首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electric fish, Eigenmannia, is able to discriminate the sign of the frequency difference, Df, between a neighbor's electric organ discharges (EODs) and its own. The fish lowers its EOD frequency for positive Dfs and raises its frequency for negative Dfs to minimize jamming of its electrolocation ability by a neighbor's EODs of similar frequency. This jamming avoidance response (JAR) is controlled by a group of 'sign-selective' neurons in the prepacemaker nucleus (PPN) that is located at the boundary of the midbrain and the diencephalon (Fig. 1). Extracellular recordings from a total of 35 neurons revealed a great similarity between behavioral and neuronal response properties: 1. All neurons fired vigorously for negative Dfs and were almost silent for positive Dfs, regardless of the orientation of the jamming stimulus, and thus discriminated the sign of Df unambiguously (Fig. 2). 2. In accordance with behavioral observations, individual neurons failed to discriminate the sign of Df when the jamming stimulus had the same field geometry as the signal mimicking the animal's own EOD (Fig. 3). 3. Df magnitudes which evoke strongest JARs, usually 4 to 8 Hz, also induced most vigorous responses in sign-selective neurons (Fig. 5). 4. Behavioral and neuronal thresholds for the detection of small jamming signals were similar. Threshold for sign selectivity was reached when the amplitude ratio of the jamming signal to the EOD mimic, measured near the head surface, was 0.001. This value corresponds to a maximal temporal disparity (a necessary cue for performing a correct JAR) of 1 to 2 microseconds for signals received by the two sides of the body in a transverse jamming field (Fig. 7). 5. The effects of two jamming fields, offered orthogonally to each other, may interact nonlinearly at the behavioral as well as at the neuronal level. A positive Df presented in one field may suppress behavioral and neuronal responses to modulations of the sign of Df in the other field (Fig. 8c).  相似文献   

2.
Summary Eigenmannia is able to determine whether the electric organ discharge (EOD) of a neighbor is of higher or lower frequency than its own EOD. For small frequency differences, Df, the fish avoids jamming by shifting its frequency away from that of its neighbor. This jamming avoidance response (JAR), therefore, requires that the fish discriminate the sign of Df. The interference pattern of two EODs of similar frequency is characterized by local modulations of the instantaneous amplitude and the spatial difference of the instantaneous phase, or differential phase, of the mixed signal. When amplitude and differential phase are plotted in a two-dimensional state plane, circular graphs are obtained with a sense of rotation that reflects the sign of Df.Behavioral studies have shown that both amplitude and differential phase modulations are required for the control of the JAR. Considering two regions of the body surface, A and B, that receive strong and weak contamination by the jamming signal, respectively, rises and falls of the signal amplitude in A will be accompanied by respective advances and delays of the signal in A relative to that in B if the jamming signal is of lower frequency, i.e. if Df is negative. A plot of amplitude versus differential phase yields a clockwise sense of rotation in this case (Fig. 1). The opposite relation between amplitude and phase modulations, resulting in a counterclockwise rotation, holds for a positive Df. For the less strongly contaminated area B, however, the relation between the sign of Df and the sense of rotation is reversed, so that for a negative Df, a rise of amplitude in B will coincide with a delay of the signal in B relative to that in A.By independent experimental control of amplitude and differential-phase modulations, we explored midbrain neurons that discriminate the sense of rotations in the amplitude-phase plane. We found that these neurons achieve this discrimination by gating amplitude inputs by differentialphase information, thus exploiting the particular combinations of amplitude and differential phase that characterize a given sense of rotation (Figs. 2–4). Since the response properties of such neurons only reflect the sense of rotation, and since the same sense of rotation can be obtained for either sign of Df (depending upon the relative contamination of the receptive fields involved), individual neurons do not yet provide unambiguous information about the sign of Df. It can be shown, however, that large populations of such neurons will, nevertheless, reliably detect the correct sign of Df (Fig. 7). Response properties of these neurons offer plausible explanations for a number of earlier behavioral observations, particularly for the notion of a precise behavior controlled by a distributed system of unreliable components.  相似文献   

3.
When the product of a vertical square-wave grating (contrast envelope) and a horizontal sinusoidal grating (carrier) are viewed binocularly with different disparity cues they can be perceived transparently at different depths. We found, however, that the transparency was asymmetric; it only occurred when the envelope was perceived to be the overlaying surface. When the same two signals were added, the percept of transparency was symmetrical; either signal could be seen in front of or behind the other at different depths. Differences between these multiplicative and additive signal combinations were examined in two experiments. In one, we measured disparity thresholds for transparency as a function of the spatial frequency of the envelope. In the other, we measured disparity discrimination thresholds. In both experiments the thresholds for the multiplicative condition, unlike the additive condition, showed distinct minima at low envelope frequencies. The different sensitivity curves found for multiplicative and additive signal combinations suggest that different processes mediated the disparity signal. The data are consistent with a two-channel model of binocular matching, with multiple depth cues represented at single retinal locations.  相似文献   

4.
There is considerable evidence for the existence of a specialized mechanism in human vision for detecting moving contrast modulations and some evidence for a mechanism for detecting moving stereoscopic depth modulations. It is unclear whether a single second-order motion mechanism detects both types of stimulus or whether they are detected separately. We show that sensitivity to stereo-defined motion resembles that to contrast-defined motion in two important ways. First, when a missing-fundamental disparity waveform is moved in steps of 0.25 cycles, its perceived direction tends to reverse. This is a property of both luminance-defined and contrast-defined motion and is consistent with independent detection of motion at different spatial scales. Second, thresholds for detecting the direction of a smoothly drifting sinusoidal disparity modulation are much higher than those for detecting its orientation. This is a property of contrast-modulated gratings but not luminance-modulated gratings, for which the two thresholds are normally identical. The results suggest that stereo-defined and contrast-defined motion stimuli are detected either by a common mechanism or by separate mechanisms sharing a common principle of operation.  相似文献   

5.
The responses of 682 single-units in the inferior colliculus (IC) of 13 mustached bats (Pteronotus parnellii parnellii) were measured using pure tones (CF), frequency modulations (FM) and pairs of CF-FM signals mimicking the species' biosonar signal, which are stimuli known to be essential to the responses of CF/CF and FM-FM facilitation neurons in auditory cortex. Units were arbitrarily classified into 'reference frequency' (RF), 'FM2' and 'Non-echolocation' (NE) categories according to the relationship of their best frequencies (BF) to the biosonar signal frequencies. RF units have high Q10dB values and are tuned to the reference frequency of each bat, which ranged between 60.73 and 62.73 kHz. FM2 units had BF's between 50 and 60 kHz, while NE units had BF's outside the ranges of the RF and FM2 classes. PST histograms of the responses revealed discharge patterns such as 'onset', 'onset-bursting' (most common), 'on-off', 'tonic-on','pauser', and 'chopper'. Changes in discharge patterns usually resulted from changes in the frequency and/or intensity of the stimuli, most often involving a change from onset-bursting to on-off. Different patterns were also elicited by CF and FM stimuli. Frequency characteristics and thresholds to CF and FM stimuli were measured. RF neurons were very sharply tuned with Q10dB's ranging from 50-360. Most (92%) also responded to FM2 stimuli, but 78% were significantly more sensitive (greater than 5 dB) to CF stimuli, and only 3% had significantly lower thresholds to FM2. The best initial frequency for FM2 sweeps in RF units was 65.35 +/- 2.138 kHz (n = 118), well above the natural frequency of the 2nd harmonic. FM2 and NE units were indistinguishable from each other, but were quite different from RF units: 41% of these two classes had lower thresholds to CF, 49% were about equally sensitive, and 10% had lower thresholds to FM. For FM2 units, mean best initial frequency for FM was 60.94 kHz +/- 3.162 kHz (n = 114), which is closely matched to the 2nd harmonic in the biosonar signal. Very few units (5) responded only to FM signals, i.e., were FM-specialized. The characteristics of spike-count functions were determined in 587 units. The vast majority (79%) of RF units (n = 228) were nonmonotonic, and about 22% had upper-thresholds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Eigenmannia is able to discriminate the sign of the difference, Df, between the frequency of a neighbor's electric organ discharge (EOD) and that of its own EOD. This discrimination can be demonstrated at the level of individual neurons of the midbrain. Intracellular and extracellular recordings of such sign-selective cells revealed the following: Units preferring positive Dfs and units preferring negative Dfs were found with equal frequency. The degree of selectivity was also similar for these two classes of neurons. All sign-selective units were sensitive to the magnitude of the frequency difference, i.e. the beat rate. Most units responded best to beat rates in the 4-8 Hz range. Sign-selectivity was observed only when the jamming signal (S2) was presented through electrodes other than those used to deliver the mimic (S1) of the fish's EOD, i.e. only when amplitude modulations were accompanied by modulations of differential phase. Intracellular studies suggest that most sign-selective neurons of the tectum are large, multipolar cells in the stratum album centrale. These cells send projections to the reticular formation, to lamina 9 of the torus semicircularis and to the N. electrosensorius.  相似文献   

7.
MJ Rosen  EC Sarro  JB Kelly  DH Sanes 《PloS one》2012,7(7):e41514
The acoustic rearing environment can alter central auditory coding properties, yet altered neural coding is seldom linked with specific deficits to adult perceptual skills. To test whether developmental hearing loss resulted in comparable changes to perception and sensory coding, we examined behavioral and neural detection thresholds for sinusoidally amplitude modulated (sAM) stimuli. Behavioral sAM detection thresholds for slow (5 Hz) modulations were significantly worse for animals reared with bilateral conductive hearing loss (CHL), as compared to controls. This difference could not be attributed to hearing thresholds, proficiency at the task, or proxies for attention. Detection thresholds across the groups did not differ for fast (100 Hz) modulations, a result paralleling that seen in humans. Neural responses to sAM stimuli were recorded in single auditory cortex neurons from separate groups of awake animals. Neurometric analyses indicated equivalent thresholds for the most sensitive neurons, but a significantly poorer detection threshold for slow modulations across the population of CHL neurons as compared to controls. The magnitude of the neural deficit matched that of the behavioral differences, suggesting that a reduction of sensory information can account for limitations to perceptual skills.  相似文献   

8.
By means of laser flash photolysis, the transient absorption anisotropy (TAA) of the triplet probe, 5-iodoacetamide-Eosin, labeling rabbit skeletal F-actin was measured in the 10(-6)-10(-3) s time range. The TAA curve at 20 degrees C showed a relatively slow decay phase covering several hundred microseconds and a large residual anisotropy (approximately 0.1 at 2 ms). After analysis with Barkley & Zimm's formula, it was concluded that the TAA of Eosin-F-actin can be approximated by the anisotropy decay due to torsional motion of F-actin.  相似文献   

9.
Gating current, Ig, was recorded in Myxicola axons with series resistance compensation and higher time resolution than in previous studies. Ig at ON decays as two exponentials with time constants, tau ON-F and tau ON-S, very similar to squid values. No indication of an additional very fast relaxation was detected, but could be still unresolved. Ig at OFF also displays two exponentials, neither reflecting recovery from charge immobilization. Deactivation of the two I(ON) components may proceed with well-separated exponentials at -100 mV. INa tail currents at OFF also display two exponentials plus a third very slow relaxation of 5-9% of the total tail current. The very slow component is probably deactivation of a very small subpopulation of TTX sensitive channels. A -100 mV, means for INa tail component time constants (four axons) are 76 microseconds (range: 53-89 microseconds) and 344 microseconds (range: 312-387 microseconds), and for IOFF (six axons) 62 microseconds (range: 34-87 microseconds) and 291 microseconds (range: 204-456 microseconds) in reasonable agreement. INa ON activation time constant, tau A, is clearly slower than tau ON-F at all potentials. Except for the interval -30 to -15 mV, tau A is clearly faster than tau ON-S, and has a different dependency on potential. tau ON-S is several fold smaller than tau h. Computations with a closed2----closed1----open activation model indicated Na tail currents are consistent with a closed1----open rate constant greater than the closed2----closed1.  相似文献   

10.
We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at different time scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stable precise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units.  相似文献   

11.
In natural audio-visual environments, a change in depth is usually correlated with a change in loudness. In the present study, we investigated whether correlating changes in disparity and loudness would provide a functional advantage in binding disparity and sound amplitude in a visual search paradigm. To test this hypothesis, we used a method similar to that used by van der Burg et al. to show that non-spatial transient (square-wave) modulations of loudness can drastically improve spatial visual search for a correlated luminance modulation. We used dynamic random-dot stereogram displays to produce pure disparity modulations. Target and distractors were small disparity-defined squares (either 6 or 10 in total). Each square moved back and forth in depth in front of the background plane at different phases. The target's depth modulation was synchronized with an amplitude-modulated auditory tone. Visual and auditory modulations were always congruent (both sine-wave or square-wave). In a speeded search task, five observers were asked to identify the target as quickly as possible. Results show a significant improvement in visual search times in the square-wave condition compared to the sine condition, suggesting that transient auditory information can efficiently drive visual search in the disparity domain. In a second experiment, participants performed the same task in the absence of sound and showed a clear set-size effect in both modulation conditions. In a third experiment, we correlated the sound with a distractor instead of the target. This produced longer search times, indicating that the correlation is not easily ignored.  相似文献   

12.
To use the small horizontal disparities between images projected to the eyes for the recovery of three-dimensional information, our visual system must first identify which feature in one eye's image corresponds with which in the other. The earliest level of disparity processing in primates (V1) contains cells that are spatial-frequency tuned. If such cells have a disparity range that covers only a single period of their mean tuning frequency, there will always be exactly one potential match within this range. Here, this 'size-disparity' hypothesis was tested by measuring the contrast sensitivity of stereopsis as a function of disparity for single bandpass-filtered items. It was found that thresholds were low and relatively constant up to disparities an order of magnitude larger than is predicted by this constraint. Furthermore, peak sensitivity was relatively independent of spatial frequency. A control experiment showed that binocular correlation of the carrier is necessary for this task. In a third experiment, the maximum disparity that supports threshold performance was compared for an isolated bandpass item and bandpass-filtered noise. This limit was found to be five times larger for the isolated stimuli. In summary, these findings show that the initial stage of disparity detection is not limited by the size-disparity constraint. For stimuli with multiple false targets, however, processes subsequent to this stage reduce the disparity range over which the correspondence problem can be solved.  相似文献   

13.
Modeling of time disparity detection by the Hodgkin-Huxley equations   总被引:1,自引:0,他引:1  
Phase-sensitive neurons in the electrosensory lateral line lobe in the electrosensory pathway of the wave-type electric fish, Gymnarchus niloticus, are specialized for sensing the time disparity between sensory inputs at different parts of the body surface that is necessary for an electrical behavior, jamming avoidance response. These neurons are sensitive to time disparity in the microsecond range between synaptic inputs that represent occurrence times of electrosensory signals at different areas on the body surface. We showed that an ideal Hodgkin-Huxley equation may serve as a time disparity detector that fits physiological precision, and the precision for the time disparity detection is largely regulated by the maximal g(K) conductance in the Hodgkin-Huxley equations.  相似文献   

14.
Continuous relative phase measures have been used to quantify the coordination between different body segments in several activities. Our aim in this study was to investigate how the methods traditionally used to compute the continuous phase of human rhythmic movement are affected by modulations of frequency. We compared the continuous phase computed method with the traditional method derived from the position-velocity phase plane and with the Hilbert Transform. The methods were tested using sinusoidal signals with a modulation of frequency between or within cycles. Our results showed that the continuous phase computed with the first method results in oscillations in the phase time-series not expected for a sinusoidal signal and that the continuous phase is overestimated with the Hilbert Transform. We proposed a new method that produces a correct estimation of continuous phase by using half-cycle estimations of frequency to normalize the phase planes prior to calculating phase angles. The findings of the current study have important implications for computing continuous relative phase when investigating human movement coordination.  相似文献   

15.
Absorption changes (deltaA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures. In the microsecond time range the difference spectrum of deltaA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+-700; it decays in a polyphasic manner with half-times of 17 microseconds, 210 microseconds and over 1 ms. The oxidized primary donor of Photosystem II (P+II) is not detected with a time resolution of 3 microseconds. After treatment with 3--10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P+II is observed and decays biphasically (a major phase with t1/2=20--40 microseconds, and a minor phase with t1/2 congruent to 200 microseconds), probably by reduction by an accessory electron donor. In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P+II is reduced with a half-time of 25--45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction.  相似文献   

16.
Tactile detection and two-point discrimination tests are commonly used in neurological examinations. However, questions remain about the influence of both body and patient characteristics on test thresholds. The left side of the body has sometimes been reported more tactilely sensitive than the right, and females are said to be more sensitive than males. We measured tactile detection and two-point discrimination thresholds on the finger, palm, and forehead of a large sample of young adults (N=171), examining laterality and sex differences, and the effects of body surface area (BSA) and body fat ratio (BFR). In tactile detection, there were no effects of laterality, BSA, or BFR, although females had lower thresholds than males. In two-point discrimination, there was an effect of laterality, with lower thresholds on the left side. This probably reflects hemispheric spatial processing differences. A significant BFR effect implies that subcutaneous fat affects skin deformation, but there were no effects of sex or BSA. The two-point discrimination findings differ in several respects from recent findings using grating orientation discriminations. A small positive correlation between the tasks, falling far short of test-retest reliabilities, indicates that they use largely disjoint but partially overlapping processes.  相似文献   

17.
The relationship between disparity and ocular vergence was investigated under closed-loop as well as under open-loop viewing conditions. First we examined whether vergence responded similarly to disparity presented under open-loop and closed-loop conditions. Similar response were observed in both conditions. The direct relationship between disparity and vergence was examined by presenting constant disparities between 0.2° and 4° under open-loop viewing conditions. Such vergence responses are described as the outputs of first-order low-pass filters with different filter characteristics for each amplitude of disparity. By analyzing the latency of vergence responses induced by constant disparities with help of the transfer function of disparitycontrolled vergence, the time delay of disparity processing in the vergence loop was estimated. We suggested that the time delay was approximately between 80 and 120 ms instead of 160 ms as is generally assumed. The relationship between the rate of disparity change and vergence was examined by comparing responses to ramp and stepwise changes in target vergence. From the similar responses to ramp and staircase changes in disparity we concluded that vergence is not sensitive to the velocity of target vergence as such. On the basis of these findings we developed a model of disparity-controlled vergence. In this model disparity is processed through several parallel, imperfect integrators with slightly different low-pass filter characteristics, each of them susceptible to a limited range of disparities. Gains as well as phase lags of vergence responses to sinusoidal disparities are accurately simulated by this model. As a consequence of the limited working range of the low-pass filters, the model correctly simulates the alterations of fast and slow phases in response to step and ramps of target vergence, which are characteristic of real vergence responses.  相似文献   

18.
Light is the principal cue that entrains the circadian timing system, but the threshold of entrainment and the relative contributions of the retinal photoreceptors—rods, cones and intrinsically photosensitive retinal ganglion cells—are not known. We measured thresholds of entrainment of wheel-running rhythms at three wavelengths, and compared these to thresholds of two other non-image-forming visual system functions: masking and the pupillary light reflex (PLR). At the entrainment threshold, the relative spectral sensitivity and absolute photon flux suggest that this threshold is determined by rods. Dim light that entrained mice failed to elicit either masking or PLR; in general, circadian entrainment is more sensitive by 1–2 log units than other measures of the non-image-forming visual system. Importantly, the results indicate that dim light can entrain circadian rhythms even when it fails to produce more easily measurable acute responses to light such as phase shifting and melatonin suppression. Photosensitivity to one response, therefore, cannot be generalized to other non-image-forming functions. These results also impact practical problems in selecting appropriate lighting in laboratory animal husbandry.  相似文献   

19.
Tactile detection and two-point discrimination tests are commonly used in neurological examinations. However, questions remain about the influence of both body and patient characteristics on test thresholds. The left side of the body has sometimes been reported more tactilely sensitive than the right, and females are said to be more sensitive than males. We measured tactile detection and two-point discrimination thresholds on the finger, palm, and forehead of a large sample of young adults (N?=?171), examining laterality and sex differences, and the effects of body surface area (BSA) and body fat ratio (BFR). In tactile detection, there were no effects of laterality, BSA, or BFR, although females had lower thresholds than males. In two-point discrimination, there was an effect of laterality, with lower thresholds on the left side. This probably reflects hemispheric spatial processing differences. A significant BFR effect implies that subcutaneous fat affects skin deformation, but there were no effects of sex or BSA. The two-point discrimination findings differ in several respects from recent findings using grating orientation discriminations. A small positive correlation between the tasks, falling far short of test–retest reliabilities, indicates that they use largely disjoint but partially overlapping processes.  相似文献   

20.
Many animals, including men, use periodicity information, e.g., amplitude modulations of acoustic stimuli, as a vital cue to auditory object formation. The underlying neuronal mechanisms, however, still remain a matter of debate. Here, we mathematically analyze a model for periodicity identification that relies on the interplay of excitation and delayed inhibition. Our analytical results show how the maximal response of such a system varies systematically with the time constants of excitation and inhibition. The model reliably identifies signal periodicity in the range from about ten to several hundred Hertz. Importantly, the model relies on biologically plausible parameters only. It works best for excitatory and inhibitory neuronal couplings of equal strength, the so-called ‘balanced inhibition’. We show how balanced inhibition can serve to identify low-frequency signal periodicity and how variation of a single parameter, the inhibitory time constant, can tune the system to different frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号