首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lateral gene transfer has emerged as an important force in bacterial evolution. A substantial number of genes can be inserted into or deleted from genomes through the process of lateral transfer. In this study, we looked for atypical occurrence of genes among related organisms to detect laterally transferred genes. We have analyzed 50 bacterial complete genomes from nine groups. For each group we use a 16s rRNA phylogeny and a comparison of protein similarity to map gene insertions/deletions onto their species phylogeny. The results reveal that there is poor correlation of genes inserted, deleted, and duplicated with evolutionary branch length. In addition, the numbers of genes inserted, deleted, or duplicated within the same branch are not always correlated with each other. Nor is there any similarity within groups. For example, in the Rhizobiales group, the ratio of insertions to deletions in the evolutionary branch leading to Agrobacterium tumefaciens str. C58 (Cereon) is 0.52, but it is 39.52 for Mesorhizobium loti. Most strikingly, the number of insertions of foreign genes is much larger in the external branches of the trees. These insertions also greatly outnumber the occurrence of deletions, and yet the genome sizes of these bacteria remain roughly constant. This indicates that many of the insertions are specific to each organism and are lost before related species can evolve. Simulations of the process of insertion and deletion, tailored to each phylogeny, support this conclusion.  相似文献   

2.
As the Human Genome Project and other genome projects experience remarkable success and a flood of biological data is produced by means of high-throughout sequencing techniques, detection of horizontal gene transfer (HGT) becomes a promising field in bioinformatics. This review describes two freeware programs: T-REX for MS Windows and RHOM for Linux. T-REX is a graphical user interface program that offers functions to reconstruct the HGT network among the donor and receptor hosts from the gene and species distance matrices. RHOM is a set of command-line driven programs used to detect HGT in genomes. While T-REX impresses with a user-friendly interface and drawing of the reticulation network, the strength of RHOM is an extensive statistical framework of genome and the graphical display of the estimated sequence position probabilities for the candidate horizontally transferred genes.  相似文献   

3.
Bacterial genomes can evolve either by gene gain, gene loss, mutating existing genes, and/or by duplication of existing genes. Recent studies have clearly demonstrated that the acquisition of new genes by lateral gene transfer (LGT) is a predominant force in bacterial evolution. To better understand the significance of LGT, we employed a comparative genomics approach to model species-specific and intraspecies gene insertions/deletions (ins/del among 12 sequenced streptococcal genomes using a maximum likelihood method. This study indicates that the rate of gene ins/del is higher on the external branches and varies dramatically for each species. We have analyzed here some of the experimentally characterized species-specific genes that have been acquired by LGT and conclude that at least a portion of these genes have a role in adaptation.  相似文献   

4.
We present evidence supporting the notion that codon usage (CU) compatibility between foreign genes and recipient genomes is an important prerequisite to assess the selective advantage of imported functions, and therefore to increase the fixation probability of horizontal gene transfer (HGT) events. This contrasts with the current tendency in research to predict recent HGTs in prokaryotes by assuming that acquired genes generally display poor CU. By looking at the CU level (poor, typical, or rich) exhibited by putative xenologs still resembling their original CU, we found that most alien genes predominantly present typical CU immediately upon introgression, thereby suggesting that the role of CU amelioration in HGT has been overemphasized. In our strategy, we first scanned a representative set of 103 complete prokaryotic genomes for all pairs of candidate xenologs (exported/imported genes) displaying similar CU. We applied additional filtering criteria, including phylogenetic validations, to enhance the reliability of our predictions. Our approach makes no assumptions about the CU of foreign genes being typical or atypical within the recipient genome, thus providing a novel unbiased framework to study the evolutionary dynamics of HGT.  相似文献   

5.
6.
The phylogenetic position of two putative new species of the collembolan genus Orchesella was investigated by comparison with four other Italian species of the genus using a fragment of the mitochondrial gene encoding for subunit I of cytochrome c oxidase (COI). The gene showed the well-known A + T bias, typical of insect mitochondrial DNA, although A + T content was not as high as that observed in species belonging to more derived insect orders. The large number of variable sites in 3rd codon positions (85.2% variable) suggested that these sites contain significant homoplasy due to multiple hits. Despite the lack of morphological differentiation, the COI portion examined shows remarkable levels of genetic divergence between the putative species and their closest relatives. Phylogenetic analysis suggests that one of the putative new species is related to O. villosa, whereas the other is included in a clade with O. cincta and O. ranzii. The species O. chiantica appears to be related to O. villosa, agreeing with previous allozyme data.  相似文献   

7.
The past decade has produced an increasing number of reports on horizontal gene transfer between prokaryotic organisms. Only recently, with the flood of available whole genome sequence data and a renewed intensity of the debate about the universal tree of life, a very few reports on lateral gene transfer (LGT) from prokaryotes into the Eukaryota have been published. We have investigated and report here on the molecular evolution of the gene families that encode catalatic hydroperoxidases. We have found that this process included not only frequent horizontal gene transfer among prokaryotes but also several lateral gene transfer events between bacteria and fungi and between bacteria and the protistan ancestor of the alga/plant lineage.  相似文献   

8.
We have sequenced the O-antigen gene clusters for the Escherichia coli O98 and Yersinia kristensenii O11 O antigens. The basic structures of these O antigens are identical, and the sequence data indicate that Y. kristensenii O11 gained its O-antigen gene cluster by lateral gene transfer (LGT). Escherichia coli O98 has a typical O-antigen gene cluster between galF and gnd as is usual in E. coli. However, the O-antigen gene cluster of Y. kristensenii O11 is not located at the traditional Yersinia O-antigen gene cluster locus, between hemH and gsk, but at a novel chromosomal locus between aroA and cmk where it is flanked by remnant galF and gnd genes that indicate the probable source of the gene cluster. Phylogenetic analysis indicated that the source was not E. coli itself but a species in the Escherichia, Salmonella, and Klebsiella group of genera. Although other O-antigen studies imply LGT on the basis of the hypervariability of the loci and GC content, this report also identifies a potential donor and provides evidence for the mechanism involved. Remnant insertion sequence (IS) sequences flank the galF and gnd remnants and suggest that LGT of the gene cluster was IS mediated.  相似文献   

9.
10.
The trichloroethene reductive dehalogenase gene (tceA) of Dehalococcoides spp. was detected in 12 of 21 trichloroethene-to-ethene dechlorinating enrichment cultures established from aquifer and sediment samples collected from diverse geographic locations in the USA. Analysis of the tceA chromosomal regions indicated that the tceA genes shared greater than 95% sequence identity, and all shared identical tceAB spacer sequences and tceB genes downstream of tceA. A putative transposable element (PTE) was present 1077 bp downstream of the tceB stop codon in three of eight chromosomal regions analyzed. Sequence identity was interrupted downstream of tceB and upstream or downstream of the PTE, suggesting that intrachromosomal or interchromosomal transfer of tceAB had occurred.  相似文献   

11.
Horizontal gene transfer (HGT) spreads genetic diversity by moving genes across species boundaries. By rapidly introducing newly evolved genes into existing genomes, HGT circumvents the slow step of ab initio gene creation and accelerates genome innovation. However, HGT can only affect organisms that readily exchange genes (exchange communities). In order to define exchange communities and understand the internal and external environmental factors that regulate HGT, we analyzed approximately 20,000 genes contained in eight free-living prokaryotic genomes. These analyses indicate that HGT occurs among organisms that share similar factors. The most significant are genome size, genome G/C composition, carbon utilization, and oxygen tolerance.  相似文献   

12.
Summary The ability to transfer mammalian genes parasexually has opened new possibilities for gene mapping and fine structure mapping and offers great potential for contributing to several aspects of mammalian biology, including gene expression and genetic engineering. The DNA transferred has ranged from whole genomes to single genes and smaller segments of DNA. The transfer of whole genomes by cell fusion forms cell hybrids, which has promoted the extensive mapping of human and mouse genes. Transfer, by cell fusion, of rearranged chromosomes has contributed significantly to determining close linkage and the assignment of genes to specific chromosomal regions. Transfer of single chromosomes has been achieved utilizing microcells fused to recipient cells. Metaphase chromosomes have been isolated and used to transfer single-to-multigenic DNA segments. DNA-mediated gene transfer, simulating bacterial transformation, has achieved transfer of single-copy genes. By utilizing DNA cleaved with restriction endonucleases, gene transfer is being employed as a bioassay for the purification of genes. Gene mapping and the fate of transferred genes can be examined now at the molecular level using sequence-specific probes. Recently, single genes have been clones into eucaryotic and procaryotic vectors for transfer into mammalian cells. Moreover, recombinant libraries in which entire mammalian genomes are represented collectively are a rich new source of transferable genes. Methodology for transferring mammalian genetic information and applications for mapping mammalian genes is presented and prospects for the future discussed. Presented in the symposium on Gene Transfer, Differentiation and Neoplasia in Plant and Animal Cells at the 30th Annual Meeting of the Tissue Culture Association, Seattle, Washington, June 10–14, 1979. This symposium was supported in part by Grant CA 26748 from the National Cancer Institute, DHEW, and Grant RD-67 from the American Cancer Society. Supported by NIH grants HD 05196 and GM 20454 and by MOD grants 1-485 and 1-692.  相似文献   

13.
Thirty-three rhizobial strains isolated from the root nodules of Astragalus luteolus and Astragalus ernestii growing on the west plateau at two different altitudes in Sichuan province, China, were characterized by amplified rDNA restriction analysis (ARDRA), amplified fragment length polymorphism (AFLP), and by sequencing of rrs, glnA, glnII and nifH . The ARDRA analysis revealed considerable genomic diversity. In AFLP analysis, 20 of 33 Astragalus rhizobia formed three distinct clades, with others dispersed into different groups with the reference strains. Phylogenetic analysis of the rrs gene of six representative strains showed that the isolates were members of the genus Mesorhizobium . Three of the isolates formed a sister clade to Mesorhizobium loti and Mesorhizobium ciceri , whereas the other three formed a sister clade to a clade harboring the species Mesorhizobium huakuii, Mesorhizobium plurifarum, Mesorhizobium septentrionale and Mesorhizobium amorphae , indicating the existence of two new species. Phylogenetic analysis of glnA and glnII confirmed the rrs phylogenies for four strains, but the trees were incongruent. The nifH sequences of the strains formed a monophyletic clade and were typical of those of mesorhizobia forming symbioses with inverted repeat lacking clade legume species. The incongruent phylogenies of the genes studied suggest that horizontal gene transfer and recombination shape mesorhizobial populations in the gene center of the host plants.  相似文献   

14.
The fate of new bacterial genes   总被引:1,自引:0,他引:1  
Bacteria experience a continual influx of novel genetic material from a wide range of sources and yet their genomes remain relatively small. This aspect of bacterial evolution indicates that most newly arriving sequences are rapidly eliminated; however, numerous new genes persist, as evident from the presence of unique genes in almost all bacterial genomes. This review summarizes the methods for identifying new genes in bacterial genomes and examines the features that promote the retention and elimination of these evolutionary novelties.  相似文献   

15.
S Xie  J Chen  B Walsh 《Heredity》2014,112(2):165-171
The mapping of sterile genes is an essential issue, which should be solved for the investigation of sterility mechanism in wide hybridization of plants. However, the methods formerly developed cannot address the problem of mapping sterile loci with epistasis. In this study, we developed a new method to map sterile genes with epistasis in wide hybridizations of plants using a backcross design. The maximum likelihood method was used to estimate the parameters of recombination fractions and effects of sterile genes, and the convergent results of these parameters were obtained using the expectation maximization (EM) algorithm. The application and efficiency of this method were tested and demonstrated by a set of simulated data and real data analysis. Results from the simulation experiments showed that the method works well for simultaneously estimating the positions and effects of sterile genes, as well as the epistasis between sterile genes. A real data set of a backcross (BC) population from an interspecific hybrid between cultivated rice, Oryza sativa, and its wild African relative, Oryza longistaminata, was analyzed using the new method. Five sterile genes were detected on the chromosomes of 1, 3, 6, 8 and 10, and significant epistatic effects were found among the four pairs of sterile genes.  相似文献   

16.
Acquisition of new genetic material through horizontal gene transfer has been shown to be an important feature in the evolution of many pathogenic bacteria. Changes in the genetic repertoire, occurring through gene acquisition and deletion, are the major events underlying the emergence and evolution of bacterial pathogens. However, horizontal gene transfer across the domains i.e. archaea and bacteria is not so common. In this context, we explore events of horizontal gene transfer between archaea and bacteria. In order to determine whether the acquisition of archaeal genes by lateral gene transfer is an important feature in the evolutionary history of the pathogenic bacteria, we have developed a scheme of stepwise eliminations that identifies archaeal-like genes in various bacterial genomes. We report the presence of 9 genes of archaeal origin in the genomes of various bacteria, a subset of which is also unique to the pathogenic members and are not found in respective non-pathogenic counterparts. We believe that these genes, having been retained in the respective genomes through selective advantage, have key functions in the organism’s biology and may play a role in pathogenesis.  相似文献   

17.
In addition to mutation, gene duplication and recombination, the transfer of genetic material between unrelated species is now regarded as a potentially significant player in the shaping of extant genomes and the evolution and diversification of life. Although this is probably true for prokaryotes, the extent of such genetic exchanges in eukaryotes (especially eukaryote-to-eukaryote transfers) is more controversial and the selective advantage and evolutionary impact of such events are less documented. A laterally transferred gene could either be added to the gene complement of the recipient or replace the recipient's homologue; whereas gene replacements can be either adaptive or stochastic, gene additions are most likely adaptive. Here, we report the finding of four stress-related genes (two ascorbate peroxidase and two metacaspase genes) of algal origin in the closest unicellular relatives of animals, the choanoflagellates. At least three of these sequences represent additions to the choanoflagellate gene complement, which is consistent with these transfers being adaptive. We suggest that these laterally acquired sequences could have provided the primitive choanoflagellates with additional or more efficient means to cope with stress, especially in relation to adapting to freshwater environments and/or sessile or colonial lifestyles.  相似文献   

18.
Previously published phylogenetic trees reconstructed on "Rieske protein" sequences frequently are at odds with each other, with those of other subunits of the parent enzymes and with small-subunit rRNA trees. These differences are shown to be at least partially if not completely due to problems in the reconstruction procedures. A major source of erroneous Rieske protein trees lies in the presence of a large, poorly conserved domain prone to accommodate very long insertions in well-defined structural hot spots substantially hampering multiple alignments. The remaining smaller domain, in contrast, is too conserved to allow distant phylogenies to be deduced with sufficient confidence. Three-dimensional structures of representatives from this protein family are now available from phylogenetically distant species and from diverse enzymes. Multiple alignments can thus be refined on the basis of these structures. We show that structurally guided alignments of Rieske proteins from Rieske-cytochrome b complexes and arsenite oxidases strongly reduce conflicts between resulting trees and those obtained on their companion enzyme subunits. Further problems encountered during this work, mainly consisting in database errors such as wrong annotations and frameshifts, are described. The obtained results are discussed against the background of hypotheses stipulating pervasive lateral gene transfer in prokaryotes.  相似文献   

19.
We have measured the electrochromic response of the bacteriopheophytin, BPh, and bacteriochlorophyll, BChl, cofactors during the QA QB QAQB electron transfer in chromatophores of Rhodobacter (Rb.) capsulatus and Rb. sphaeroides. The electrochromic response rises faster in chromatophores and is more clearly biexponential than it is in isolated reaction centers. The chromatophore spectra can be interpreted in terms of a clear kinetic separation between fast electron transfer and slower non-electron transfer events such as proton transfer or protein relaxation. The electrochromic response to electron transfer exhibits rise times of about 4 µs (70%) and 40 µs (30%) in Rb. capsulatus and 4 µs (60%) and 80 µs (40%) in Rb. sphaeroides. The BPh absorption band is shifted to nearly equivalent positions in the QA and nascent QB states, indicating that the electrochromic perturbation of BPh absorption from the newly formed QB state is comparable to that of QA . Subsequently, partial attenuation of the QB electrochromism occurs with a time constant on the order of 200 µs. This can be attributed to partial charge compensation by H+ (or other counter ion) movement into the QB pocket. Electron transfer events were found to be slower in detergent isolated RCs than in chromatophores, more nearly monoexponential, and overlap H+ transfer, suggesting that a change in rate-limiting step has occurred upon detergent solubilization.  相似文献   

20.
Recent efforts to reconstruct the phylogenetic position of the insect order Strepsiptera have elicited a major controversy in molecular phylogenetics. We sequenced the 5.8S rDNA and major parts of the 28S rDNA 5′ region of the strepsipteran speciesStylops melittae.Their evolutionary dynamics were analyzed together with previously published insect rDNA sequences to identify tree estimation bias risks and to explore additional sources of phylogenetic information. Several major secondary structure changes were found as being autapomorphic for the Diptera, the Strepsiptera, or the Archaeognatha. Besides elevated substitution rates a significant AT bias was present in dipteran and strepsipteran 28S rDNA which, however, was restricted to stem sites in the Diptera while also affecting single-stranded sites in the Strepsiptera. When dipteran taxa were excluded from tree estimation all methods consistently supported the placement of Strepsiptera to within the Holometabola. When dipteran taxa were included maximum likelihood continued to favor a sister-group relationship of Strepsiptera with Mecoptera while remaining methods strongly supported a sister-group relationship with Diptera. Parametric bootstrap analysis revealed maximum likelihood as a consistent estimator if rate heterogeneity across sites was taken into account. Though the position of Strepsiptera within Holometabola remains elusive, we conclude that the evolution of dipteran and strepsipteran rDNA involved similar yet independent changes of substitution parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号