell pathologic autoimmunity following such a breakdown of self-tolerance are not clearly understood. In this study, we show that in nonautoimmune mice, dsDNA-specific autoreactive B cells exist but remain inactive. This state of inactivation in dsDNA-specific B cells could be disrupted by autoreactive Th cells; in this case T cells that react with peptides from the V(H) region of anti-DNA Abs (hereafter called anti-V(H) T cells). Immunization with anti-DNA mAb, its gamma-chain or peptides derived from its V(H) region induced anti-V(H) Th cells, IgG anti-dsDNA Ab, and proteinuria. The breakdown of B cell tolerance in nonautoimmune mice, however, was short-lived: anti-DNA Ab and nephritis subsided despite subsequent immunizations. The recovery from autoimmunity temporally correlated with the appearance of T cells that inhibited anti-DNA Ab production. Such inhibitory T cells secreted TGFbeta; the inhibition of anti-DNA Ab production by these cells was partly abolished by anti-TGFbeta Ab. Even without immunization, nonautoimmune mice possess T cells that can inhibit autoantibody production. Thus, inhibitory T cells in nonautoimmune mice may normally inhibit T-dependent activation of autoreactive B cells and/or reverse such activation following stimulation by Th cells. The induction of such inhibitory T cells may play a role in protecting nonautoimmune mice from developing chronic autoimmunity.  相似文献   

8.
CD19 and the Src family protein tyrosine kinases (PTKs) are important regulators of intrinsic signaling thresholds in B cells. Regulation is achieved by cross-talk between Src family PTKs and CD19; Lyn is essential for CD19 phosphorylation, while CD19 establishes an Src family PTK activation loop that amplifies kinase activity. However, CD19-deficient (CD19(-/-)) B cells are hyporesponsive to transmembrane signals, while Lyn-deficient (Lyn(-/-)) B cells exhibit a hyper-responsive phenotype resulting in autoimmunity. To identify the outcome of interactions between CD19 and Src family PTKs in vivo, B cell function was examined in mice deficient for CD19 and Lyn (CD19/Lyn(-/-)). Remarkably, CD19 deficiency suppressed the hyper-responsive phenotype of Lyn(-/-) B cells and autoimmunity characterized by serum autoantibodies and immune complex-mediated glomerulonephritis in Lyn(-/-) mice. Consistent with Lyn and CD19 each regulating conventional B cell development, B1 cell development was markedly reduced by Lyn deficiency, with further reductions in the absence of CD19 expression. Tyrosine phosphorylation of Fyn and other cellular proteins induced following B cell Ag receptor ligation was dramatically reduced in CD19/Lyn(-/-) B cells relative to Lyn(-/-) B cells, while Syk phosphorylation was normal. In addition, the enhanced intracellular Ca(2+) responses following B cell Ag receptor ligation that typify Lyn deficiency were delayed by the loss of CD19 expression. BCR-induced proliferation and humoral immune responses were also markedly inhibited by CD19/Lyn deficiency. These findings demonstrate that while the CD19/Lyn amplification loop is a major regulator of signal transduction thresholds in B lymphocytes, CD19 regulation of other Src family PTKs also influences B cell function and the development of autoimmunity.  相似文献   

9.
T cells that recognize nucleoproteins are required for the production of anti-dsDNA Abs involved in lupus development. SmD1 83-119 (a D1 protein of the Smith (Sm) proteins, part of small nuclear ribonucleoprotein) was recently shown to provide T cell help to anti-dsDNA Abs in the NZB/NZW model of lupus. Using this model in the present study, we showed that high dose tolerance to SmD1 (600-1000 microg i.v. of SmD1(83-119) peptide/mo) delays the production of autoantibodies, postpones the onset of lupus nephritis as confirmed by histology, and prolongs survival. Tolerance to SmD1 83-119 was adoptively transferred by CD90+ T cells, which also reduce T cell help for autoreactive B cells in vitro. One week after SmD1 83-119 tolerance induction in prenephritic mice, we detected cytokine changes in cultures of CD90+ T and B220+ B cells with decreased IFN-gamma and IL-4 expression and an increase in TGFbeta. Increased frequencies of regulatory IFN-gamma+ and IL10+ CD4+ T cells were later detected. Such regulatory IL-10+/IFN-gamma+ type 1 regulatory T cells prevented autoantibody generation and anti-CD3-induced proliferation of naive T cells. In conclusion, these results indicate that SmD1 83-119 peptide may play a dominant role in the activation of helper and regulatory T cells that influence autoantibody generation and murine lupus.  相似文献   

10.
11.
Vaccination of nonautoimmune prone mice with syngeneic dendritic cells (DC) readily induces anti-DNA autoantibodies but does not trigger systemic disease. We observed that anti-DNA autoantibody generation absolutely required alphabeta T cells and that gammadelta T cells also contributed to the response, but that regulatory T cells restrained autoantibody production. Although both NZB/W F(1) mice and DC vaccinated C57/BL6 mice produced autoantibodies against dsDNA, vaccinated mice had higher levels of Abs against H1 histone and lower levels of antinucleosome Abs than NZB/W F(1) mice. Despite a 100-fold increase in IL-12 and Th1 skewing to a foreign Ag, OVA, synergistic TLR activation of DC in vitro failed to augment anti-DNA Abs or promote class switching beyond that induced by LPS alone. TLR stimulation was not absolutely required for the initial loss of B cell tolerance because anti-DNA levels were similar when wild-type (WT) or MyD88-deficient DC were used for vaccination or WT and MyD88-deficient recipients were vaccinated with WT DC. In contrast, systemic administration of LPS, augmented anti-DNA Ab levels and promoted class switching, and this response was dependent on donor DC signaling via MyD88. LPS also augmented responses in the MyD88-deficient recipients, suggesting that LPS likely exerts its effects on both transferred DC and host B cells in vivo. These results indicate that both the alphabeta and gammadelta subsets are necessary for promoting autoantibody production by DC vaccination, and that although TLR/MyD88 signaling is not absolutely required for initiation, this pathway does promote augmentation, and Th1-mediated skewing, of anti-DNA autoantibodies.  相似文献   

12.
13.
Lupus-associated anti-DNA Abs display features of Ag selection, yet the triggering Ag in the disease is unknown. We previously demonstrated that the peptide DWEYSVWLSN is bound by a pathogenic anti-DNA Ab, and that immunization of nonautoimmune mice with this peptide induces autoantibodies and renal Ig deposition. To elucidate differences in the induced B cell responses in mice genetically predisposed to autoimmunity, young (NZB x NZW)F(1) mice were immunized with this peptide DNA mimetope. DWEYSVWLSN-immunized mice had significantly increased IgG anti-dsDNA, anti-laminin, and anti-cardiolipin Ab titers compared with controls. In addition, glomerular histopathology in the form of endocapillary disease and crescent formation was markedly more severe in DWEYSVWLSN-immunized mice. Analysis of mAbs from DWEYSVWLSN-immunized mice revealed that anti-peptide Abs were often cross-reactive with DNA. Genetic elements used in the Ab response in immunized mice were homologous to those used in the spontaneous anti-DNA response in (NZB x NZW)F(1) mice, as well as in other, experimentally induced anti-DNA Abs. Our results indicate that peptide immunization can induce a molecular genetic response common to a variety of stimuli that break tolerance to mammalian dsDNA. Based on the similarity between spontaneously arising anti-DNA Abs and several types of induced anti-DNA Abs, we suggest that there may be more than a single Ag that can trigger systemic lupus erythematosus.  相似文献   

14.
Mast cells (MCs) control allergic reactions and contribute to protective innate immune responses through TLR4 activation. The tyrosine kinase Lyn is important to the high affinity IgE receptor (FcεRI) signal transduction system in MCs, but its role on the TLR4 signalling cascade is still elusive. Here, we characterized several TLR4-triggered responses in bone marrow-derived mast cells (BMMCs) from wild-type (WT) and Lyn(-/-) mice. We found that Lyn(-/-) MCs secreted lower amounts of TNF-α after LPS challenge when compared with WT cells. Lyn(-/-) BMMCs showed less MAPK, IκB phosphorylation and NF-κB nuclear translocation after TLR-4 triggering than WT cells. LPS-induced MAPK and inhibitor of IκB kinase (IKK) phosphorylation were importantly reduced in the absence of Lyn. A constitutive interaction between TNF receptor associated factor 6 (TRAF-6) and phosphorylated TGF-β-activated kinase (TAK-1) was observed in Lyn(-/-) BMMCs and this complex was insensitive to LPS addition. Lyn kinase was activated and associated to TRAF-6 shortly after LPS addition in WT MCs. Analyzing two local MC-dependent innate immune responses in?vivo, we found that Lyn positively controls early TNF-α production and immune cell recruitment after an intraperitoneal injection of LPS. Our results indicate that Lyn plays a positive role in TLR4-induced production of TNF-α in MCs controlling the activity of the TRAF-6/TAK-1 protein complex.  相似文献   

15.
Receptor editing is a major B cell tolerance mechanism that operates by secondary Ig gene rearrangements to change the specificity of autoreactive developing B cells. In the 3-83Igi mouse model, receptor editing operates in every autoreactive anti-H-2K(b) B cell, providing a novel receptor without additional cell loss. Despite the efficiency of receptor editing in generating nonautoreactive Ag receptors, we show in this study that this process does not inactivate the autoantibody-encoding gene(s) in every autoreactive B cell. In fact, receptor editing can generate allelically and isotypically included B cells that simultaneously express the original autoreactive and a novel nonautoreactive Ag receptors. Such dual Ab-expressing B cells differentiate into transitional and mature B cells retaining the expression of the autoantibody despite the high avidity interaction between the autoantibody and the self-Ag in this system. Moreover, we find that these high avidity autoreactive B cells retain the autoreactive Ag receptor within the cell as a consequence of autoantigen engagement and through a Src family kinase-dependent process. Finally, anti-H-2K(b) IgM autoantibodies are found in the sera of older 3-83Igi mice, indicating that dual Ab-expressing autoreactive B cells are potentially functional and capable of differentiating into IgM autoantibody-secreting plasma cells under certain circumstances. These results demonstrate that autoreactive B cells reacting with ubiquitous membrane bound autoantigens can bypass mechanisms of central tolerance by coexpressing nonautoreactive Abs. These dual Ab-expressing autoreactive B cells conceal their autoantibodies within the cell manifesting a superficially tolerant phenotype that can be partially overcome to secrete IgM autoantibodies.  相似文献   

16.
To identify defects in B cell tolerance that may contribute to the production of autoantibodies in New Zealand Black (NZB) mice, we crossed soluble hen egg white lysozyme (sHEL) and anti-HEL Ig transgenes (Ig Tg) onto the NZB background. In this study, we have examined one of the first checkpoints involved in maintenance of peripheral B cell tolerance, follicular exclusion and elimination of self-reactive B cells in the absence of T cell help. Freshly isolated anti-HEL Ig Tg B cells were labeled with CFSE, adoptively transferred into sHEL recipients, and the fate of self-reactive anti-HEL Ig Tg B cells was followed using flow cytometry and immunofluorescence microscopy. Although anti-HEL Ig Tg B cells from NZB mice are appropriately excluded from B cell follicles in NZB sHEL recipient mice, they demonstrate aberrant survival, proliferation, and generation of anti-HEL Ab-producing cells. This abnormal response results from an intrinsic defect in NZB B cells, requires the presence of CD4(+) T cells, and is facilitated by the splenic environment in NZB mice. Thus, NZB mice have immune defects that interact synergistically to allow autoreactive B cells to become activated despite the presence of tolerizing autoantigens.  相似文献   

17.
Short-term combination therapy with the costimulatory antagonists CTLA4Ig and anti-CD40 ligand induces prolonged suppression of disease onset in New Zealand Black/New Zealand White F(1) systemic lupus erythematosus-prone mice. To determine the mechanism for this effect, 20- to 22-wk-old New Zealand Black/New Zealand White F(1) mice were treated with six doses each of CTLA4Ig and anti-CD40 ligand Ab over 2 wk. Combination-treated mice, but not mice treated with either agent alone, had prolonged survival and the production of pathogenic IgG anti-dsDNA Ab was suppressed. Twenty weeks after completion of treatment the frequency of activated B cells producing anti-dsDNA Ab was decreased, and the abnormal transition of T cells from the naive to the memory compartment was blocked. Combination treatment partially suppressed class switching and decreased the frequency of somatic mutations in the V(H)BW-16 gene, which is expressed by pathogenic anti-DNA Abs. Treated mice were still able to respond to the hapten oxazolone when it was given 8 wk after treatment initiation, and they mounted a somatically mutated IgG anti-oxazolone response that was noncross-reactive with dsDNA. Fifty to 60% of previously treated mice, but only 14% of previously untreated mice, responded within 2-3 wk to a second course of therapy given at the onset of fixed proteinuria and remained well for a further 3-4 mo. Although this treatment had no immediate effect on serum anti-dsDNA Abs or on the abnormal T cell activation observed in sick mice, 25% of treated mice lived for >18 mo compared with 5% of untreated controls. These results suggest that the effect of costimulatory blockade in remission induction must be mediated by a different mechanism than is demonstrated in the disease prevention studies.  相似文献   

18.
Tolerance to dsDNA is broken in mice with a high-affinity anti-DNA H chain transgene, 56R, on the C57BL/6 background (B6.56R). B6.56R produce more anti-dsDNA Abs than BALBc.56R. To investigate how anti-DNA Abs are regulated on the B6 background, phenotypic and genetic studies were performed. B6.56R have reduced numbers of B cells and phenotypically altered B cell subsets, including relative increases in the proportions of IgM-negative bone marrow B cells, cells with a marginal zone phenotype, and cells with a transitional T3 phenotype. The peripheral B cell repertoire in B6.56R is restricted: most B cells express the 56R H chain and use a similar, limited subset of editor L chains. DNA binding is more common in B6.56R because the repertoire is shifted toward L chains that are more permissive for DNA binding. H chain editing is also observed and is increased in spontaneous as compared with LPS hybridomas. A subset of spontaneous hybridomas appears to lack H chain expression.  相似文献   

19.
Death receptor-induced programmed cell death (PCD) is crucial for the maintenance of immune homeostasis. However, interference of downstream death receptor signaling by genetic ablation or transgenic (Tg) expression of different apoptosis inhibitors often impairs lymphocyte activation. The viral FLICE (caspase-8)-like inhibitor proteins (v-FLIPs) are potent inhibitors of death receptor-induced apoptosis and programmed necrosis. We generated Tg mice expressing the v-FLIP MC159 from Molluscum contagiosum virus under the control of the H2Kb class I MHC promoter to examine the role of death receptor-induced PCD in the control of immune functions and homeostasis. We found that expression of MC159 led to lymphoproliferation and autoimmunity as exemplified by T and B lymphocyte expansion, accumulation of TCRalphabeta+ CD3+ B220+ CD4- CD8- lymphocytes in secondary lymphoid organs, elevated serum Ig levels, and increased anti-dsDNA Ab titers. These phenotypes were caused by defective death receptor-induced apoptosis, but not by defective passive cell death in the absence of mitogenic stimulation. Lymphocyte activation was normal, as demonstrated by normal thymidine incorporation and CSFE dilution of T cells stimulated with anti-CD3 and anti-CD28 Abs. In addition, effector CD8+ T cell responses to acute and memory lymphocytic choriomeningitis virus infections were unaffected in the Tg mice. These phenotypes are reminiscent of the lpr and gld mice, and show that the v-FLIP MC159 is a bona fide PCD inhibitor that does not interfere with other essential lymphocyte functions. Thus, the MC159-Tg mice provide a model to study the effects of PCD in immune responses without hampering other important lymphocyte functions.  相似文献   

20.
It has not been resolved whether gammadelta T cells can collaborate with germinal center B cells and support Ig hypermutation during an Ab response to a truly defined T-dependent Ag. In this study, we show that in the absence of alphabeta T cells, immunization with the well-defined T-dependent Ag, (4-hydroxy-3-nitrophenyl) acetyl (NP) conjugate, was able to induce Ig hypermutation. However, the clonotypes of B cells responding to NP were dramatically altered in TCR beta(-/-) mice. Unlike B cells in wild-type mice that use canonical VDJ rearrangements, most NP-responding B cells in mutant mice use analog genes of the J558 gene family. In addition, the majority of anti-NP Abs produced in mutant mice use kappaL chain instead of lambda1L chain, which dominates in mice of Igh(b) background. Thus, the B cell population that collaborates with gammadelta T cells is distinct from B cells interacting with conventional alphabeta Th cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号