首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In the past decade, the development of new DNA, RNA, and protein technologies has greatly incremented the knowledge about the organization and expression of mitochondrial DNA. The complete base sequence of mitochondrial DNA of several animals is known and many data are rapidly accumulating on the mitochondrial genomes of other systems. Here we discuss the results so far obtained that disclosed unexpected features of mitochondrial genetics. Furthermore, mitochondrial DNA has become established as a powerful tool for evolutionary studies in animals. Evidences are presented demonstrating that the evolution of mitochondrial DNA has proceeded in different ways in the various taxonomic groups. Data on heteroplasmic animals, which demonstrate the rapid evolution of mitochondrial DNA, are also presented.  相似文献   

2.
Elements in microbial evolution   总被引:8,自引:0,他引:8  
Spontaneous mutation, selection, and isolation are key elements in biological evolution. Molecular genetic approaches reveal a multitude of different mechanisms by which spontaneous mutants arise. Many of these mechanisms depend on enzymes, which often do not act fully at random on the DNA, although a large number of sites of action can be observed. Of particular interest in this respect are DNA rearrangement processes, e.g., by transposition and by site-specific recombination systems. The development of gene functions has thus to be seen as the result of both DNA rearrangement processes and sequence alterations brought about by nucleotide substitutions and small local deletions, insertions, and duplications. Prokaryotic microorganisms are particularly appropriate for studying the effects of spontaneous mutation and thus microbial evolution, as they have haploid genomes, so that genetic alterations become rapidly apparent phenotypically. In addition, bacteria and their viruses and plasmids have relatively small genomes and short generation times, which also facilitate research on evolutionary processes. Besides the strategy of development of gene functions in the vertical transmission of genomes from generation to generation, the acquisition of short DNA segments from other organisms appears to be an important strategy in microbial evolution. In this process of horizontal evolution natural vector DNA molecules are often involved. Because of acquisition barriers, the acquisition strategy works best for relatively small DNA segments, hence at the level of domains, single genes, or at most operons. Among the many enzymes and functional systems involved in vertical and horizontal microbial evolution, some may serve primarily for essential life functions in each individual and only secondarily contribute to evolution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Recently improved understanding of evolutionary processes suggests that tree-based phylogenetic analyses of evolutionary change cannot adequately explain the divergent evolutionary histories of a great many genes and gene complexes. In particular, genetic diversity in the genomes of prokaryotes, phages, and plasmids cannot be fit into classic tree-like models of evolution. These findings entail the need for fundamental reform of our understanding of molecular evolution and the need to devise alternative apparatus for integrated analysis of these genomes. We advocate the development of integrative phylogenomics for analyzing these genomes and their histories, with tools suited to analyzing the importance of lateral gene transfer (LGT) and of DNA evolution in extra-cellular mobile genetic elements (e.g., viruses, plasmids). These phenomena greatly increase the complexity of relationships among interacting genetic partners, as they exchange functional genetic units. We examine the ontology of functional genetic units, interacting genetic partners, and emergent genetic associations, argue that these three categories of entities are required for a successful integrated phylogenomics. We conclude with arguments to suggest that the proposed new perspective and associated tools are suitable, and perhaps required, as a replacement for the bifurcating trees that have dominated evolutionary thinking for the last 150 years.  相似文献   

4.
Biémont C 《Genetics》2010,186(4):1085-1093
The idea that some genetic factors are able to move around chromosomes emerged more than 60 years ago when Barbara McClintock first suggested that such elements existed and had a major role in controlling gene expression and that they also have had a major influence in reshaping genomes in evolution. It was many years, however, before the accumulation of data and theories showed that this latter revolutionary idea was correct although, understandably, it fell far short of our present view of the significant influence of what are now known as "transposable elements" in evolution. In this article, I summarize the main events that influenced my thinking about transposable elements as a young scientist and the influence and role of these specific genomic elements in evolution over subsequent years. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work.  相似文献   

5.
Genomes operate as sophisticated information storage systems. Generic repeated signals in the DNA format expression of coding sequence files and organize additional functions essential for genome replication and accurate transmission to progeny cells. Retroelements comprise a major fraction of many genomes and contain a surprising diversity of functional signals. In this article, we summarize some features of the taxonomic distribution of retroelements, especially mammalian SINEs, tabulate functional roles documented for different classes of retroelements, and discuss their potential roles as genome organizers. In particular, the fact that certain retroelements serve as boundaries for heterochromatin domains and provide a significant fraction of scaffolding/matrix attachment regions (S/MARs) suggests that the reversed transcribed component of the genome plays a major architectonic role in higher order physical structuring. Employing an information science model, the "functionalist" perspective on repetitive DNA leads to new ways of thinking about the systemic organization of cellular genomes and provides several novel possibilities involving retroelements in evolutionarily significant genome reorganization.  相似文献   

6.
In the past decade, the development of new DNA, RNA, and protein technologies has greatly incremented the knowledge about the organization and expression of mitochondrial DNA. The complete base sequence of mitochondrial DNA of several animals is known and many data are rapidly accumulating on the mitochondrial genomes of other systems. Here we discuss the results so far obtained that disclosed unexpected features of mitochondrial genetics. Furthermore, mitochondrial DNA has become established as a powerful tool for evolutionary studies in animals. Evidences are preented demonstrating that the evolution of mitochondrial DNA has proceeded in different ways in the various taxonomic groups. Data on heteroplasmic animals, which demonstrate the rapid evolution of mitochondrial DNA, are also presented.  相似文献   

7.
8.
Accumulating evidence for alternative gene orders demonstrates that vertebrate mitochondrial genomes are more evolutionarily dynamic than previously thought. Several lineages of parthenogenetic lizards contain large, tandem duplications that include rRNA, tRNA, and protein-coding genes, as well as the control region. Such duplications are hypothesized as intermediate stages in gene rearrangement, but the early stages of their evolution have not been previously studied. To better understand the evolutionary dynamics of duplicated segments of mitochondrial DNA, we sequenced 10 mitochondrial genomes from recently formed ( approximately 300,000 years ago) hybrid parthenogenetic geckos of the Heteronotia binoei complex and 1 from a sexual form. These genomes included some with an arrangement typical of vertebrates and others with tandem duplications varying in size from 5.7 to 9.4 kb, each with different gene contents and duplication endpoints. These results, together with phylogenetic analyses, indicate independent and frequent origins of the duplications. Small, direct repeats at the duplication endpoints imply slipped-strand error as a mechanism generating the duplications as opposed to a false initiation/termination of DNA replication mechanism that has been invoked to explain duplications in other lizard mitochondrial systems. Despite their recent origin, there is evidence for nonfunctionalization of genes due primarily to deletions, and the observed pattern of gene disruption supports the duplication-deletion model for rearrangement of mtDNA gene order. Conversely, the accumulation of mutations between these recent duplicates provides no evidence for gene conversion, as has been reported in some other systems. These results demonstrate that, despite their long-term stasis in gene content and arrangement in some lineages, vertebrate mitochondrial genomes can be evolutionary dynamic even at short timescales.  相似文献   

9.
10.
Genomic rearrangements have been studied since the beginnings of modern genetics and models for such rearrangements have been the subject of many papers over the last 10 years. However, none of the extant models can predict the evolution of genomic organization into circular unichromosomal genomes (as in most prokaryotes) and linear multichromosomal genomes (as in most eukaryotes). Very few of these models support gene duplications and losses--yet these events may be more common in evolutionary history than rearrangements and themselves cause apparent rearrangements. We propose a new evolutionary model that integrates gene duplications and losses with genome rearrangements and that leads to genomes with either one (or a very few) circular chromosome or a collection of linear chromosomes. Our model is based on existing rearrangement models and inherits their linear-time algorithms for pairwise distance computation (for rearrangement only). Moreover, our model predictions fit observations about the evolution of gene family sizes and agree with the existing predictions about the growth in the number of chromosomes in eukaryotic genomes.  相似文献   

11.
基因倍增研究进展   总被引:2,自引:0,他引:2  
李鸿健  谭军 《生命科学》2006,18(2):150-154
基因倍增是指DNA片段在基因组中复制出一个或更多的拷贝,这种DNA片段可以是一小段基因组序列、整条染色体,甚至是整个基因组。基因倍增是基因组进化最主要的驱动力之一,是产生具有新功能的基因和进化出新物种的主要原因之一。本文综述了脊椎动物、模式植物和酵母在进化过程中基因倍增研究领域的最新进展,并讨论了基因倍增研究的发展方向。  相似文献   

12.
In some ciliates, the DNA sequences of the germline genomes have been profoundly modified during evolution, providing unprecedented examples of germline DNA malleability. Although the significance of the modifications and malleability is unclear, they may reflect the evolution of mechanisms that facilitate evolution. Because of the modifications, these ciliates must perform remarkable feats of cutting, splicing, rearrangement and elimination of DNA sequences to convert the chromosomal DNA in the germline genome (micronuclear genome) into gene-sized DNA molecules in the somatic genome (macronuclear genome). How these manipulations of DNA are guided and carried out is largely unknown. However, the organization and manipulation of ciliate DNA sequences are new phenomena that expand a general appreciation for the flexibility of DNA in evolution and development.  相似文献   

13.
The Artemis Group comprises mammalian proteins with important functions in the repair of ionizing radiation-induced DNA double-strand breaks and in the cleavage of DNA hairpin extremities generated during V(D)J recombination. Little is known about the presence of Artemis/Artemis-like proteins in non-mammalian species. We have characterized new Artemis/Artemis-like sequences from the genomes of some fungi and from non-mammalian metazoan species. An in-depth phylogenetic analysis of these new Artemis/Artemis-like sequences showed that they form a distinct clade within the Pso2p/Snm1p A and B Groups. Hydrophobic cluster analysis and three-dimensional modeling allowed to map and to compare conserved regions in these Artemis/Artemis-like proteins. The results indicate that Artemis probably belongs to an ancient DNA recombination mechanism that diversified with the evolution of multi-cellular eukaryotic lineage.  相似文献   

14.
Contributions of Microorganisms to Industrial Biology   总被引:1,自引:0,他引:1  
Life on earth is not possible without microorganisms. Microbes have contributed to industrial science for over 100 years. They have given us diversity in enzymatic content and metabolic pathways. The advent of recombinant DNA brought many changes to industrial microbiology. New expression systems have been developed, biosynthetic pathways have been modified by metabolic engineering to give new metabolites, and directed evolution has provided enzymes with modified selectability, improved catalytic activity and stability. More and more genomes of industrial microorganisms are being sequenced giving valuable information about the genetic and enzymatic makeup of these valuable forms of life. Major tools such as functional genomics, proteomics, and metabolomics are being exploited for the discovery of new valuable small molecules for medicine and enzymes for catalysis.  相似文献   

15.
Animal mitochondrial genomes   总被引:63,自引:1,他引:63       下载免费PDF全文
  相似文献   

16.
DNA, chromosomes, and in situ hybridization.   总被引:6,自引:0,他引:6  
Trude Schwarzacher 《Génome》2003,46(6):953-962
In situ hybridization is a powerful and unique technique that correlates molecular information of a DNA sequence with its physical location along chromosomes and genomes. It thus provides valuable information about physical map position of sequences and often is the only means to determine abundance and distribution of repetitive sequences making up the majority of most genomes. Repeated DNA sequences, composed of units of a few to a thousand base pairs in size, occur in blocks (tandem or satellite repeats) or are dispersed (including transposable elements) throughout the genome. They are often the most variable components of a genome, often being species and, occasionally, chromosome specific. Their variability arises through amplification, diversification and dispersion, as well as homogenization and loss; there is a remarkable correlation of molecular sequence features with chromosomal organization including the length of repeat units, their higher order structures, chromosomal locations, and dispersion mechanisms. Our understanding of the structure, function, organization, and evolution of genomes and their evolving repetitive components enabled many new cytogenetic applications to both medicine and agriculture, particularly in diagnosis and plant breeding.  相似文献   

17.
Endogenous retroviruses are a common component of the eukaryotic genome, and their evolution and potential function have attracted considerable interest. More surprising was the recent discovery that eukaryotic genomes contain sequences from RNA viruses that have no DNA stage in their life cycle. Similarly, several single-stranded DNA viruses have left integrated copies in their host genomes. This review explores some major evolutionary aspects arising from the discovery of these endogenous viral elements (EVEs). In particular, the reasons for the bias toward EVEs derived from negative-sense RNA viruses are considered, as well as what they tell us about the long-term "arms races" between hosts and viruses, characterized by episodes of selection and counter-selection. Most dramatically, the presence of orthologous EVEs in divergent hosts demonstrates that some viral families have ancestries dating back almost 100 million years, and hence are far older than expected from the phylogenetic analysis of their exogenous relatives.  相似文献   

18.
19.
Museum specimens play a crucial role in addressing key questions in systematics, evolution, ecology, and conservation. With the advent of high‐throughput sequencing technologies, specimens that have long been the foundation of important biological discoveries can inform new perspectives as sources of genomic data. Despite the many possibilities associated with analyzing DNA from historical specimens, several challenges persist. Using avian systems as a model, we review DNA extraction protocols, sequencing technologies, and capture methods that are helping researchers overcome some of these difficulties. We highlight empirical examples in which researchers have used these technologies to address fundamental questions related to avian conservation and evolution. Increasing accessibility to new sequencing technologies will provide researchers with tools to tap into the wealth of information contained within our valuable natural history collections.  相似文献   

20.
The physical map of 2C DNA (cf. following paper in this journal) was compared to the maps of SP01, SP82 and phi e (three other Bacillus subtilis phages containing hydroxymethyluracil in place of thymine in their DNA). The overall organization of the four genomes was remarkably similar, as indicated by the topology of HaeIII and SalI cleavage segments. The proof was gathered for the presence in the four phage DNAs of large redundant ends carrying a single HaeIII recognition site. The location of the latter proved identical for 2C and SP01, but was shifted in the DNAs of SP82 and phi e. Since the redundant end components of these hydroxymethyluracil genomes are colinear, as shown by cross-hybridization studies, the shifting of the HaeIII cleavage site is presumably due to two base substitutions, suppressing an endonuclease recognition site and establishing a new site elsewhere. Relatedness between the genomes of this family of viruses was evaluated from the fraction of conserved restriction fragments. According to these calculations, 6% base substitutions have occurred within the four viral DNAs, in the course of evolution. However, specific segments of 2C DNA were not present in SP01 and phi e DNA, as shown by cross-hybridization with restriction fragments. These data indicate the occurrence of deletions, in addition to base substitutions, as evolutionary mechanisms prevailing in the genomes of this family of phages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号