首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao W  Li H  Hou W  Wu R 《Genetics》2007,176(3):1879-1892
The biological and statistical advantages of functional mapping result from joint modeling of the mean-covariance structures for developmental trajectories of a complex trait measured at a series of time points. While an increased number of time points can better describe the dynamic pattern of trait development, significant difficulties in performing functional mapping arise from prohibitive computational times required as well as from modeling the structure of a high-dimensional covariance matrix. In this article, we develop a statistical model for functional mapping of quantitative trait loci (QTL) that govern the developmental process of a quantitative trait on the basis of wavelet dimension reduction. By breaking an original signal down into a spectrum by taking its averages (smooth coefficients) and differences (detail coefficients), we used the discrete Haar wavelet shrinkage technique to transform an inherently high-dimensional biological problem into its tractable low-dimensional representation within the framework of functional mapping constructed by a Gaussian mixture model. Unlike conventional nonparametric modeling of wavelet shrinkage, we incorporate mathematical aspects of developmental trajectories into the smooth coefficients used for QTL mapping, thus preserving the biological relevance of functional mapping in formulating a number of hypothesis tests at the interplay between gene actions/interactions and developmental patterns for complex phenotypes. This wavelet-based parametric functional mapping has been statistically examined and compared with full-dimensional functional mapping through simulation studies. It holds great promise as a powerful statistical tool to unravel the genetic machinery of developmental trajectories with large-scale high-dimensional data.  相似文献   

2.

Background

Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles depending on their parental origins, has been widely observed in nature. It has been shown recently that the epigenetic modification of an imprinted gene can be detected through a genetic mapping approach. Such an approach is developed based on traditional quantitative trait loci (QTL) mapping focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals play an important role in controlling embryonic growth and post-natal development. For a developmental character such as growth, current approach is less efficient in dissecting the dynamic genetic effect of imprinted genes during individual ontology.

Results

Functional mapping has been emerging as a powerful framework for mapping quantitative trait loci underlying complex traits showing developmental characteristics. To understand the genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the functional mapping approach with genomic imprinting. We demonstrate the approach through mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical behavior of the approach is shown through simulation studies, in which the parameters can be estimated with reasonable precision under different simulation scenarios. The utility of the approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse body weight.

Conclusion

The functional iQTL mapping approach developed here provides a quantitative and testable framework for assessing the interplay between imprinted genes and a developmental process, and will have important implications for elucidating the genetic architecture of imprinted traits.  相似文献   

3.
The identification of imprinted genes is becoming a standard procedure in searching for quantitative trait loci (QTL) underlying complex traits. When a developmental characteristic such as growth or drug response is observed at multiple time points, understanding the dynamics of gene function governing the underlying feature should provide more biological information regarding the genetic control of an organism. Recognizing that differential imprinting can be development-specific, mapping imprinted genes considering the dynamic imprinting effect can provide additional biological insights into the epigenetic control of a complex trait. In this study, we proposed a Bayesian imprinted QTL (iQTL) mapping framework considering the dynamics of imprinting effects and model multiple iQTLs with an efficient Bayesian model selection procedure. The method overcomes the limitation of likelihood-based mapping procedure, and can simultaneously identify multiple iQTLs with different gene action modes across the whole genome with high computational efficiency. An inference procedure using Bayes factors to distinguish different imprinting patterns of iQTL was proposed. Monte Carlo simulations were conducted to evaluate the performance of the method. The utility of the approach was illustrated through an analysis of a body weight growth data set in an F(2) family derived from LG/J and SM/J mouse stains. The proposed Bayesian mapping method provides an efficient and computationally feasible framework for genome-wide multiple iQTL inference with complex developmental traits.  相似文献   

4.
S. Xu  W. R. Atchley 《Genetics》1996,143(3):1417-1424
A composite interval gene mapping procedure for complex binary disease traits is proposed in this paper. The binary trait of interest is assumed to be controlled by an underlying liability that is normally distributed. The liability is treated as a typical quantitative character and thus described by the usual quantitative genetics model. Translation from the liability into a binary (disease) phenotype is through the physiological threshold model. Logistic regression analysis is employed to estimate the effects and locations of putative quantitative trait loci (our terminology for a single quantitative trait locus is QTL while multiple loci are referred to as QTLs). Simulation studies show that properties of this mapping procedure mimic those of the composite interval mapping for normally distributed data. Potential utilization of the QTL mapping procedure for resolving alternative genetic models (e.g., single- or two-trait-locus model) is discussed.  相似文献   

5.
Yang R  Gao H  Wang X  Zhang J  Zeng ZB  Wu R 《Genetics》2007,177(3):1859-1870
Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval mapping. Within this so-called composite functional-mapping framework, functional mapping models the time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful parametric function, whereas composite interval mapping models the time-dependent genetic effects of the markers outside the test interval to control the genome background using a flexible nonparametric approach based on Legendre polynomials. Such a semiparametric framework was formulated by a maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the test of the mathematical parameters that define the QTL effects and the regression coefficients of the Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate the statistical behavior of composite functional mapping and compare its advantage in separating multiple linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the same chromosome, that control the developmental trajectory of leaf age.  相似文献   

6.
Functional mapping is a statistical method for mapping quantitative trait loci (QTLs) that regulate the dynamic pattern of a biological trait. This method integrates mathematical aspects of biological complexity into a mixture model for genetic mapping and tests the genetic effects of QTLs by comparing genotype-specific curve parameters. As a way of quantitatively specifying the dynamic behavior of a system, differential equations have proven to be powerful for modeling and unraveling the biochemical, molecular, and cellular mechanisms of a biological process, such as biological rhythms. The equipment of functional mapping with biologically meaningful differential equations provides new insights into the genetic control of any dynamic processes. We formulate a new functional mapping framework for a dynamic biological rhythm by incorporating a group of ordinary differential equations (ODE). The Runge-Kutta fourth order algorithm was implemented to estimate the parameters that define the system of ODE. The new model will find its implications for understanding the interplay between gene interactions and developmental pathways in complex biological rhythms.  相似文献   

7.
Functional mapping is a statistical method for mapping quantitative trait loci (QTLs) that regulate the dynamic pattern of a biological trait. This method integrates mathematical aspects of biological complexity into a mixture model for genetic mapping and tests the genetic effects of QTLs by comparing genotype-specific curve parameters. As a way of quantitatively specifying the dynamic behaviour of a system, differential equations have proved to be powerful for modelling and unravelling the biochemical, molecular, and cellular mechanisms of a biological process, such as biological rhythms. The equipment of functional mapping with biologically meaningful differential equations provides new insights into the genetic control of any dynamic processes. We formulate a new functional mapping framework for a dynamic biological rhythm by incorporating a group of ordinary differential equations (ODE). The Runge–Kutta fourth-order algorithm was implemented to estimate the parameters that define the system of ODE. The new model will find its implications for understanding the interplay between gene interactions and developmental pathways in complex biological rhythms.  相似文献   

8.
Understanding how an organism develops into a fully functioning adult from a mass of undifferentiated cells may reveal different strategies that allow the organism to survive under limiting conditions. Here, we review an analytical model for characterizing quantitative trait loci (QTLs) that underlie variation in growth trajectories and developmental timing. This model, called functional mapping, incorporates fundamental principles behind biological processes or networks that are bridged with mathematical functions into a statistical mapping framework. Functional mapping estimates parameters that determine the shape and function of a particular biological process, thus providing a flexible platform to test biologically meaningful hypotheses regarding the complex relationships between gene action and development.  相似文献   

9.
Xiong M  Fan R  Jin L 《Human heredity》2002,53(3):158-172
As a dense map of single nucleotide polymorphism (SNP) markers are available, population-based linkage disequilibrium (LD) mapping or association study is becoming one of the major tools for identifying quantitative trait loci (QTL) and for fine gene mapping. However, in many cases, LD between the marker and trait locus is not very strong. Approaches that maximize the potential of detecting LD will be essential for the success of LD mapping of QTL. In this paper, we propose two strategies for increasing the probability of detecting LD: (1) phenotypic selection and (2) haplotype LD mapping. To provide the foundations for LD mapping of QTL under selection, we develop analytic tools for assessing the impact of phenotypic selection on allele and haplotype frequencies, and LD under three trait models: single trait locus, two unlinked trait loci, and two linked trait loci with or without epistasis. In addition to a traditional chi(2) test, which compares the difference in allele or haplotype frequencies in the selected sample and population sample, we present multiple regression methods for LD mapping of QTL, and investigate which methods are effective in employing phenotypic selection for QTL mapping. We also develop a statistical framework for investigating and comparing the power of the single marker and multilocus haplotype test for LD mapping of QTL. Finally, the proposed methods are applied to mapping QTL influencing variation in systolic blood pressure in an isolated Chinese population.  相似文献   

10.
Li H  Huang Z  Gai J  Wu S  Zeng Y  Li Q  Wu R 《PloS one》2007,2(11):e1245
Although ontogenetic changes in body shape and its associated allometry has been studied for over a century, essentially nothing is known about their underlying genetic and developmental mechanisms. One of the reasons for this ignorance is the unavailability of a conceptual framework to formulate the experimental design for data collection and statistical models for data analyses. We developed a framework model for unraveling the genetic machinery for ontogenetic changes of allometry. The model incorporates the mathematical aspects of ontogenetic growth and allometry into a maximum likelihood framework for quantitative trait locus (QTL) mapping. As a quantitative platform, the model allows for the testing of a number of biologically meaningful hypotheses to explore the pleiotropic basis of the QTL that regulate ontogeny and allometry. Simulation studies and real data analysis of a live example in soybean have been performed to investigate the statistical behavior of the model and validate its practical utilization. The statistical model proposed will help to study the genetic architecture of complex phenotypes and, therefore, gain better insights into the mechanistic regulation for developmental patterns and processes in organisms.  相似文献   

11.
The development of an organism represents a complex dynamic process, which is controlled by a network of genes and multiple environmental factors. Programmed cell death (PCD), a physiological cell suicide process, occurs during the development of most organisms and is, typically, a complex dynamic trait. Understanding how genes control this complex developmental process has been a long-standing topic in PCD studies. In this article, we propose a nonparametric model, based on orthogonal Legendre polynomials, to map genes or quantitative trait loci (QTLs) that govern the dynamic features of the PCD process. The model is built under the maximum likelihood-based functional mapping framework and is implemented with the EM algorithm. A general information criterion is proposed for selecting the optimal Legendre order that best fits the dynamic pattern of the PCD process. The consistency of the order selection criterion is established. A nonstationary structured antedependence model (SAD) is applied to model the covariance structure among the phenotypes measured at different time points. The developed model generates a number of hypothesis tests regarding the genetic control mechanism of the PCD process. Extensive simulation studies are conducted to investigate the statistical behavior of the model. Finally, we apply the model to a rice tiller number data set in which several QTLs are identified. The developed model provides a quantitative and testable framework for assessing the interplay between genes and the developmental PCD process, and will have great implications for elucidating the genetic architecture of the PCD process.  相似文献   

12.
ABSTRACT: BACKGROUND: Although many experiments have measurements on multiple traits, most studies performed the analysis of mapping of quantitative trait loci (QTL) for each trait separately using single trait analysis. Single trait analysis does not take advantage of possible genetic and environmental correlations between traits. In this paper, we propose a novel statistical method for multiple trait multiple interval mapping (MTMIM) of QTL for inbred line crosses. We also develop a novel score-based method for estimating genome-wide significance level of putative QTL effects suitable for the MTMIM model. The MTMIM method is implemented in the freely available and widely used Windows QTL Cartographer software. RESULTS: Throughout the paper, we provide compelling empirical evidences that: (1) the score-based threshold maintains proper type I error rate and tends to keep false discovery rate within an acceptable level; (2) the MTMIM method can deliver better parameter estimates and power than single trait multiple interval mapping method; (3) an analysis of Drosophila dataset illustrates how the MTMIM method can better extract information from datasets with measurements in multiple traits. CONCLUSIONS: The MTMIM method represents a convenient statistical framework to test hypotheses of pleiotropic QTL versus closely linked nonpleiotropic QTL, QTL by environment interaction, and to estimate the total genotypic variance-covariance matrix between traits and to decompose it in terms of QTL-specific variance-covariance matrices, therefore, providing more details on the genetic architecture of complex traits.  相似文献   

13.
Hitherto, most quantitative trait loci of maize growth and biomass yield have been identified for a single time point, usually the final harvest stage. Through this approach cumulative effects are detected, without considering genetic factors causing phase‐specific differences in growth rates. To assess the genetics of growth dynamics, we employed automated non‐invasive phenotyping to monitor the plant sizes of 252 diverse maize inbred lines at 11 different developmental time points; 50 k SNP array genotype data were used for genome‐wide association mapping and genomic selection. The heritability of biomass was estimated to be over 71%, and the average prediction accuracy amounted to 0.39. Using the individual time point data, 12 main effect marker‐trait associations (MTAs) and six pairs of epistatic interactions were detected that displayed different patterns of expression at various developmental time points. A subset of them also showed significant effects on relative growth rates in different intervals. The detected MTAs jointly explained up to 12% of the total phenotypic variation, decreasing with developmental progression. Using non‐parametric functional mapping and multivariate mapping approaches, four additional marker loci affecting growth dynamics were detected. Our results demonstrate that plant biomass accumulation is a complex trait governed by many small effect loci, most of which act at certain restricted developmental phases. This highlights the need for investigation of stage‐specific growth affecting genes to elucidate important processes operating at different developmental phases.  相似文献   

14.
A statistical framework for expression quantitative trait loci mapping   总被引:1,自引:0,他引:1  
Chen M  Kendziorski C 《Genetics》2007,177(2):761-771
  相似文献   

15.
Xiao J  Wang X  Hu Z  Tang Z  Xu C 《Heredity》2007,98(6):427-435
Segregation analysis is a method of detecting major genes for quantitative traits without using marker information. It serves as an important tool in helping investigators to plan further studies such as quantitative trait loci mapping or more sophisticated genomic analyses. However, current methods of segregation analysis for a single trait typically have low statistical power. We propose a multivariate segregation analysis (MSA) that takes advantage of the correlation structure of multiple quantitative traits to detect major genes. This method not only increases the statistical power, but allows dissection of the genetic architecture underlying the trait complex. In MSA the observed phenotypes of multiple correlated traits are fitted to a multivariate Gaussian mixture model. Model parameters are estimated under the maximum likelihood framework via the expectation-maximization algorithm. The presence of major genes is tested using likelihood ratio test statistics. Pleiotropy is distinguished from close linkage by comparing three possible models using the Bayesian information criterion. Two simulation experiments were performed based on the F(2) mating design. In the first, the statistical properties of MSA under varying heritabilities and sample sizes were investigated and the results compared with those obtained from single-trait analysis. In the second simulation the efficacy of MSA in separating pleiotropy from close linkage was demonstrated. Finally, the new method was applied to real data and detected a major gene responsible for both plant height and tiller number in rice.  相似文献   

16.
Hou W  Li H  Zhang B  Huang M  Wu R 《Heredity》2008,101(4):321-328
Functional mapping has emerged as a next-generation statistical tool for mapping quantitative trait loci (QTL) that affect complex dynamic traits. In this article, we incorporated the idea of nonlinear mixed-effect (NLME) models into the mixture-based framework of functional mapping, aimed to generalize the spectrum of applications for functional mapping. NLME-based functional mapping, implemented with the linearization algorithm based on the first-order Taylor expansion, can provide reasonable estimates of QTL genotypic-specific curve parameters (fixed effect) and the between-individual variation of these parameters (random effect). Results from simulation studies suggest that the NLME-based model is more general than traditional functional mapping. The new model can be useful for the identification of the ontogenetic patterns of QTL genetic effects during time course.  相似文献   

17.
Yi N 《Genetics》2004,167(2):967-975
In this article, a unified Markov chain Monte Carlo (MCMC) framework is proposed to identify multiple quantitative trait loci (QTL) for complex traits in experimental designs, based on a composite space representation of the problem that has fixed dimension. The proposed unified approach includes the existing Bayesian QTL mapping methods using reversible jump MCMC algorithm as special cases. We also show that a variety of Bayesian variable selection methods using Gibbs sampling can be applied to the composite model space for mapping multiple QTL. The unified framework not only results in some new algorithms, but also gives useful insight into some of the important factors governing the performance of Gibbs sampling and reversible jump for mapping multiple QTL. Finally, we develop strategies to improve the performance of MCMC algorithms.  相似文献   

18.
Summary .  In linkage analysis, it is often necessary to include covariates such as age or weight to increase power or avoid spurious false positive findings. However, if a covariate term in the model is specified incorrectly (e.g., a quadratic term misspecified as a linear term), then the inclusion of the covariate may adversely affect power and accuracy of the identification of quantitative trait loci (QTL). Furthermore, some covariates may interact with each other in a complicated fashion. We implement semiparametric models for single and multiple QTL mapping. Both mapping methods include an unspecified function of any covariate found or suspected to have a more complex than linear but unknown relationship with the response variable. They also allow for interactions among different covariates. This analysis is performed in a Bayesian inference framework using Markov chain Monte Carlo. The advantages of our methods are demonstrated via extensive simulations and real data analysis.  相似文献   

19.
Drought often delays developmental events so that plant height and above-ground biomass are reduced, resulting in yield loss due to inadequate photosynthate. In this study, plant height and biomass measured by the Normalized Difference Vegetation Index (NDVI) were used as criteria for drought tolerance. A total of 305 lines representing temperate, tropical and subtropical maize germplasm were genotyped using two single nucleotide polymorphism (SNP) chips each containing 1536 markers, from which 2052 informative SNPs and 386 haplotypes each constructed with two or more SNPs were used for linkage disequilibrium (LD) or association mapping. Single SNP- and haplotype-based LD mapping identified two significant SNPs and three haplotype loci [a total of four quantitative trait loci (QTL)] for plant height under well-watered and water-stressed conditions. For biomass, 32 SNPs and 12 haplotype loci (30 QTL) were identified using NDVIs measured at seven stages under the two water regimes. Some significant SNP and haplotype loci for NDVI were shared by different stages. Comparing significant loci identified by single SNP- and haplotype-based LD mapping, we found that six out of the 14 chromosomal regions defined by haplotype loci each included at least one significant SNP for the same trait. Significant SNP haplotype loci explained much higher phenotypic variation than individual SNPs. Moreover, we found that two significant SNPs (two QTL) and one haplotype locus were shared by plant height and NDVI. The results indicate the power of comparative LD mapping using single SNPs and SNP haplotypes with QTL shared by plant height and biomass as secondary traits for drought tolerance in maize.  相似文献   

20.
A fundamentally new approach to gene mapping of complex traits was suggested recently. It consists in computer analysis of existing databases on the phenotypes and single nucleotide polymorphisms (SNPs) in inbred mouse strains and was termed in silico mapping. The power of this method has been studied by simulating quantitative traits controlled by one, two, or three genes. The results have demonstrated that the power of in silico mapping is high in the case of a monogenic trait. The probability of mapping all genes determining a digenic or, especially, trigenic trait is low. If two or three genes make equal phenotypic contributions to a trait, the proportions of experiments where none of them is localized are 17 and 25%, respectively. In the case of a major gene effect, when the phenotypic contribution of one gene considerably exceeds those of the other genes, the probability to map the major gene is 0.95 and 0.80 for the digenic and trigenic models, respectively. This shows that, in the case of polygenic control, the new method could localize only the genes with major effects, while most genes involved in the control of the trait would not be mapped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号