首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed characterization of the properties of the channel formed by tetanus toxin in planar lipid bilayers is presented. Channel formation proceeds at neutral pH. However, an acidic pH is required to detect the presence of channels in the membrane rapidly and effectively. Acid pH markedly lowers the single-channel conductance, for phosphatidylserine at 0.5 M KCl gamma = 89 pS at pH 7.0 while at pH 4.8, gamma = 30 pS. The toxin channel is cation selective without significant selectivity between potassium and sodium (gamma [K+]/gamma [Na+] greater than or equal to 1.35). In all the lipids studied gamma is larger at positive than at negative voltages. The toxin channel is voltage dependent both at neutral and acidic pH: for phosphatidylserine membranes, the probability of the channel being open is much greater at positive than at negative voltage. In different phospholipids the channel exhibits different voltage dependence. In phosphatidylserine membranes the channel is inactivated at negative voltages, whereas in diphytanoylphosphatidylcholine membranes channels are more active at negative voltages than at positive. The presence of acidic phospholipids in the bilayers increases both the single-channel conductance as well as the probability of the channel being open at positive voltage. A subconductance state is readily identifiable in the single-channel recordings. Accordingly, single-channel conductance histograms are best fitted with a sum of 3 Gaussian distributions corresponding to the closed state, the open subconductance state and the full open state. Channel activity occurs in bursts of openings separated by long closings. Probability density analysis of the open dwell times of the toxin channel indicate the existence of a single open state with a lifetime greater than or equal to 1 ms in all lipids studied. Analysis of intra-bursts closing lifetimes reveals the existence of two components; the slow component is of the order of 1 ms, the fast one is less than or equal to 0.5 ms. The channel activity induced by tetanus toxin in lipid bilayers suggests a mechanism for its neurotoxicity: a voltage dependent, cation selective channel inserted in the postsynaptic membrane would lead to continuous depolarization and, therefore, persistent activation of the postsynaptic cell.  相似文献   

2.
Detergent-solubilized cell wall extracts of the gram-positive, strictly aerobic bacterium Nocardia asteroides contain channel-forming activity as judged from reconstitution experiments using lipid bilayer membranes. The cell wall porin was identified as a protein with an apparent molecular mass of about 84 kDa based on SDS-PAGE. The porin was purified to homogeneity using preparative SDS-PAGE. The 84-kDa protein was no longer observed after heating in SDS buffer. The presumed dissociation products were not observed on SDS-polyacrylamide gels. The cell wall porin increased the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine/phosphatidylserine mixtures by the formation of cation-selective channels, which had an average single-channel conductance of 3.0 nS in 1 M KCl. The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration, which indicated negative point charge effects on the channel properties. The analysis of the concentration dependence of the single-channel conductance using the effect of negative charges on channel conductance suggested that the diameter of the cell wall channel is about 1.4 nm. Asymmetric addition of the cell wall porin to lipid bilayer membranes resulted in an asymmetric voltage dependence. The cell wall channel switched into substates, when the cis side of the membrane, the side of the addition of the protein, had negative polarity. Positive potentials at the cis side had no influence on the conductance of the cell wall channel. Received: 23 September 1998 / Accepted: 9 December 1998  相似文献   

3.
Summary Single-channel analysis of electrical fluctuations induced in planar bilayer membranes by the purified human complement proteins C5b6, C7, C8, and C9 have been analyzed. Reconstitution experiments with lipid bilayer membranes showed that the C5b-9 proteins formed pores only if all proteins were present at one side of the membrane. The complement pores had an average single-channel conductance of 3.1 nS at 0.15m KCl. The histogram of the complement pores suggested a substantial variation of the size of the single channel. The linear relationship between single-channel conductance at fixed ionic strength and the aqueous mobility of the ions in the bulk aqueous phase indicated that the ions move inside the complement pore in a manner similar to the way they move in the aqueous phase. The minimum diameter of the pores as judged from the conductance data is approximately 3 nm. The complement channels showed no apparent voltage control or regulation up to transmembrane potentials of 100 mV. At neutral pH the pore is three to four times more permeable for alkali ions than for chloride, which may be explained by the existence of fixed negatively charged groups in or near the pore. The significance of these observations to current molecular models of the membrane lesion formed by these cytolytic serum proteins is considered.  相似文献   

4.
Tc toxins are widely distributed among different gram-negative and gram-positive bacteria, where they act as pathogenicity factors. The toxins are composed of different components that form oligomers for biological activity. Lipid bilayer experiments were performed with the TcdA1 component of the Tc toxin from Photorhabdus luminescens, which preferentially kills insects by actin polymerization. TcdA1 was able to increase the specific conductance of artificial lipid bilayer membranes by the formation of ion-permeable channels. The channels had on average a single-channel conductance of 125 pS in 150 mM KCl and were found to be cation selective. The single-channel conductance of the TcdA1-channels was only moderately dependent on the bulk aqueous KCl concentration, which indicated point-charge effects on the channel properties. Experiments to study the voltage dependence of the TcdA1 channel demonstrated that it is reconstituted in a fully oriented way when it is added to only one side of the lipid bilayer membrane. A combination of biologically active components (TccC3) and a possible chaperone (TcdB2) blocked the TcdA1-mediated conductance efficiently in a dose-dependent manner when they were added to the cis side of the membrane. The half-saturation constant for binding of TcdB2-TccC3 to TcdA1 is in the low nanomolar range.  相似文献   

5.
Reconstitution of purified Tsx protein from Escherichia coli into lipid bilayer membranes showed that Tsx formed small ion-permeable channels with a single-channel conductance of 10 pS in 1 M KCl. The dependence of conductance versus salt concentration was linear, suggesting that Tsx has no binding site for ions. Conductance was inhibited by the addition of 20 mM adenosine. Titration of the Tsx-mediated membrane conductance with different solutes including free bases, nucleosides, and deoxynucleosides suggested that the channel contains a binding site for nucleosides but not for sugars or amino acids, and binding increased in the following order: free base, nucleoside, and deoxynucleoside. Among the five nucleosides the stability constant for the binding increased in the order of cytidine, guanosine, uridine, adenosine, and thymidine. Control experiments revealed that the binding of the nucleosides is independent of ion concentration in the aqueous phase, i.e. there was no competition between nucleosides and ions for the binding site inside the channel. The binding of the solutes to the channel interior can be explained by a one-site two-barrier model for the Tsx channel. The advantage of a binding site inside a specific porin for the permeation of solutes is discussed with respect to the properties of a general diffusion pore.  相似文献   

6.
A channel-forming protein was identified in cell wall extracts of the Gram-positive, strictly aerobic bacterium Nocardia farcinica . The cell wall porin was purified to homogeneity and had an apparent molecular mass of about 87 kDa on tricine-containing SDS–PAGE. When the 87 kDa protein was boiled for a longer time in sodium dodecylsulphate (SDS) it dissociated into two subunits with molecular masses of about 19 and 23 kDa. The 87 kDa form of the protein was able to increase the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine (PC) phosphatidylserine (PS) mixtures by the formation of ion-permeable channels. The channels had on average a single-channel conductance of 3.0 nS in 1 M KCl, 10 mM Tris-HCl, pH 8, and were found to be cation selective. Asymmetric addition of the cell wall porin to lipid bilayer membranes resulted in an asymmetric voltage dependence. The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration, which indicated point charge effects on the channel properties. The analysis of the single-channel conductance data in different salt solutions using the Renkin correction factor, and the effect of negative charges on channel conductance suggested that the diameter of the cell wall porin is about 1.4–1.6 nm. Channel-forming properties of the cell wall porin of N. farcinica were compared with those of mycobacteria and corynebacteria. The cell wall porins of these members of the order Actinomycetales share common features because they form large and water-filled channels that contain negative point charges.  相似文献   

7.
The binding component (Vip1Ac) of the ADP-ribosylating vegetative insecticidal protein (Vip) of Bacillus thuringiensis HD201 was isolated from the supernatant of cell cultures. Vip1Ac protein solubilized at room temperature ran as oligomers on SDS-PAGE. These oligomers were not resistant to heating. Mass spectroscopic analysis of this high molecular mass band identified it as Vip1Ac. The protein formed in artificial lipid bilayer membranes channels with two conductance states of about 350 and 700 pS in 1 M KCl. The channel conductance showed a linear dependence on the bulk aqueous KCl concentration, which indicated that the channel properties were more general than specific. Zero-current membrane potential measurements showed that the Vip1Ac channel has a slightly higher permeability for chloride than for potassium ions. Asymmetric addition of Vip1Ac to lipid bilayer membranes resulted in an asymmetric voltage dependence, indicating its full orientation within the membrane. The functional role of Vip1Ac and its relationship to other ADP-ribosylating toxins are discussed.  相似文献   

8.
Abstract Lipid bilayer experiments were performed with chromosome-encoded haemolysin of Escherichia coli . The addition of the toxin to the aqueous phase bathing lipid bilayer membranes of asolectin resulted in the formation of transient ion-permeable channels with two states at small transmembrane voltages. One is prestate (single-channel conductance 40 pS in 0.15 M KCl) of the open state, which had a single-channel conductance of 420 pS in 0.15 M KCl and a mean lifetime of 30 s. Membranes formed of pure lipids were rather inactive targets for this haemolysin. Experiments with different salts suggested that the haemolysin channel was highly cation-selective at neutral pH. The mobility sequence of the cations in the channel was similar if not identical to their mobility sequence in the aqueous phase. The single-channel data were consistent with a wide, water-filled channel with an estimated minimal diameter of about 1 nm. The pore-forming properties of chromosome-encoded haemolysin were compared with those of plasmid-encoded haemolysin. Both toxins share common features, oligomerize probably to form pores in lipid bilayer membranes. Both types of haemolysin channels have similar properties but different lifetimes.  相似文献   

9.
Two channels were observed in extracts of whole Mycobacterium bovis BCG cells using organic solvents and detergents. The channels derived from organic solvent treatment had a single-channel conductance of about 4.0 nS in 1 M KCl in lipid bilayer membranes with properties similar to those of the channels discovered previously in Mycobacterium smegmatis and Mycobacterium chelonae. The channel was in its open configuration only at low transmembrane potentials. At higher voltages it switched to closed states that were almost impermeable for ions. Lipid bilayer experiments in the presence of detergent extracts of whole cells revealed another channel with a single-channel conductance of only 780 pS in 1 M KCl. Our results indicate that the mycolic acid layer of M. bovis BCG contains two channels, one is cation-selective and its permeability properties can be finely controlled by cell wall asymmetry or potentials. The other one is anion-selective, has a rather small single-channel conductance and is voltage-insensitive. The concentration of channel-forming proteins in the cell wall seems to be small, which is in agreement with the low cell wall permeability for hydrophilic solutes.  相似文献   

10.
Summary A potassium-specific tonoplast channel was identified by reconstitution of tonoplast polypeptides into planar lipid bilayer membranes. Highly purified tonoplast membranes were solubilized in Triton X-100-containing buffer and fractionated by size-exclusion chromatography. The protein fractions were assayed for ion channel activity in a planar bilayer system, and the potassium channel was routinely recovered in specific fractions corresponding to an apparent molecular mass of 80 kDa. In symmetrical electrolyte solutions of 100 mM potassium chloride, the potassium channel had a single-channel conductance of 72 pS. Substates of the channel with conductances of 17, 33 and 52 pS were frequently observed. After identification of the channel in low or high KCl, addition of sodium acetate or sodium chloride caused only insignificant conductance changes. This result suggested that the channel was not or little permeable for sodium or chloride, whereas it had similar single-channel conductance for rubidium and caesium ions as compared with potassium ions. The channel is presumably responsible for the equilibration of potassium between the vacuole and the cytosol. The role of the channel in the physiology of the barley cell under salt stress is discussed.The authors would like to thank U. Heber for many helpful discussions. This work was supported by grants of the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 176, projects B3 and B7) and by the Fonds der Chemischen Industrie.  相似文献   

11.
The binding component (C2II) of the binary Clostridium botulinum C2 toxin mediates transport of the actin ADP-ribosylating enzyme component (C2I) into the cytosol of target cells. C2II (80 kDa) is activated by trypsin cleavage, and proteolytically activated C2II (60 kDa) oligomerizes to heptamers in solution. Activated C2II forms channels in lipid bilayer membranes which are highly cation selective and voltage-gated. A role for this channel in C2I translocation across the cell membrane into the cytosol is discussed. Amino acid residues 303-331 of C2II contain a conserved pattern of alternating hydrophobic and hydrophilic residues, which likely facilitates membrane insertion and channel formation by creating two antiparallel beta-strands. Some of the residues are in strategic positions within the putative C2II channel, in particular, glutamate 307 (E307) localized in its center and glycine 316 (G316) localized on the trans side of the membrane. Here, single-lysine substitutions of these amino acids and the double mutant E307K/G316K of C2II were analyzed in vivo and in artificial lipid bilayer experiments. The pH dependence of C2I transport across cellular membranes was altered, and a pH of 相似文献   

12.
Protein P, an anion-specific channel-forming protein from the outer membrane of Pseudomonas aeruginosa was chemically modified by acetylation and syccinylation of its accessible amino groups. The chemically modified protein retained its ability to form oligomers on sodium dodecyl sulfate polyacrylamide gels, whereas only the acetylated protein formed channels in reconstitution experiments with lipid bilayers. Acetylated protein P demonstrated a substantially reduced mean single channel conductance (25 pS at 1 M KCl) compared to the native protein P channels (250 pS at 1 M KCl) when reconstituted into black lipid bilayer membranes. The homogeneous size distribution of single-channel conductances suggested that all of the protein P molecules had been acetylated. Zero-current potential measurements demonstrated that the acetylated protein P channel was only weakly selective for anions and allowed the permeation of cations, in contrast to the native protein P channels, which were more than 100-fold selective for anions over cations. The dependence of conductance on salt concentration was changed upon acetylation, in that acetylated protein P demonstrated a linear concentration-conductance relationship, whereas native protein P channels became saturated at high salt concentrations. These data strongly suggested that the basis of anion selectivity for native protein P channels is fixed amino groups. In agreement with this, we could demonstrate a 2.5-fold decrease in single-channel conductance between pH 7 and pH 9, between which pH values the ?-amino groups of amino acids would start to become deprotonated. Two alternative schemes for the topography of the protein P channel and localization of the fixed amino groups are presented and discussed.  相似文献   

13.
Summary Gramicidin-doped asymmetric bilayers made by the Montal-Mueller method exhibited an asymmetric current-voltage relationship. The asymmetric conductance was shown to be the product of two components, a rectifying single-channel conductance and an asymmetric voltage dependence of the reaction which leads to the conducting channel. The single-channel conductance was asymmetric in both asymmetric bilayers made of charged lipids and asymmetric bilayers made only of neutral lipids. The single-channel asymmetry decreased with increasing ion concentration. From the comparison of the singlechannel conductance in symmetric and asymmetric bilayers and the dependence of the asymmetry on the solution ion concentrations, it was concluded that (1) the rate of ion entry into the channel is dependent on the lipid composition of the membrane and is asymmetric in asymmetric bilayers; (2) the entry step is rate determining at low ion concentrations; and (3) at higher ion concentrations the rate-determining step is the translocation across the main barrier in the membrane; and this translocation appears insensitive to lipid asymmetry.  相似文献   

14.
T Tao  J Xie  M L Drumm  J Zhao  P B Davis    J Ma 《Biophysical journal》1996,70(2):743-753
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel exhibits multiple subconductance states. To study the regulation of conductance states of the CFTR channel, we expressed the wild-type CFTR protein in HEK 293 cells, and isolated microsomal membrane vesicles for reconstitution studies in lipid bilayer membranes. A single CFTR channel had a dominant conductance of 7.8 pS (H), plus two sub-open states with conductances of approximately 6 pS (M) and 2.7 pS (L) in 200 mM KCl with 1 mM MgCl2 (intracellular) and 50 mM KCl with no MgCl2 (extracellular), with pH maintained at 7.4 by 10 mM HEPES-Tris on both sides of the channel. In 200 mM KCl, both H and L states could be measured in stable single-channel recordings, whereas M could not. Spontaneous transitions between H and L were slow; it took 4.5 min for L-->H, and 3.2 min for H-->L. These slow conversions among subconductance states of the CFTR channel were affected by extracellular Mg; in the presence of millimolar Mg, the channel remained stable in the H state. Similar phenomena were also observed with endogenous CFTR channels in T84 cells. In high-salt conditions (1.5 M KCl), all three conductance states of the expressed CFTR channel, 12.1 pS, 8.2 pS, and 3.6 pS, became stable and seemed to gate independently from each other. The existence of multiple stable conductance states associated with the CFTR channel suggests two possibilities: either a single CFTR molecule can exist in multiple configurations with different conductance values, or the CFTR channel may contain multimers of the 170-kDa CFTR protein, and different conductance states are due to different aggregation states of the CFTR protein.  相似文献   

15.
Reconstitution experiments were performed on lipid bilayer membranes in the presence of detergent solubilized mitochondrial membranes of pea seedlings (Pisum sativum). The addition of the detergent-solubilized material to the membranes resulted in a strong increase of the membrane conductance. To identify the proteins responsible for membrane activity the detergent extracts were applied to a hydroxyapatite (HTP) column and the fractions were tested for channel formation. The eluate of the column contained a protein which migrated as a single band with an apparent molecular mass of 30 kDa on SDS-PAGE. This channel was identified as the porin of pea mitochondria since it formed voltage-dependent channels with single-channel conductances of 1.5 and 3.7 nS in 1 M KCl and an estimated effective diameter of about 1.7 nm. Further elution of the column with KCl containing solutions yielded fractions which resulted in the formation of transient channels in lipid bilayer membranes. These channels had a single-channel conductance of 2.2 nS in 1 M KCl and had also the characteristics of general diffusion pores with an estimated effective diameter of 1.2 nm. Zero-current membrane potential measurements suggested that pea porin was anion-selective in the open state. The selectivity of the second channel was investigated by the measurement of the reversal potential. It was also slightly anion-selective. Its possible role in the metabolism of mitochondria is discussed.  相似文献   

16.
We manipulate lipid bilayer surface charge and gauge its influence on gramicidin A channel conductance by two strategies: titration of the lipid charge through bulk solution pH and dilution of a charged lipid by neutral. Using diphytanoyl phosphatidylserine (PS) bilayers with CsCl aqueous solutions, we show that the effects of lipid charge titration on channel conductance are masked 1) by conductance saturation with Cs+ ions in the neutral pH range and 2) by increased proton concentration when the bathing solution pH is less than 3. A smeared charge model permits us to separate different contributions to the channel conductance and to introduce a new method for "bilayer pKa" determination. We use the Gouy-Chapman expression for the charged surface potential to obtain equilibria of protons and cations with lipid charges. To calculate cation concentration at the channel mouth, we compare different models for the ion distribution, exact and linearized forms of the planar Poisson-Boltzmann equation, as well as the construction of a "Gibbs dividing surface" between salt bath and charged membrane. All approximations yield the intrinsic pKain of PS lipid in 0.1 M CsCl to be in the range 2.5-3.0. By diluting PS surface charge at a fixed pH with admixed neutral diphytanoyl phosphatidylcholine (PC), we obtain a conductance decrease in magnitude greater than expected from the electrostatic model. This observation is in accord with the different conductance saturation values for PS and PC lipids reported earlier (, Biochim. Biophys. Acta. 552:369-378) and verified in the present work for solvent-free membranes. In addition to electrostatic effects of surface charge, gramicidin A channel conductance is also influenced by lipid-dependent structural factors.  相似文献   

17.
We examined the state-, voltage-, and time dependences of interaction between 4-AP and a mammalian A-type K channel clone (rKv1.4) expressed in Xenopus oocytes using whole-cell and single-channel recordings. 4-AP blocked rKv1.4 from the cytoplasmic side of the membrane. The development of block required channel opening. Block was potentiated by removing the fast inactivation gate of the channel (deletion mutant termed "Del A"). A short-pulse train that activated rKv1.4 without inactivation induced more block by 4-AP than a long pulse that activated and then inactivated the channel. These observations suggest that both activation and inactivation gates limit the binding of 4-AP to the channel. Unblock of 4-AP also occurred during channel opening, because unblock required depolarization and was accelerated by more frequent or longer depolarization pulses (use-dependent unblock). Analysis of the concentration dependence of rate of block development indicated that 4-AP blocked rKv1.4 with slow kinetics (at -20 mV, binding and unbinding rate constants were 3.2 mM-1 s-1 and 4.3 s-1). This was consistent with single-channel recordings: 4-AP induced little or no changes in the fast kinetics of opening and closing within bursts, but shortened the mean burst duration and, more importantly, reduced the probability of channel opening by depolarization. Depolarization might decrease the affinity of 4-AP binding site in the open channel, because stronger depolarization reduced the degree of steady-state block by 4-AP. Furthermore, after 4-AP block had been established at a depolarized holding voltage, further depolarization induced a time-dependent unblock. Our data suggest that 4-AP binds to and unbinds from open rKv1.4 channels with slow kinetics, with the binding site accessibility controlled by the channel gating apparatus and binding site affinity modulated by membrane voltage.  相似文献   

18.
Pseudomonas aeruginosa OprD is a specific porin which facilitates the uptake of basic amino acids and imipenem across the outer membrane. In this study, we examined the effects of deletions in six of the proposed eight surface loops of OprD on the in vivo and in vitro functions of this protein. Native OprD formed very small channels in planar lipid bilayers, with an average single-channel conductance in 1.0 M KCl of 20 pS. When large numbers of OprD channels were incorporated into lipid bilayer membranes, addition of increasing concentrations of imipenem to the bathing solutions resulted in a progressive blocking of the membrane conductance of KCl, indicating the presence of a specific binding site(s) for imipenem in the OprD channel. From these experiments, the concentration of imipenem value of resulting in 50% inhibition of the initial conductance was calculated as approximately 0.6 microM. In contrast, no decrease in channel conductance was observed for the OprDdeltaL2 channel upon addition of up to 2.4 microM imipenem, confirming that external loop 2 was involved in imipenem binding. Deletion of four to eight amino acids from loops 1 and 6 had no effect on antibiotic susceptibility, whereas deletion of eight amino acids from loops 5, 7, and 8 resulted in supersusceptibility to beta-lactams, quinolones, chloramphenicol, and tetracycline. Planar lipid bilayer analysis indicated that the OprDdeltaL5 channel had a 33-fold increase in single-channel conductance in 1 M KCl but had retained its imipenem binding site. The disposition of these loop regions in the interior of the OprD channel is discussed.  相似文献   

19.
Reconstitution experiments were performed on lipid bilayer membranes in the presence of detergent-solubilized mitochondrial outer membranes of a porin-free yeast mutant and of its parent strain. The addition of the detergent-solubilized material resulted in a strong increase in the membrane conductance which was not observed if only the detergent was added to the aqueous phase. Surprisingly, the membrane conductance induced by the detergent extracts of the mutant membrane was only a factor of 20 less than that caused by the outer membrane of the parent strain under otherwise identical conditions. Single-channel recordings of lipid bilayer membranes in the presence of mitochondrial outer membranes of the yeast mutant suggested the presence of a transient pore. The reconstituted pores had a single-channel conductance of 0.21 nS in 0.1 M KCl and the characteristics of general diffusion pores with an estimated effective diameter of 1.2 nm. The pores present in the mitochondrial outer membranes of the yeast mutant shared some similarities with the pores formed by mitochondrial and bacterial porins although their effective diameter is much smaller than those of the 'normal' mitochondrial porins which have a single-channel conductance of about 0.4 nS in 0.1 M KCl, corresponding to an effective diameter of 1.7 nm. Zero-current membrane-potential measurements suggested that the second mitochondrial porin is slightly cation-selective. Its possible role in the metabolism of mitochondria is discussed.  相似文献   

20.
Protein P, an anion-specific channel-forming protein from the outer membrane of Pseudomonas aeruginosa was chemically modified by acetylation and syccinylation of its accessible amino groups. The chemically modified protein retained its ability to form oligomers on sodium dodecyl sulfate polyacrylamide gels, whereas only the acetylated protein formed channels in reconstitution experiments with lipid bilayers. Acetylated protein P demonstrated a substantially reduced mean single channel conductance (25 pS at 1 M KCl) compared to the native protein P channels (250 pS at 1 M KCl) when reconstituted into black lipid bilayer membranes. The homogeneous size distribution of single-channel conductances suggested that all of the protein P molecules had been acetylated. Zero-current potential measurements demonstrated that the acetylated protein P channel was only weakly selective for anions and allowed the permeation of cations, in contrast to the native protein P channels, which were more than 100-fold selective for anions over cations. The dependence of conductance on salt concentration was changed upon acetylation, in that acetylated protein P demonstrated a linear concentration-conductance relationship, whereas native protein P channels became saturated at high salt concentrations. These data strongly suggested that the basis of anion selectivity for native protein P channels is fixed amino groups. In agreement with this, we could demonstrate a 2.5-fold decrease in single-channel conductance between pH 7 and pH 9, between which pH values the epsilon-amino groups of amino acids would start to become deprotonated. Two alternative schemes for the topography of the protein P channel and localization of the fixed amino groups are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号