首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tobacco peroxidase gene tpoxN1 was reported to be expressed within 1 h after wounding in leaves [Hiraga et al. (2000a) Plant Cell Physiol. 41: 165]. We describe here further results on the wound-induced tpoxN1 expression. The quick tpoxN1 induction occurred preferentially in stems and petioles, but was negligible in leaf blades even 8 h after wounding. Induced GUS activity was also detected rapidly after wounding in the stem of transgenic tobacco plants carrying the tpoxN1 promoter::GUS fusion gene, localized mainly in the vascular systems where it was maintained this level for 14 d or more. Strong GUS activity was also found in the petiole and veinlet as well as the epidermal tissue in the stem. Treatment of known inducers for wound-responsive genes such as jasmonate, 1-aminocyclopropane-1-carboxylate, spermine, phytohormones and other stress treatments did not enhance wound-induced tpoxN1 gene expression in stems at all, but rather repressed it in some cases. Studies using metabolic inhibitors suggested that phosphorylation and dephosphorylation of proteins together with de novo protein synthesis are likely to be involved in the wound-induced tpoxN1 expression as well as some other wound-responsive genes. Thus, tpoxN1 is a unique wound-inducible and possible wound-healing gene which is rapidly expressed being maintained for a long time in veins via an unknown wound-signaling pathway(s).  相似文献   

2.
Jasmonates have been proposed to be signaling intermediates in the wound and/or elicitor-activated expression of plant defense genes. We used parsley (Petroselinum crispum) cell cultures and transgenic tobacco (Nicotiana tabacum) plants expressing 4CL1-GUS gene fusions to investigate the potential role played by jasmonates in mediating the wound and/or elicitor activation of phenylpropanoid and other defense-related genes. Jasmonates and [alpha]-linolenic acid strongly induced the expression of 4CL in a dose-dependent manner in parsley cells; methyl jasmonate also activated the coordinate expression of other phenylpropanoid genes and the accumulation of furanocoumarin phytoalexins. However, the response of the cells to optimal methyl jasmonate concentrations was distinct quantitatively and qualitatively from the response of elicitor-treated cells. In transgenic tobacco wound-inducible tobacco 4CL genes and a 4CL1 promoter-GUS transgene were responsive to jasmonates and [alpha]-linolenic acid in a dose-dependent manner. Pre-treatment of parsley cells or tobacco leaves with a lipoxygenase inhibitor reduced their responsiveness to the elicitor and to wounding. These results show that the elicitor response in parsley cells can be partially mimicked by jasmonate treatment, which supports a role for jasmonates in mediating wound-induced expression of 4CL and other phenylpropanoid genes.  相似文献   

3.
4.
5.
Plant receptor proteins are involved in the signaling networks required for defense against pathogens. The novel pepper pathogen-induced gene CaMRP1 was isolated from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). This gene is predicted to encode a membrane-located receptor-like protein that has an N-terminal signal peptide and a C-terminal transmembrane helix. A CaMRP1-GFP fusion protein localized primarily to the plasma membrane of plant cells. Strong and early induction of CaMRP1 expression occurred following exposure of pepper plants to Xcv, Colletotricum coccodes, methyl jasmonate (MeJA) and wounding stress. Virus-induced gene silencing (VIGS) of CaMRP1 in pepper conferred enhanced basal resistance to Xcv infection, accompanied by induction of genes encoding basic PR1 (CaBPR1), defensin (CaDEF1) and SAR8.2 (CaSAR82A). In contrast, CaMRP1 overexpression (OX) in transgenic Arabidopsis plants resulted in increased disease susceptibility to Hyaloperonospora parasitica infection. Arabidopsis plants overexpressing CaMRP1 exhibited insensitivity to MeJA by causing reduced expression of MeJA-responsive genes. Overexpression also resulted in tolerance to NaCl and during salt stress, the expression of several abscisic acid-responsive genes was induced. Together, these results suggest that pepper CaMRP1 may belong to a new subfamily of membrane-located receptor-like proteins that regulate disease susceptibility, MeJA-insensitivity and salt tolerance.  相似文献   

6.
In Tobacco mosaic virus (TMV)-infected tobacco plants carrying the N resistance gene, a hypersensitive reaction or response (HR) occurs to enclose the virus in the infected tissue. Although a contribution of peroxidases to the resistance has been proposed, no evidence has been presented that tobacco peroxidase genes respond to HR. Here, we describe the HR-induced expression of a tobacco peroxidase gene (tpoxC1) whose induction kinetics were slightly different from those of acidic and basic tobacco pathogenesis-related (PR) protein genes. Interestingly, tpoxC1 was insensitive to the inducers of PR genes such as salicylic acid, methyl jasmonate, and ethephon. Spermine activated tpoxC1 gene expression at a low level and both acidic and basic PR gene expression at a considerably higher level. These results indicate that the induced expression of tpoxC1 is regulated differently from that of classical tobacco PR genes in the N gene-mediated self-defense system in tobacco plants.  相似文献   

7.
8.
Molecular biology of wound-inducible proteinase inhibitors in plants   总被引:4,自引:4,他引:0  
Abstract. The techniques of molecular biology are being employed to investigate at the gene level the systemically mediated, wound-induced accumulation of two defensive proteinase inhibitor proteins in plant leaves. These techniques have added a new dimension to biochemical and physiological studies already underway to understand the mechanism of induction by wounding. The acquisition of cDNAs from the RNAs coding for the two inhibitors facilitated studies of mRNA synthesis in leaves in response to wounding, and provided probes to obtain wound-inducible proteinase inhibitor genes from tomato ( Lycopersicon esculentum ) and potato (Solarium tuberosum) genomes. Successful transformations of tobacco plants with fused genes, containing the 5' and 3' regions of the inhibitor genes with the open reading frame of the chloramphenicol acelyltransferase ( cat ) gene, have provided a wound-inducible chloramphenicol acetyltransferase (CATase) activity with which to seek cis- and transacting elements that regulate wound-inducibility to help to understand the interaction of cytoplasmic and nuclear components of the intracellular communication systems that activate the proteinase inhibitor genes in response to wounding by insect pests.  相似文献   

9.
10.
11.
The wound-induced expression of tpoxN1, encoding a tobacco peroxidase, is unique because of its vascular system-specific expression and insensitivity to known wound-signal compounds such as jasmonic acid, ethylene, and plant hormones [Sasaki et al. (2002) Plant Cell Physiol 43:108–117]. To study the mechanism of expression, the 2-kbp tpoxN1 promoter region and successive 5′-deletion of the promoter were introduced as GUS fusion genes into tobacco plants. Analysis of GUS activity in transgenic plants indicated that a vascular system-specific and wound-responsive cis-element (VWRE) is present at the −239/−200 region of the promoter. Gel mobility shift assays suggested that a nuclear factor(s) prepared from wounded tobacco stems binds a 14-bp sequence (−229/−215) in the −239/−200 region in a sequence-specific manner. A mutation in this 14-bp region of the −239 promoter fragment resulted in a considerable decrease in wound-responsive GUS activity in transgenic plants. An 11-bp sequence, which completely overlaps with the 14-bp sequence, was found in the 5′ distal region (−420/−410) and is thought to contribute to the wound-induced expression together with the 14-bp. The −114-bp core promoter of the tpoxN1 gene was indispensable for wound-induced expression, indicating that the 14-bp region is a novel wound-responsive cis-element VWRE, which may work cooperatively with other factors in the promoter.  相似文献   

12.
Wound- and systemin-inducible calmodulin gene expression in tomato leaves   总被引:10,自引:0,他引:10  
Using a calmodulin (CaM) cDNA as a probe in northern analyses, transgenic tomato plants that overexpress the prosystemin gene were found to express increased levels of CaM mRNA and protein in leaves compared to wild-type plants. These transgenic plants have been reported previously to express several wound-inducible defense-related genes in the absence of wounding. Calmodulin mRNA and protein levels were found to increase in leaves of young wild-type tomato plants after wounding, or treatment with systemin, methyl jasmonate, or linolenic acid. CaM mRNA appeared within 0.5 h after wounding or supplying young tomato plants with systemin, and peaked at 1 h. The timing of CaM gene expression is similar to the expression of the wound- or systemin-induced lipoxygenase and prosystemin genes, signal pathway genes whose expression have been reported to begin at 0.5–1 h after wounding and 1–2 h earlier than the genes coding for defensive proteinase inhibitor genes. The similarities in timing between the synthesis of CaM mRNA and the mRNAs for signal pathway components suggests that CaM gene expression may be associated with the signaling cascade that activates defensive genes in response to wounding.  相似文献   

13.
A cDNA library of tobacco mosaic virus (TMV)-infected tobacco was screened with polymerase chain reaction products obtained using a degenerate primer corresponding to proteinase inhibitor I (PI-I) of tomato and potato. The resulting clones encoded two highly similar, putative tobacco PI-I proteins, indicating that both genes identified in tobacco are probably expressed. The tobacco PI-I's were approximately 50% identical to wound-inducible potato and tomato PI-I and 80% identical to an ethylene-regulated tomato PI-I. Northern blot analyses indicated that healthy tobacco leaf contains only minor amounts of PI-I mRNA, and that the inhibitor genes are induced by TMV infection, salicylate treatment, ethephon spraying, UV light irradiation and wounding. The results indicate that the tobacco PI-I genes are coordinately expressed with the genes for the basic pathogenesis-related proteins. Contrary to PI-I genes of tomato and potato, wound induction of the tobacco genes occurs only locally; the upper, unwounded leaves do not show any wound-induced PI-I gene expression.  相似文献   

14.
Immunomodulation of jasmonate to manipulate the wound response   总被引:1,自引:0,他引:1  
Jasmonates are signals in plant stress responses and development. The exact mode of their action is still controversial. To modulate jasmonate levels intracellularly as well as compartment-specifically, transgenic Nicotiana tabacum plants expressing single-chain antibodies selected against the naturally occurring (3R,7R)-enantiomer of jasmonic acid (JA) were created in the cytosol and the endoplasmic reticulum. Consequently, the expression of anti-JA antibodies in planta caused JA-deficient phenotypes such as insensitivity of germinating transgenic seedlings towards methyl jasmonate and the loss of wound-induced gene expression. Results presented here suggest an essential role for cytosolic JA in the wound response of tobacco plants. The findings support the view that substrate availability takes part in regulating JA biosynthesis upon wounding. Moreover, high JA levels observed in immunomodulated plants in response to wounding suggest that tobacco plants are able to perceive a reduced level of physiologically active JA and attempt to compensate for this by increased JA accumulation.  相似文献   

15.
Gross N  Wasternack C  Köck M 《Phytochemistry》2004,65(10):1343-1350
Tomato RNaseLE is induced by phosphate deficiency and wounding and may play a role in macromolecular recycling as well as wound healing. Here, we analyzed the role of jasmonate and systemin in the wound-induced RNaseLE activation. The rapid expression of RNaseLE upon wounding of leaves leading to maximal RNase activity within 10 h, appeared only locally. Jasmonic acid (JA) or its molecular mimic ethyl indanoyl isoleucine conjugate did not induce RNaseLE expression. Correspondingly, RNaseLE was expressed upon wounding of 35S::allene oxide cyclase antisense plants known to be JA deficient. RNaseLE was not expressed upon systemin treatment, but was locally expressed in the spr1 mutant which is affected in systemin perception. In tomato plants carrying a PromLE::uidA construct, GUS activity could be detected upon wounding, but not following treatment with JA or systemin. The data indicate a locally acting wound-inducible systemin- and JA-independent signaling pathway for RNaseLE expression.  相似文献   

16.
17.
18.
Methyl jasmonate (MeJA) is an important plant regulator that involves in plant development and regulates the expression of plant defense genes in response to various stresses such as wounding, drought, and pathogens. In order to determine the physiological role of endogenous MeJA in plants, a NTR1 from Brassica campestris encoding a jasmonic acid carboxyl methyltransferase that produces methyl jasmonate was constructed under the control of CaMV 35S promoter and transformed into soybean [Glycine max (L) Merrill]. The transgenic soybean plants constitutively expressed the NTR1 and accumulated more MeJA levels than wild type plants. Overexpression of the gene in transgenic soybean conferred tolerance to dehydration during seed germination and seedling growth as reflected by the percentage of the fresh weight of seedlings. In addition, the transgenic soybean plants also conferred better capacity to retain water than wild type plants when drought tolerance was tested using detached leaves.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号