首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinoic acid, an endogenous metabolite of vitamin A (retinol), possesses striking biological activity akin to a morphogen in developing and regenerating vertebrate limbs. Systemic administration of retinoic acid (RA) to pregnant mammals during the period of limb organogenesis invariably results in dose-dependent dysmorphogenesis. In an attempt to uncover the mode of action of RA in the developing limb bud we analyzed, by HPLC methods, the levels of RA and its metabolic precursor, retinol, in embryonic mouse tissues prior to and following maternal exposure to a teratogenic dose of RA. Detectable levels of both RA and its isomer 13-cis-retinoic acid were found in the limb buds of Day 11 mouse embryos (40 +/- 2 somites). Although retinol was the major retinoid found in ethanolic extracts of either whole embryo or the limb buds, the latter is enriched in RA compared to the whole embryo. This indicated either a higher degree of retinol metabolism or a sequestration of RA in the limb bud compared to the rest of the embryo at this stage of development. A study of the time course of retinoid levels in treated embryos showed that changes occur rapidly, are stable for several hours, and then begin to return to pretreatment levels. After a maternal dose of 10 mg/kg RA, which resulted in a mild degree of limb anomalies, peak RA levels in the limb bud increased 50-fold over the endogenous level; a full 300-fold increase was found after a 100 mg/kg dose which results in 100% incidence of phocomelia. Interestingly, a dose-dependent depression in retinol levels was observed after RA treatment both in maternal plasma as well as the embryo. Studies are in progress to trace the intracellular disposition of both retinol and RA as well as any further active metabolite of RA in the limb buds and other embryonic tissues.  相似文献   

2.
The cellular uptake of vitamin A from its RBP4-bound circulating form (holo-RBP4) is a homeostatic process that evidently depends on the multidomain membrane protein STRA6. In humans, mutations in STRA6 are associated with Matthew-Wood syndrome, manifested by multisystem developmental malformations. Here we addressed the metabolic basis of this inherited disease. STRA6-dependent transfer of retinol from RBP4 into cultured NIH 3T3 fibroblasts was enhanced by lecithin:retinol acyltransferase (LRAT). The retinol transfer was bidirectional, strongly suggesting that STRA6 acts as a retinol channel/transporter. Loss-of-function analysis in zebrafish embryos revealed that Stra6 deficiency caused vitamin A deprivation of the developing eyes. We provide evidence that, in the absence of Stra6, holo-Rbp4 provokes nonspecific vitamin A excess in several embryonic tissues, impairing retinoic acid receptor signaling and gene regulation. These fatal consequences of Stra6 deficiency, including craniofacial and cardiac defects and microphthalmia, were largely alleviated by reducing embryonic Rbp4 levels by morpholino oligonucleotide or pharmacological treatments.  相似文献   

3.
For vertebrate development, vitamin A (all-trans retinol) is required in quantitative different amounts and spatiotemporal distribution for the production of retinoic acid, a nuclear hormone receptor ligand, and 11-cis retinal, the chromophore of visual pigments. We show here for zebrafish that embryonic retinoid homeostasis essentially depends on the activity of a leci-thin:retinol acyltransferase (Lratb). During embryogenesis, lratb is expressed in mostly non-overlapping domains opposite to retinal dehydrogenase 2 (raldh2), the key enzyme for retinoic acid synthesis. Blocking retinyl ester formation by a targeted knock down of Lratb results in significantly increased retinoic acid levels, which lead to severe embryonic patterning defects. Thus, we provide evidence that a balanced competition between Lratb and Raldh2 for yolk vitamin A defines embryonic compartments either for retinyl ester or retinoic acid synthesis. This homeostatic mechanism dynamically adjusts embryonic retinoic acid levels for gene regulation, concomitantly sequestering excess yolk vitamin A in the form of retinyl esters for the establishment of larval vision later during development.  相似文献   

4.
Biochemical studies indicate that alcohol dehydrogenase (ADH) metabolizes retinol to retinal, and that aldehyde dehydrogenase (ALDH) metabolizes retinal to retinoic acid, a molecule essential for growth and development. Summarized herein are several genetic studies supporting in vivo functions for ADH and ALDH in retinoic acid synthesis. Gene targeting was used to create knockout mice for either Adh1 or Adh4. Both knockout mice were viable and fertile without obvious defects. However, when wild-type and Adh4 knockout mice were subjected to vitamin A deficiency during gestation, the survival rate at birth was 3.3-fold lower for Adh4 knockout mice. When adult mice were examined for production of retinoic acid following retinol administration, Adh1 knockout mice exhibited 10-fold lower retinoic acid levels in liver compared with wild-type, whereas Adh4 knockout mice differed from wild-type by less than 2-fold. Thus, Adh1 plays a major role in the metabolism of a large dose of retinol to retinoic acid in adults, whereas Adh4 plays a role in maintaining sufficient retinol metabolism for development during retinol deficiency. ALDHs were examined by overexpression studies in frog embryos. Injection of mRNAs for either mouse Raldh1 or Raldh2 stimulated retinoic acid synthesis in frog embryos at the blastula stage when retinoic acid is normally undetectable. Overexpression of human ALDH2, human ALDH3, and mouse Aldh-pb did not stimulate retinoic acid production. In addition, Raldh2 knockout mice exhibit embryonic lethality with defects in retinoid-dependent tissues. Overall, these studies provide genetic evidence that Adh1, Adh4, Raldh1, and Raldh2 encode retinoid dehydrogenases involved in retinoic acid synthesis in vivo.  相似文献   

5.
Retinol and its metabolites, all-trans retinoic acid and 9-cis retinoid acid, are regulators of cellular growth, differentiation, and development and have been implicated in reproductive processes including folliculogenesis and embryonic survival. Three experiments were conducted to identify effects of retinoid treatment of superovulated ewes upon subsequent in vitro embryonic development. Ewes were treated with all-trans retinol (ROH), all-trans retinoic acid (RA), 9-cis retinoic acid (CIS), or vehicle (Control) on the first and last day of FSH treatment. Embryos were recovered at the morula stage, cultured in vitro for 96 h, and observed for blastocyst formation. Embryos from ROH-treated animals had a higher (p < 0.01) incidence of blastocyst formation than RA-, CIS-, or vehicle-treated animals (72% vs. 27%, 33% and 32%, respectively). In experiment 2, ewes were given ROH or vehicle and treated as above. ROH treatment resulted in an increased percentage of embryos forming blastocysts (70% vs. 22%, p < 0.05). In experiment 3, ewes were treated with ROH or vehicle, and embryos were collected at the 1- to 4-cell stage and cultured for 7 days. ROH treatment resulted in increased blastocyst formation (79% vs. 5%, p < 0.05). The majority of embryos (60% vs. 6%; p < 0.01)) from vehicle-treated animals failed to develop beyond the 8-cell stage in comparison with those from ROH animals. ROH treatment of superovulated ewes increased embryonic viability and positively impacted embryonic development.  相似文献   

6.
The first step in the conversion of vitamin A into retinoic acid (RA) in embryos requires retinol dehydrogenases (RDHs). Recent studies have demonstrated that RDH10 is a critical core component of the machinery that produces RA in mouse and Xenopus embryos. If the conservation of Rdh10 function in the production of RA extends to teleost embryos has not been investigated. Here, we report that zebrafish Rdh10a deficient embryos have defects consistent with loss of RA signaling, including anteriorization of the nervous system and enlarged hearts with increased cardiomyocyte number. While knockdown of Rdh10a alone produces relatively mild RA deficient phenotypes, Rdh10a can sensitize embryos to RA deficiency and enhance phenotypes observed when Aldh1a2 function is perturbed. Moreover, excess Rdh10a enhances embryonic sensitivity to retinol, which has relatively mild teratogenic effects compared to retinal and RA treatment. Performing Rdh10a regulatory expression analysis, we also demonstrate that a conserved teleost rdh10a enhancer requires Pax2 sites to drive expression in the eyes of transgenic embryos. Altogether, our results demonstrate that Rdh10a has a conserved requirement in the first step of RA production within vertebrate embryos.  相似文献   

7.
Vitamin A and its metabolites are known to be involved in patterning the vertebrate embryo. Study of the effect of vitamin A on axial skeletal patterning has been hindered by the fact that deficient embryos do not survive past midgestation. In this study, pregnant vitamin A-deficient rats were maintained on a purified diet containing limiting amounts of all-trans retinoic acid (12 microg atRA/g diet) and given a daily oral bolus dose of retinol starting at embryonic day 0.5, 8.25, 8.5, 8.75, 9.25, 9.5, 9.75, or 10.5. Embryos were recovered at E21.5 for analysis of the skeleton and at earlier times for analysis of select mRNAs. Normal axial skeletal development and patterning were observed in embryos from pregnant animals receiving retinol starting on or before E8.75. Delay of retinol supplementation to E9.5 or later resulted in a marked increase in both occurrence and severity of skeletal malformations, extending from the craniocervical to sacral regions. Embryos from the groups receiving retinol starting at E9.5 and E9.75 had one-vertebral anterior transformations of the cervical, thoracic, lumbar, and sacral vertebrae. Few embryos survived in the E10.5 group, but these embryos yielded the most severe and extensive anteriorization events. The skeletal alterations seen in vitamin A deficiency are associated with posterior shifts in the mesodermal expression of Hoxa-4, Hoxb-3, Hoxd-3, Hoxd-4, and Hoxa-9 mRNAs, whereas the anterior domains of Hoxb-4 and Cdx2 expression are unaltered. This work defines a critical window of development in the late gastrula-stage embryo when vitamin A is essential for normal axial skeletal patterning and shows that vitamin A deficiency causes anterior homeotic transformations extending from the cervical to lumbosacral regions.  相似文献   

8.
Retinoids are important signalling molecules in the development of limbs and in the determination of the anterior-posterior orientation of the embryo. The present study examined the content and distribution of retinoic acid, retinol and retinyl esters in porcine embryos during early gestation (gestation days 22-30) macroscopically and microscopically by its autofluorescence and by HPLC. Macroscopically, the yellowish-greenish autofluorescence characteristic of vitamin A was observed in tissues affected by morphogenesis, such as the limbs, in a spatial and temporal manner. Changes in the intensity of autofluorescence in the limbs paralleled changes in the concentration of retinoids in these structures. In the limbs and the body, retinol, retinyl palmitate, and all-trans-retinoic acid but neither the isomers of all-trans retinoic acid nor other retinoid metabolites were detected. In addition, the distribution of specific retinoid-binding proteins was investigated; these are involved in vitamin A transport, metabolism and signal transduction. Immunoreactive retinol-binding protein as well as cellular retinoic acid binding protein type I were only localised in the mesonephros, while the retinoid X receptor beta was widely distributed in most of the tissues and organs of the embryo throughout the time period investigated. The combination of autofluorescence and HPLC analysis allowed for the first time to attribute the yellowish-greenish autofluorescence in specific regions of the embryo to vitamin A, and offers a method to study the local cellular distribution of retinol and/or retinyl esters as well as their concentrations in embryonic tissues.  相似文献   

9.
Intrauterine growth restriction (IUGR) is commonly observed in human pregnancies and can result in severe clinical outcomes. IUGR is observed in Fetal Alcohol Syndrome (FAS) fetuses as a result of alcohol (ethanol) exposure during pregnancy. To further understand FAS, the severe form of Fetal Alcohol Spectrum Disorder, we performed an extensive quantitative analysis of the effects of ethanol on embryo size utilizing our Xenopus model. Ethanol‐treated embryos exhibited size reduction along the anterior–posterior axis. This effect was evident primarily from the hindbrain caudally, while rostral regions appeared refractive to ethanol‐induced size changes, also known as asymmetric IUGR. Interestingly, some embryo batches in addition to shortening from the hindbrain caudally also exhibited an alcohol‐dependent reduction of the anterior head domain, known as symmetric IUGR. To study the connection between ethanol exposure and reduced retinoic acid levels we treated embryos with the retinaldehyde dehydrogenase inhibitors, DEAB and citral. Inhibition of retinoic acid biosynthesis recapitulated the growth defects induced by ethanol affecting mainly axial elongation from the hindbrain caudally. To study the competition between ethanol clearance and retinoic acid biosynthesis we demonstrated that, co‐exposure to alcohol reduces the teratogenic effects of treatment with retinol (vitamin A), the retinoic acid precursor. These results further support the role of retinoic acid in the regulation of axial elongation.  相似文献   

10.
Cellular retinoic acid-binding protein (CRABP), a potential mediator of retinoic acid action, enables retinoic acid to bind in a specific manner to nuclei and chromatin isolated from testes of control and vitamin A-deficient rats. The binding of retinoic acid was followed after complexing [3H]retinoic acid with CRABP purified from rat testes. The binding was specific, saturable, and temperature dependent. If CRABP charged with nonlabeled retinoic acid was included in the incubation, binding of radioactivity was diminished, whereas inclusion of free retinoic acid, or the complex of retinol with cellular retinol binding protein (CRBP) or serum retinol binding protein had no effect. Approximately 4.0 X 10(4) specific binding sites for retinoic acid were detected per nucleus from deficient animals. The number of binding sites observed was influenced by vitamin A status. Refeeding vitamin A-deficient rats (4 h) with retinoic acid lowered the amount of detectable binding sites in the nucleus. CRABP itself did not remain bound to these sites, indicating a transfer of retinoic acid from its complex with CRABP to the nuclear sites. Further, CRBP, the putative mediator of retinol action, was found to enable retinol to be bound to testicular nuclei, in an interaction similar to the binding of retinol to liver nuclei described previously.  相似文献   

11.
12.
Sertoli and peritubular myoid cells, the somatic cells of the seminiferous tubule, support growth and differentiation of developing germ cells. This action strictly depends on the availability of in situ synthesized retinoic acid and we have previously documented the ability of Sertoli, but not peritubular cell extracts, to support the oxidation of retinol to retinoic acid. Using primary cultures of somatic cells treated with a physiological concentration of free retinol, we show here that the same is essentially true also for whole cultured cells. Sertoli cells are capable of producing not only retinoic acid, but are also the major site of retinyl ester (mainly, retinyl palmitate) formation. Compared with retinyl palmitate accumulation, retinoic acid synthesis was both faster and positively influenced by prior exposure to retinol. This increase in retinoic acid synthesis was further augmented by treatment with the retinoic acid catabolic inhibitor liarozole, thus indicating that enhanced synthesis, rather than reduced catabolism, is responsible for such an effect. Myoid cells had a higher capacity to incorporate exogenously supplied retinol, yet retinoic acid synthesis, and even more so retinyl palmitate formation, were considerably lower than in Sertoli cells. Retinoic acid synthesis in myoid cells was not only depressed, but also very little influenced by prior retinol exposure and totally insensitive to liarozole. These data further support the view that myoid cells are involved in retinol uptake from the blood and its transfer to other cells, rather than in metabolic interconversion or long-term storage of vitamin A, two processes that mainly take place in Sertoli cells.  相似文献   

13.
14.
When isolated confluent corneal endothelial cells were cultured in delipidized serum, a marked reduction in collagen production was observed. Supplementation of such cultures with vitamin A as either retinol or retinoic acid at concentrations of 10?6–10?7, M was capable of significantly increasing collagen production. In addition, when cultured in normal (non-delipidized) serum, both retinol and retinoic acid were capable of further increasing collagen production by corneal endothelial cells. Such augmentation of collagen production was relatively specific as total protein synthesis was not altered to the same extent, nor was it merely a reflection of changes in total cell number, as such cell numbers were similar in all treatment groups.  相似文献   

15.
The enzymes responsible for the rate-limiting step in retinoic acid biosynthesis, the oxidation of retinol to retinaldehyde, during embryogenesis and in adulthood have not been fully defined. Here, we report that a novel member of the short chain dehydrogenase/reductase superfamily, frog sdr16c5, acts as a highly active retinol dehydrogenase (rdhe2) that promotes retinoic acid biosynthesis when expressed in mammalian cells. In vivo assays of rdhe2 function show that overexpression of rdhe2 in frog embryos leads to posteriorization and induction of defects resembling those caused by retinoic acid toxicity. Conversely, antisense morpholino-mediated knockdown of endogenous rdhe2 results in phenotypes consistent with retinoic acid deficiency, such as defects in anterior neural tube closure, microcephaly with small eye formation, disruption of somitogenesis, and curved body axis with bent tail. Higher doses of morpholino induce embryonic lethality. Analyses of retinoic acid levels using either endogenous retinoic acid-sensitive gene hoxd4 or retinoic acid reporter cell line both show that the levels of retinoic acid are significantly decreased in rdhe2 morphants. Taken together, these results provide strong evidence that Xenopus rdhe2 functions as a retinol dehydrogenase essential for frog embryonic development in vivo. Importantly, the retinol oxidizing activity of frog rdhe2 is conserved in its mouse homologs, suggesting that rdhe2-related enzymes may represent the previously unrecognized physiologically relevant retinol dehydrogenases that contribute to retinoic acid biosynthesis in higher vertebrates.  相似文献   

16.
The effects of feeding retinoic acid for 2 and 6 days on the metabolism of labeled retinol in tissues of rats maintained on a vitamin A deficient diet was studied. The metabolites of retinol were analyzed by high performance liquid chromatography. Feeding retinoic acid for 2 days significantly reduced the blood retinol and retinyl ester levels without affecting the vitamin A content of the liver. In intestine and testis the content of labeled retinoic acid was decreased significantly by dietary retinoic acid. Addition of retinoic acid to the diet for 6 days resulted, in addition to decreased blood retinol and retinyl ester values, in an increase in the retinyl ester values in the liver. The accumulation of retinyl ester in the retinoic acid fed rat liver was accompanied by an absence of labeled retinoic acid. Kidney tissue was found to contain the highest levels of labeled retinoic acid, retinol, and retinyl esters; dietary retinoic acid did not alter the concentrations of these retinoids in the kidney during the experimental period. Since kidney retained more vitamin A when the liver vitamin A was low and also dietary retinoic acid did not affect the concentrations of radioactive retinoic acid in the kidney, it is suggested that the kidney may play a major role in the production of retinoic acid from retinol in the body.  相似文献   

17.
The response of bone cells in organ culture to retinol and retinoic acid was studied. Both stimulated incorporation of [3H]thymidine into DNA by 16-day embryonic chick calvaria, but the time-course of the responses differed; the peak responses to retinol and retinoic acid occurred at about 18 h and 48 h, respectively. Although retinol inhibited chick bone collagen synthesis retinoic acid had no effect, but it did stimulate non-collagenous protein synthesis, whereas the effect on the latter of retinol was, if anything, inhibitory. When present with retinol, retinoic acid was able to attenuate the inhibitory effect of the former on chick bone collagen synthesis, but preincubation with retinoic acid had no such effect. In neonatal murine calvarial cultures, retinoic acid inhibited collagen synthesis selectively in the same manner as did retinol. The ability of chick osteoblasts to respond differently to retinol and retinoic acid suggests that both forms of the vitamin may have a role in bone formation and that their intracellular models of action may differ although the attenuation response indicates there may be some interaction between the two.  相似文献   

18.
Biochemical studies indicate that alcohol dehydrogenase (ADH) metabolizes retinol to retinal, and that aldehyde dehydrogenase (ALDH) metabolizes retinal to retinoic acid, a molecule essential for growth and development. Summarized herein are several genetic studies supporting in vivo functions for ADH and ALDH in retinoic acid synthesis. Gene targeting was used to create knockout mice for either Adh1 or Adh4. Both knockout mice were viable and fertile without obvious defects. However, when wild-type and Adh4 knockout mice were subjected to vitamin A deficiency during gestation, the survival rate at birth was 3.3-fold lower for Adh4 knockout mice. When adult mice were examined for production of retinoic acid following retinol administration, Adh1 knockout mice exhibited 10-fold lower retinoic acid levels in liver compared with wild-type, whereas Adh4 knockout mice differed from wild-type by less than 2-fold. Thus, Adh1 plays a major role in the metabolism of a large dose of retinol to retinoic acid in adults, whereas Adh4 plays a role in maintaining sufficient retinol metabolism for development during retinol deficiency. ALDHs were examined by overexpression studies in frog embryos. Injection of mRNAs for either mouse Raldh1 or Raldh2 stimulated retinoic acid synthesis in frog embryos at the blastula stage when retinoic acid is normally undetectable. Overexpression of human ALDH2, human ALDH3, and mouse Aldh-pb did not stimulate retinoic acid production. In addition, Raldh2 knockout mice exhibit embryonic lethality with defects in retinoid-dependent tissues. Overall, these studies provide genetic evidence that Adh1, Adh4, Raldh1, and Raldh2 encode retinoid dehydrogenases involved in retinoic acid synthesis in vivo.  相似文献   

19.
The effects of excess retinol (vitamin A alcohol) on facial process formation were examined in cultured rat embryos. The embryos were explanted at day 11 of gestation (plug day = 0) and cultured for 72 hr in rat serum containing an additional 1 or 10 micrograms/ml retinol. The reduction of outgrowth in the facial processes was observed in 1 microgram/ml retinol-treated embryos, and this type of malformation was found to be more severe in 10 micrograms/ml retinol-treated embryos. Histological findings of 10 micrograms/ml retinol-treated embryos at the 50-somite stage showed that the nasal epithelium was developed but folded. In the mesenchyme, there were necrotic cells. Thymidine incorporation by mesenchymal cells in the facial processes was also determined. At the 50-somite stage, the uptake was decreased to 66.4% of control value at 1 microgram/ml retinol, whereas the addition of the same dose of retinol did not cause the inhibition at the 36-, 40-, and 42-somite stages. The uptake at the 50-somite stage was decreased to 23.0% as a result of the 10 micrograms/ml retinol treatment. These results show that the response of the facial mesenchyme to excess retinol is dependent on the development stage and the critical stage of the facial mesenchyme for excess retinol in cultured rat embryos is the 42-somite stage.  相似文献   

20.
Adh4, a member of the mouse alcohol dehydrogenase (ADH) gene family, encodes an enzyme that functions in vitro as a retinol dehydrogenase in the conversion of retinol to retinoic acid, an important developmental signaling molecule. To explore the role of Adh4 in retinoid signaling in vivo, gene targeting was used to create a null mutation at the Adh4 locus. Homozygous Adh4 mutant mice were viable and fertile and demonstrated no obvious defects when maintained on a standard mouse diet. However, when subjected to vitamin A deficiency during gestation, Adh4 mutant mice demonstrated a higher number of stillbirths than did wild‐type mice. The proportion of liveborn second generation vitamin A‐deficient newborn mice was only 15% for Adh4 mutant mice but 49% for wild‐type mice. After retinol administration to vitamin A‐deficient dams in order to rescue embryonic development, Adh4 mutant mice demonstrated a higher resorption rate at stage E12.5 (69%), compared with wild‐type mice (30%). The relative ability of Adh4 mutant and wild‐type mice to metabolize retinol to retinoic acid was measured after administration of a 100‐mg/kg dose of retinol. Whereas kidney retinoic acid levels were below the level of detection in all vehicle‐treated mice (<1 pmol/g), retinol treatment resulted in very high kidney retinoic acid levels in wild‐type mice (273 pmol/g) but 8‐fold lower levels in Adh4 mutant mice (32 pmol/g), indicating a defect in metabolism of retinol to retinoic acid. These findings demonstrate that another retinol dehydrogenase can compensate for a lack of Adh4 when vitamin A is sufficient, but that Adh4 helps optimize retinol utilization under conditions of both retinol deficiency and excess. Dev. Genet. 25:1–10, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号