首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
Hog gastric vesicles showed Cl- conductance when treated with Cu2+-o-phenanthroline, an S-S cross-linking reagent. An IgG monoclonal antibody caused dose-dependent inhibition of Cl- conductance that had been induced by S-S cross-linking. The antibody did not cause intervesicular aggregation, as determined by measurement of vesicle size. These results show that Cl- conductance, the stimulation and inhibition of which are regulated reversibly by S-S----2SH transformation, is due to native, physiological channels. The antibody also dose dependently inhibited the activities of H,K-ATPase and p-nitrophenyl phosphatase in gastric vesicles, but did not inhibit Na,K-ATPase obtained from dog kidney. Immunoblotting with the antibody of vesicle proteins solubilized in sodium dodecyl sulfate-polyacrylamide gel showed that the antibody binds to a 95-kDa subunit of H,K-ATPase and its dimeric 180-kDa polypeptide. The antibody-binding sites of H,K-ATPase activity and the Cl- channel for the inhibition were present on the external (cytosolic) surface of the transmembraneous ATPase. A gastric antisecretory compound, 2-methyl-8-(phenylmethoxy)imidazo[1,2 alpha] pyridine-3-acetonitrile (SCH 28080), competitively bound to the high affinity site of K+ on the internal (luminal) surface of H,K-ATPase, and its half-maximal inhibitory concentration for H,K-ATPase activity in tight vesicles was 0.2 microM in the presence of valinomycin. SCH 28080 also dose dependently inhibited opening of Cl- channels by S-S cross-linking, the regulatory site being present on the cytosolic side and more internally than the antibody binding site. The half-inhibitory concentration of SCH 28080 was 0.3 microM. The present results with the antibody and SCH 28080 indicate that the Cl- channel is part of the function of H,K-ATPase.  相似文献   

2.
The aim of this work was to develop a method for renal H+,K+-ATPase measurement based on the previously used Na+,K+-ATPase assay (Beltowski et al.: J Physiol Pharmacol.; 1998, 49: 625-37). ATPase activity was assessed by measuring the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Both ouabain-sensitive and ouabain-resistant K+-stimulated and Na+-independent ATPase activity was detected in the renal cortex and medulla. These activities were blocked by 0.2 mM imidazolpyridine derivative, Sch 28080. The method for ouabain-sensitive H+,K+-ATPase assay is characterized by good reproducibility, linearity and recovery. In contrast, the assay for ouabain-resistant H+,K+-ATPase was unsatisfactory, probably due to low activity of this enzyme. Ouabain-sensitive H+,K+-ATPase was stimulated by K+ with Km of 0.26 +/- 0.04 mM and 0.69 +/- 0.11 mM in cortex and medulla, respectively, and was inhibited by ouabain (Ki of 2.9 +/- 0.3 microM in the renal cortex and 1.9 +/- 0.4 microM in the renal medulla) and by Sch 28080 (Ki of 1.8 +/- 0.5 microM and 2.5 +/- 0.9 microM in cortex and medulla, respectively). We found that ouabain-sensitive H+,K+-ATPase accounted for about 12% of total ouabain-sensitive activity in the Na+,K+-ATPase assay. Therefore, we suggest to use Sch 28080 during Na+,K+-ATPase measurement to block H+,K+-ATPase and improve the assay specificity. Leptin administered intraperitoneally (1 mg/kg) decreased renal medullary Na+,K+-ATPase activity by 32.1% at 1 h after injection but had no effect on H+,K+-ATPase activity suggesting that the two renal ouabain-sensitive ATPases are separately regulated.  相似文献   

3.
The gastric H,K-ATPase is inhibited selectively and K(+)-competitively from its luminal surface by protonated imidazo[1,2alpha]pyridines (e.g., SCH28080). Identification of the amino acids in the membrane domain that affect SCH28080 inhibition should provide a template for modeling a luminally directed vestibule in this enzyme, based on the crystal structure of the sr Ca-ATPase. Five conserved carboxylic residues, Glu343, Glu795, Glu820, Asp824, Glu936, and unique Lys791 in the H,K-ATPase were mutated, and the effects of mutations on the K(i) for SCH28080, V(max), and K(m,app)[NH(4)(+)] were measured. A kinetic analysis of the ATP hydrolysis data indicated that all of these residues significantly affect the interaction of NH(4)(+) ions with the protein but only three of them, Glu795, Glu936, and Lys791, greatly affected SCH28080 inhibition. A Glu795Asp mutation increased the K(i) from 64 +/- 11 to 700 +/- 110 nM. Since, however, the mutation Glu795Gln did not change the K(i) (86 +/- 31 nM), this site has a significant spatial effect on inhibitor kinetics. A Glu936Asp mutation resulted in noncompetitive kinetics while Gln substitution had no effect either on inhibitor affinity or on the nature of the kinetics, suggesting that the length of the Glu936 side chain is critical for the exclusive binding of the ion and SCH28080. Mutation of Lys791 to Ser, the residue present in the SCH28080-insensitive Na,K-ATPase, resulted in a 20-fold decrease in SCH28080 affinity, suggesting an important role of this residue in SCH28080 selectivity of the H,K-ATPase versus Na,K-ATPase. Mutations of Asp824, Glu343, and Glu820 increased the K(i) 2-3-fold, implying a relatively minor role for these residues in SCH28080 inhibition. It appears that the imidazopyridine moiety of SCH28080 in the protonated state interacts with residues near the negatively charged residues of the empty ion site from the luminal side (TM4, -5, -6, and -8) while the hydrophobic phenyl ring interacts with TM1 or TM2 (the latter conclusion based on previous data from photoaffinity labeling). The integrity of the SCH28080 binding site depends on the presence of Lys791, Glu936, and Glu795 in H,K-ATPase. A computer-generated model of this region illustrates the possible involvement of the residues previously shown to affect SCH28080 inhibition (Cys813, Ile816, Thr823, Met334, Val337) and may predict other residues that line the SCH28080 binding vestibule in the E(2) conformation of the pump.  相似文献   

4.
Defining the structural and catalytic properties of the ion transport site(s) of enzyme-phosphorylating ATPases is of key importance in understanding the mechanism of ion transport by these enzymes. In the case of the H+, K(+)-ATPase, SCH 28080 (3-(cyanomethyl)-2-methyl-8-(phenylmethoxy)imidazo[1,2a]-pyridine) has been shown to act as a high affinity, extracytosolic, K(+)-competitive inhibitor of Mg2+, K(+)-ATPase activity (Wallmark, B., Briving, C., Fryklund, J., Munson, K., Jackson, R., Mendlein, J., Rabon, E., and Sachs, G. (1987) J. Biol. Chem. 262, 2077-2084). To define the nature of the SCH 28080-binding site in relation to the catalytic cycle of the enzyme, we have investigated the effects of this potential K+ transport site probe on the steady-state and partial reactions of the H+, K(+)-ATPase. In the absence of K+, SCH 28080 inhibits Mg2(+)-ATPase activity with high affinity (apparent Ki = 30 nM). Inhibition is due to K(+)-like prevention of phosphoenzyme formation. SCH 28080 has no effect on Mg2(+)-catalyzed dephosphorylation. SCH 28080, at concentrations less than 0.5 microM, increases the apparent Km for K+ for Mg2+, K(+)-ATPase activity with little effect on the maximum velocity. At higher concentrations of SCH 28080, reversal of inhibition by higher K+ concentrations is not complete, due to inhibition of ATPase activity by high K+. In contrast, SCH 28080 inhibits K(+)-stimulated dephosphorylation by competitively displacing K+ from phosphoenzyme with an extracytosolic conformation of the monovalent cation site (E2P) at low concentrations of SCH 28080 and K+. At higher concentrations, 10 microM SCH 28080 and 50 mM K+, a slowly dephosphorylating complex with both SCH 28080 and K+ bound to E2P may form which represents a small fraction of the total E2P (15-25%). Preincubation of SCH 28080 with E2P completely blocks K(+)-stimulated dephosphorylation, and K+ is unable to reverse this preincubation effect, indicating that the SCH 28080 dissociation rate is at least as slow as K(+)-independent dephosphorylation of E2P. These findings indicate that SCH 28080 inhibits K(+)-stimulated ATPase activity by competing with K+ for binding to E2P and blocking K(+)-stimulated dephosphorylation. In the absence of K+, SCH 28080 has a higher apparent affinity for E2P, but it permits K(+)-independent dephosphorylation. Since the dissociation rate of SCH 28080 from the enzyme is slow, phosphoenzyme formation is prevented by SCH 28080 remaining bound to the extracytosolic conformation of the monovalent cation site, thereby reducing the steady-state level of phosphoenzyme.  相似文献   

5.
We previously demonstrated that the alpha-subunit of human nongastric H,K-ATPase (Atp1al1) can assemble with the gastric H,K-ATPase beta-subunit (betaHK) into an active ion pump upon coexpression in Xenopus oocytes. To gain insight into enzymatic functions, we have analyzed the Atp1al1-betaHK complex using a baculovirus expression system. The efficient formation of the functional Atp1al1-betaHK complex in membranes of Sf-21 insect cells was obtained upon co-infection with recombinant baculoviruses expressing Atp1al1 and betaHK. Expression of either protein alone did not produce active ATPase. The effects of K(+), Na(+), pH, and ATP and inhibitors on ATPase activity of the recombinant Atp1al1-betaHK complex were analyzed. The Atp1al1-betaHK complex was shown to exhibit significant ATPase activity in nominally K(+)-free medium. The addition of K(+) stimulated the ATP hydrolysis up to 3-fold with K(m) approximately 116 microM K(+). The ATPase activity was moderately sensitive to ouabain and to SCH 28080 with apparent K(i) values in K(+)-free medium of approximately 64 microM and approximately 93 microM, respectively. Potassium exhibited strong antagonism toward both inhibitors. Assays of the ouabain-sensitive ATPase activity revealed inhibitory effects of Na(+) with the apparent K(i) of approximately 24 mM in the absence of added K(+) and with K(i) within the range of 60-70 mM in the presence of > or = 1 mM K(+). Thus, the human nongastric H,K-ATPase represented by the recombinant Atp1al1-betaHK complex exhibits enzymatic properties of K(+)-dependent ATPase sensitive to ouabain, SCH 28080, and Na(+). It differs from Na,K-ATPase in cation dependence and differs from gastric H,K-ATPase and Na,K-ATPase in sensitivity to inhibitors.  相似文献   

6.
Site-mutations were introduced into putative cation binding site 1 of the H,K-ATPase at glu-797, thr-825, and glu-938. The side chain oxygen of each was not essential but the mutations produced different activation and inhibition kinetics. Site mutations thr-825 (ala, leu) and glu-938 (ala, gln) modestly decreased the apparent affinity to K+, while glu-797 (gln) was equivalent to wild type. As expected of competitive inhibition, mutations of thr-825 and glu-938 that decreased the apparent affinity for K+ also increased the apparent affinity for SCH28080. This is consistent with the participation of thr-825 and glu-938 in a cation binding domain. The sidechain geometry, but not the sidechain charge of glu-797, is essential to ATPase function as the site mutant glu-797 (gly) inactivated the H,K-ATPase, while glu-797 (gln) was active but the apparent affinity to SCH 28080 was decreased by four-fold. Lys-793, a unique residue of the H,K-ATPase, was essential for ATPase function. Since this residue is adjacent to site 1, the result suggests that charge pairing between lys-793 and residues at or near this site may be essential to ATPase function.  相似文献   

7.
A vanadate- and N-ethylmaleimide-sensitive ATPase was purified about 500-fold from chromaffin granule membranes. The purified preparation contained a single major polypeptide with an apparent molecular mass of about 115 kDa, which was copurified with the ATPase activity. Immunological studies revealed that this polypeptide has no relation to subunit I (115 kDa) of the H+-ATPase from chromaffin granules. The ATPase activity of the enzyme is inhibited about 50% by 100 microM N-ethylmaleimide or 5 microM vanadate. The enzyme is not sensitive to dicyclohexylcarbodiimide, ouabain, SCH28080, and omeprazole, which distinguishes it from Na+/K+-ATPase and the gastric K+/H+-ATPase. ATP and 2-deoxy ATP are equally effective substrates for the enzyme. However, the enzyme exhibited only 10% activity with GTP as a substrate. UV illumination of the purified enzyme in the presence of [alpha-32P]ATP exclusively labeled the 115 kDa protein. This labeling was increased by Mg2+ and strongly inhibited by Ca2+ ions. Similarly, the ATPase activity was dependent on Mg2+ and inhibited by the presence of Ca2+ ions. The ATPase activity of the enzyme was largely insensitive to monovalent anions and cations, except for F-, which inhibited the vanadate-sensitive ATPase. Incubation of the enzyme in the presence of [14C]N-ethylmaleimide labeled the 115-kDa polypeptide, and this labeling could be prevented by the addition of ATP during the incubation. A reciprocal experiment showed that preincubation with N-ethylmaleimide inhibited the labeling of the 115-kDa polypeptide by [alpha-32P]ATP by UV illumination. This suggests a close proximity between the ATP-binding site and an essential sulfhydryl group. A possible connection between the isolated ATPase and organelle movement is discussed.  相似文献   

8.
Munson KB  Lambrecht N  Sachs G 《Biochemistry》2000,39(11):2997-3004
The effects of site-directed mutagenesis were used to explore the role of residues in M4 on the apparent Ki of a selective, K+-competitive inhibitor of the gastric H+,K+ ATPase, SCH28080. A double transfection expression system is described, utilizing HEK293 cells and separate plasmids encoding the alpha and beta subunits of the H+,K+-ATPase. The wild-type enzyme gave specific activity (micromoles of Pi per hour per milligram of expressed H+,K+-ATPase protein), apparent Km for ammonium (a K+ surrogate), and apparent Ki for SCH28080 equal to the H+, K+-ATPase purified from hog gastric mucosa. Amino acids in the M4 transmembrane segment of the alpha subunit were selected from, and substituted with, the nonconserved residues in M4 of the Na+, K+-ATPase, which is insensitive to SCH28080. Most of the mutations produced competent enzyme with similar Km,app values for NH4+ and Ki,app for SCH28080. SCH28080 affinity was decreased 2-fold in M330V and 9-fold in both M334I and V337I without significant effect on Km,app. Hence methionine 334 and valine 337 participate in binding but are not part of the NH4+ site. Methionine 330 may be at the periphery of the inhibitor site, which must have minimum dimensions of approximately 16 x 8 x 5 A and be accessible from the lumen in the E2-P conformation. Multiple sequence alignments place the membrane surface near arginine 328, suggesting that the side chains of methionine 334 and valine 337, on one side of the M4 helix, project into a binding cavity within the membrane domain.  相似文献   

9.
2-Methyl,8-(phenylmethoxy)imidazo(1,2-a)pyridine 3-acetonitrile (SCH 28080) is a freely reversible K+ site inhibitor of the gastric (H+ + K+)-ATPase. In the presence of 2 mMMgSO4, [14C]SCH 28080 bound saturably to gastric vesicle preparations containing the (H+ + K+)-ATPase and was displaced by lumenal K+. A binding stoichiometry of 2.2 +/- 0.1 mol of SCH 28080/mol of catalytic phosphorylation sites was observed. The affinity of SCH 28080 binding was increased approximately 10-fold (to 45 nM) in the presence of 2 mM ATP. High affinity binding also occurred with 2 microM ATP but not with up to 200 microM D-[beta, gamma-CH2]ATP, suggesting that high affinity binding was to a phosphorylated form of the enzyme. In the presence of ATP, the association rate constant was linearly related to the concentration of SCH 28080. However, the association and dissociation rates of SCH 28080 binding were slow, especially at low temperature (at 1.5 degrees C half-maximal binding of 50 nM SCH 28080 was calculated to occur after 232 s). Binding appeared to be predominantly entropy driven with a high activation energy (40 kJ/mol at 37 degrees C). In the absence of ATP, the association rate constant was not linearly related to the concentration of SCH 28080, suggesting that a conformational change in the enzyme was required before binding could occur.  相似文献   

10.
A soluble porcine H,K-ATPase preparation was obtained with the nonionic detergent, C12E8. ATP hydrolysis by the soluble H,K-ATPase was stimulated with respect to the native preparation at pH 6.1, while the K(+)-phosphatase activity was comparable to the native enzyme. The soluble enzyme demonstrated characteristic ligand-dependent effects on ATP hydrolysis, including ATP activation of K(+)-stimulated hydrolysis with a K0.5 of 28 +/- 4 microM ATP, and inhibition with an IC50 of 2.1 mM ATP. The activation and inhibition of ATP hydrolysis by K+ was also observed with a K0.5 for activation of 2.8 +/- 0.4 mM KCl at 2.0 mM ATP (pH 6.1) and inhibition with an IC50 of 135 mM KCl at 0.05 mM ATP. 2-Methyl-8-(phenylmethoxy)imidazo[1,2a]pyridine-3-acetonitrile (SCH 28080), a specific inhibitor of the native H,K-ATPase, competitively inhibited the K(+)-stimulated activity with a Ki of 0.035 microM. The soluble enzyme was stable with a t0.5 for ATPase activity of 6 h between 4 and 11 degrees C. The demonstration of these related ligand responses in the catalytic reactions of the soluble preparation indicates that it is an appropriate medium for investigation of the subunit associations of the functional H,K-ATPase. Subunit associations of the active soluble enzyme were assessed following treatment with the crosslinking reagent, glutaraldehyde. The distribution of crosslinked particles was independent of the soluble protein concentration in the crosslinking buffer within the protein range 0.3 to 2.0 mg/ml or the detergent to protein ratio varied from 1 to 15 (w/w). The crosslinked pattern was unaffected by the presence or absence of K during crosslinking or nucleotide concentration. These observations suggest that crosslinking occurs in associated subunits that do not undergo rapid associations dependent upon enzyme turnover. Phosphorylation of the soluble enzyme with 0.1 mM MgATP produced a phosphoprotein at 94 kDa. A phosphoprotein obtained after glutaraldehyde treatment exhibited identical electrophoretic mobility to the crosslinked particle identified by silver stain. Glutaraldehyde treatment of soluble protein fractions resolved on a linear 10-35% glycerol gradient revealed several smaller peptides partially resolved from the crosslinked pump particle, but no active fraction enriched in the monomeric H,K-ATPase. This data indicates that the functional porcine gastric H,K-ATPase is organized as a structural dimer.  相似文献   

11.
A photoaffinity label for the lumenal K+ site of the gastric (H+ + K+)-ATPase has been identified. Seven azido derivatives based upon the reversible K+ site inhibitor SCH 28080 were studied, one of which, m-ATIP (8-(3-azidophenylmethoxy)-1,2,3-trimethylimidazo[1,2-a] pyridinium iodide), was subsequently synthesized in radiolabeled form. In the absence of UV irradiation, m-ATIP inhibited K+ -stimulated ATPase activity in lyophilized gastric vesicles competitively with respect to K+, with a Ki value of 2.4 microM at pH 7.0. Irradiation of lyophilized gastric vesicles at pH 7.0 with [14C]m-ATIP in the presence of 0.2 mM ATP resulted in a time-dependent inactivation of ATPase activity that was associated with an incorporation of radioactivity into a 100-kDa polypeptide representing the catalytic subunit of the (H+ + K+)-ATPase. Both inactivation and incorporation were blocked in the presence of 10 mM KCl but not with 10 mM NaCl, consistent with interaction at the K+ site. The level of incorporation required to produce complete inhibition of ATPase activity was 1.9 +/- 0.2 times the number of catalytic phosphorylation sites in the same preparation. Tryptic digestion of gastric vesicle membranes, labeled with [14C]m-ATIP, failed to release the radioactivity from the membranes suggesting that the site of interaction was close to or within the membrane-spanning sections of this ion pump.  相似文献   

12.
《The Journal of cell biology》1993,123(6):1421-1429
The kidney plays an essential role in regulating potassium and acid balance. A major site for these regulations is in the collecting tubule. In the present study, we report the primary sequence of a novel alpha subunit of the P-ATPase gene family, which we isolated from the urinary bladder epithelium of the toad Bufo marinus, the amphibian equivalent of the mammalian collecting tubule. The cDNA encodes a protein of 1,042 amino acids which shares approximately 67% identity with the alpha 1 subunit of the ouabain-inhibitable Na,K-ATPase and approximately 69% identity with the alpha subunit of the SCH28080- inhibitable gastric H,K-ATPase. When coexpressed in Xenopus oocytes with a beta subunit isolated from the same cDNA library, the ATPase is able to transport rubidium (a potassium surrogate) inward, and hydrogen outward, leading to alkalization of the intracellular compartment and acidification of the external medium. The novel ATPase has a unique pharmacological profile showing intermediate sensitivity to both ouabain and SCH28080. Our findings indicate that the bladder ATPase is a member of a new ion motive P-ATPase subfamily. The bladder ATPase is expressed in the urinary tract but not in the stomach or the colon. This H,K-ATPase may be one of the molecules involved in H+ and K+ homeostasis, mediating the transport of these ions across urinary epithelia and therefore regulating their urinary excretion.  相似文献   

13.
Stable cell lines expressing the gastric proton pump alpha- and/or beta-subunits were constructed. The cell line co-expressing the alpha- and beta-subunits showed inward Rb(+) transport, which was activated by Rb(+) in a concentration-dependent manner. In the alpha+beta-expressing cell line, rapid recovery of intracellular pH was also observed after acid load, indicating that this cell line transported protons outward. These ion transport activities were inhibited by a proton pump inhibitor, 2-methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine-3-acetonitrile (SCH 28080). In a membrane fraction of the alpha+beta-expressing cell line, K(+)-stimulated ATPase (K(+)-ATPase) activity and the acylphosphorylation of the alpha-subunit were observed, both of which were also inhibited by SCH 28080. The specific activity and properties of the K(+)-ATPase were comparable to those found in the native gastric proton pump. In the stable cell lines, the alpha-subunit was retained in the intracellular compartment and was unstable in the absence of the beta-subunit, but it was stabilized and reached the cell surface in the presence of the beta-subunit. On the other hand, the beta-subunit was stable and able to travel to the cell surface in the absence of the alpha-subunit. These cell lines are ideal for the structure-function study of ion transport by the gastric proton pump as well as for characterization of the cellular regulation of surface expression of the functional proton pump.  相似文献   

14.
We used the baculovirus/Sf9 expression system to gain new information on the mechanistic properties of the rat non-gastric H,K-ATPase, an enzyme that is implicated in potassium homeostasis. The alpha2-subunit of this enzyme (HKalpha2) required a beta-subunit for ATPase activity thereby showing a clear preference for NaKbeta1 over NaKbeta3 and gastric HKbeta. NH4(+), K+, and Na+ maximally increased the activity of HKalpha2-NaKbeta1 to 24.0, 14.2, and 5.0 micromol P(i) x mg(-1) protein x h(-1), respectively. The enzyme was inhibited by relatively high concentrations of ouabain and SCH 28080, whereas it was potently inhibited by oligomycin. From the phosphorylation level in the presence of oligomycin and the maximal NH4(+)-stimulated ATPase activity, a turnover number of 20,000 min(-1) was determined. All three cations decreased the steady-state phosphorylation level and enhanced the dephosphorylation rate, disfavoring the hypothesis that Na+ can replace H+ as the activating cation. The potency with which vanadate inhibited the cation-activated enzyme decreased in the order K+ > NH4(+) > Na+, indicating that K+ is a stronger E2 promoter than NH4(+), whereas in the presence of Na+ the enzyme is in the E1 form. For K+ and NH4(+), the E2 to E1 conformational equilibrium correlated with their efficacy in the ATPase reaction, indicating that here the transition from E2 to E1 is rate-limiting. Conversely, the low maximal ATPase activity with Na+ is explained by a poor stimulatory effect on the dephosphorylation rate. These data show that NH4(+) can replace K+ with similar affinity but higher efficacy as an extracellular activating cation in rat nongastric H,K-ATPase.  相似文献   

15.
2-Methyl-8-(phenylmethoxy)imidazo(1,2-a)pyridine-3acetonitrile+ ++ (SCH 28080) is a K+ site inhibitor specific for gastric H+,K+-ATPase and seems to be a counterpart of ouabain for Na+,K+-ATPase from the viewpoint of reaction pattern (i.e. reversible binding, K+ antagonism, and binding on the extracellular side). In this study, we constructed several chimeric molecules between H+,K+-ATPase and Na+,K+-ATPase alpha-subunits by using rabbit H+,K+-ATPase as a parental molecule. We found that the entire extracellular loop 1 segment between the first and second transmembrane segments (M1 and M2) and the luminal half of the M1 transmembrane segment of H+, K+-ATPase alpha-subunit were exchangeable with those of Na+, K+-ATPase, respectively, preserving H+,K+-ATPase activity, and that these segments are not essential for SCH 28080 binding. We found that several amino acid residues, including Glu-822, Thr-825, and Pro-829 in the M6 segment of H+,K+-ATPase alpha-subunit are involved in determining the affinity for this inhibitor. Furthermore, we found that a chimeric H+,K+-ATPase acquired ouabain sensitivity and maintained SCH 28080 sensitivity when the loop 1 segment and Cys-815 in the loop 3 segment of the H+,K+-ATPase alpha-subunit were simultaneously replaced by the corresponding segment and amino acid residue (Thr) of Na+,K+-ATPase, respectively, indicating that the binding sites of ouabain and SCH 28080 are separate. In this H+, K+-ATPase chimera, 12 amino acid residues in M1, M4, and loop 1-4 that have been suggested to be involved in ouabain binding of Na+, K+-ATPase alpha-subunit are present; however, the low ouabain sensitivity indicates the possibility that the sensitivity may be increased by additional amino acid substitutions, which shift the overall structural integrity of this chimeric H+,K+-ATPase toward that of Na+,K+-ATPase.  相似文献   

16.
A lysine residue within the highly conserved center of the fifth transmembrane segment in PIIC-type ATPase α-subunits is uniquely found in H,K-ATPases instead of a serine in all Na,K-ATPase isoforms. Because previous studies suggested a prominent role of this residue in determining the electrogenicity of non-gastric H,K-ATPase and in pKa modulation of the proton-translocating residues in the gastric H,K-ATPases as well, we investigated its functional significance for ion transport by expressing several Lys-791 variants of the gastric H,K-ATPase in Xenopus oocytes. Although the mutant proteins were all detected at the cell surface, none of the investigated mutants displayed any measurable K+-induced stationary currents. In Rb+ uptake measurements, replacement of Lys-791 by Arg, Ala, Ser, and Glu substantially impaired transport activity and reduced the sensitivity toward the E2-specific inhibitor SCH28080. Furthermore, voltage clamp fluorometry using a reporter site in the TM5/TM6 loop for labeling with tetra-methylrhodamine-6-maleimide revealed markedly changed fluorescence signals. All four investigated mutants exhibited a strong shift toward the E1P state, in agreement with their reduced SCH28080 sensitivity, and an about 5–10-fold decreased forward rate constant of the E1P ↔ E2P conformational transition, thus explaining the E1P shift and the reduced Rb+ transport activity. When Glu-820 in TM6 adjacent to Lys-791 was replaced by non-charged or positively charged amino acids, severe effects on fluorescence signals and Rb+ transport were also observed, whereas substitution by aspartate was less disturbing. These results suggest that formation of an E2P-stabilizing interhelical salt bridge is essential to prevent futile proton exchange cycles of H+ pumping P-type ATPases.  相似文献   

17.
Digital image processing of the pH-sensitive dye BCECF was used to examine the effects of high [K] media on cytoplasmic pH (pHi) of individual cells within isolated rabbit gastric glands. When cells were acidified to pHi 6.5 from the resting pHi of 7.2-7.3 and then exposed to solution containing 77 mM K plus amiloride (to block Na/H exchange), recovery to pHi 7.0 was observed. This K-induced alkalinization occurred in all cell types of the gland, including cells within antral glands that were devoid of parietal cells (PC). This process was independent of extracellular Na and Cl and was unaffected by: 5 mM Ba or 200 microM bumetanide, or acute treatment with either 500 microM ouabain or 100 microM cimetidine, histamine or carbachol. SCH28080, which inhibits the PC H/K-ATPase when used in the low microM range of concentrations, blocked the K effect on pHi at 100 microM but was ineffective at 1 microM. A similar pHi recovery was also stimulated by Li, Cs (both 72 mM), and Tl (10 mM), in the order Li greater than K greater than Cs greater than Tl (all in the presence of amiloride), and these alkalinizations were also blocked by 100 microM SCH28080. Parallel experiments were performed to test the effect of these ions on 14[C]-aminopyrine accumulation, an index of acid secretion by the H/K-ATPase at the lumenal membrane of the PC. There was no correlation between the rates of cation-induced pHi recovery from an acid load and H secretion as measured by the accumulation of aminopyrine. We conclude that the K- (and Cs- and Li-) dependent pHi recovery is mediated by a novel cation/H exchange mechanism that is distinct from the PC H/K-ATPase.  相似文献   

18.
The gastric H,K-ATPase is covalently inhibited by substituted pyridyl-methylsulfinyl-benzimidazoles, such as omeprazole, that convert to thiophilic probes of luminally accessible cysteines in the acid space. The K(+) competitive inhibitor, SCH28080, prevented inhibition of acid transport by omeprazole. In stably expressing HEK293 cells, the benzimidazole-reactive cysteines, Cys-321 (transmembrane helix (TM) 3), Cys-813 and Cys-822 (TM5/6), and Cys-892 (TM7/8) were mutated to the amino acids found in the SCH28080-resistant Na,K-ATPase and kinetic parameters of H,K-ATPase activity analyzed. Mutations of Cys-822 and Cys-892 had insignificant effects on the K(i(app)), K(m(app)) or V(max), but mutations of Cys-813 to threonine and Cys-321 to alanine decreased the affinity for SCH28080. Mutation of Cys-321 to alanine produced mixed kinetics of inhibition, still with higher affinity for the cation-free form of phosphoenzyme. Since the phenylmethoxy ring of the imidazo-pyridine inhibitors binds to TM1/2, as shown by earlier photoaffinity studies, and the mutations in TM6 (Cys-813 --> Thr) as well as the end of TM3 (Cys-321 --> Ala) decrease the affinity for SCH28080, the TM1/2, TM3, and TM6 helices lie within approximately 16 A of each other based on the size of the active, extended conformation of SCH28080.  相似文献   

19.
In the reaction cycle of P-type ATPases, an acid-stable phosphorylated intermediate is formed which is present in an intracellularly located domain of the membrane-bound enzymes. In some of these ATPases, such as Na+,K+-ATPase and gastric H+, K+-ATPase, extracellular K+ ions stimulate the rate of dephosphorylation of this phosphorylated intermediate and so stimulate the ATPase activity. The mechanism by which extracellular K+ ions stimulate the dephosphorylation process is unresolved. Here we show that three mutants of gastric H+,K+-ATPase lacking a negative charge on residue 820, located in transmembrane segment six of the alpha-subunit, have a high SCH 28080-sensitive, but K+-insensitive ATPase activity. This high activity is caused by an increased 'spontaneous' rate of dephosphorylation of the phosphorylated intermediate. A mutant with an aspartic acid instead of a glutamic acid residue in position 820 showed hardly any ATPase activity in the absence of K+, but K+ ions stimulated ATPase activity and the dephosphorylation process. These findings indicate that the negative charge normally present on residue 820 inhibits the dephosphorylation process. K+ ions do not stimulate dephosphorylation of the phosphorylated intermediate directly, but act by neutralizing the inhibitory effect of a negative charge in the membrane.  相似文献   

20.
The effects of K+ on the phosphorylation of H+/K(+)-ATPase with inorganic phosphate were studied using H+/K(+)-ATPase purified from porcine gastric mucosa. The phosphoenzyme formed by phosphorylation with Pi was identical with the phosphoenzyme formed with ATP. The maximal phosphorylation level obtained with Pi was equal to that obtained with ATP. The Pi phosphorylation reaction of H+/K(+)-ATPase was, like that of Na+/K(+)-ATPase, a relatively slow reaction. The rates of phosphorylation and dephosphorylation were both increased by low concentrations of K+, which resulted in hardly any effect on the phosphorylation level. A decrease of the steady-state phosphorylation level was caused by higher concentrations of K+ in a noncompetitive manner, whereas no further increase in the dephosphorylation rate was observed. The decreasing effect was caused by a slow binding of K+ to the enzyme. All above-mentioned K+ effects were abolished by the specific H+/K(+)-ATPase inhibitor SCH 28080 (2-methyl-8-[phenyl-methoxy]imidazo-[1-2-a]pyrine-3-acetonitrile). Additionally, SCH 28080 caused a 2-fold increase in the affinity of H+/K(+)-ATPase for Pi. A model for the reaction cycle of H+/K(+)-ATPase fitting the data is postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号