共查询到20条相似文献,搜索用时 0 毫秒
1.
QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations 总被引:7,自引:0,他引:7
SUMMARY: QTLNetwork is a software package for mapping and visualizing the genetic architecture underlying complex traits for experimental populations derived from a cross between two inbred lines. It can simultaneously map quantitative trait loci (QTL) with individual effects, epistasis and QTL-environment interaction. Currently, it is able to handle data from F(2), backcross, recombinant inbred lines and double-haploid populations, as well as populations from specific mating designs (immortalized F(2) and BC(n)F(n) populations). The Windows version of QTLNetwork was developed with a graphical user interface. Alternatively, the command-line versions have the facility to be run in other prevalent operating systems, such as Linux, Unix and MacOS. AVAILABILITY: http://ibi.zju.edu.cn/software/qtlnetwork. 相似文献
2.
Positional cloning requires high-resolution genetic mapping. To plan a positional cloning project, one needs to know how many informative meioses will be required to narrow the search for a disease gene to an acceptably small region. For a simple Mendelian trait studied with linkage analysis, the answer is straightforward. In this paper, we address the situation of a complex trait studied with affected-relative-pair methods. We derive mathematical formulas for the size of an appropriate confidence region, as a function of the relative risk attributable to the gene. Using these results, we provide graphs showing the number of relative pairs required to narrow the gene hunt to an interval of a given size. For example, we show that localizing a gene to 1 cM requires a median of 200 sib pairs for a locus causing a fivefold increased risk to an offspring and 700 sib pairs for a locus causing a twofold increased risk. We discuss the implications of these results for the positional cloning of genes underlying complex traits. 相似文献
3.
Functional mapping has been a powerful tool in mapping quantitative trait loci (QTL) underlying dynamic traits of agricultural or biomedical interest. In functional mapping, multivariate normality is often assumed for the underlying data distribution, partially due to the ease of parameter estimation. The normality assumption however could be easily violated in real applications due to various reasons such as heavy tails or extreme observations. Departure from normality has negative effect on testing power and inference for QTL identification. In this work, we relax the normality assumption and propose a robust multivariate t-distribution mapping framework for QTL identification in functional mapping. Simulation studies show increased mapping power and precision with the t distribution than that of a normal distribution. The utility of the method is demonstrated through a real data analysis. 相似文献
4.
Analysis of quantitative trait loci (QTL) affecting complex traits is often pursued in single-cross experiments. For most purposes, including breeding, some assessment is desired of the generalizability of the QTL findings and of the overall genetic architecture of the trait. Single-cross experiments provide a poor basis for these purposes, as comparison across experiments is hampered by segregation of different allelic combinations among different parents and by context-dependent effects of QTL. To overcome this problem, we combined the benefits of QTL analysis (to identify genomic regions affecting trait variation) and classic diallel analysis (to obtain insight into the general inheritance of the trait) by analyzing multiple mapping families that are connected via shared parents. We first provide a theoretical derivation of main (general combining ability (GCA)) and interaction (specific combining ability (SCA)) effects on F(2) family means relative to variance components in a randomly mating reference population. Then, using computer simulations to generate F(2) families derived from 10 inbred parents in different partial-diallel designs, we show that QTL can be detected and that the residual among-family variance can be analyzed. Standard diallel analysis methods are applied in order to reveal the presence and mode of action (in terms of GCA and SCA) of undetected polygenes. Given a fixed experiment size (total number of individuals), we demonstrate that QTL detection and estimation of the genetic architecture of polygenic effects are competing goals, which should be explicitly accounted for in the experimental design. Our approach provides a general strategy for exploring the genetic architecture, as well as the QTL underlying variation in quantitative traits. 相似文献
5.
SUMMARY: Understanding how interactions among set of genes affect diverse phenotypes is having a greater impact on biomedical research, agriculture and evolutionary biology. Mapping and characterizing the isolated effects of single quantitative trait locus (QTL) is a first step, but we also need to assemble networks of QTLs and define non-additive interactions (epistasis) together with a host of potential environmental modulators. In this article, we present a full-QTL model with which to explore the genetic architecture of complex trait in multiple environments. Our model includes the effects of multiple QTLs, epistasis, QTL-by-environment interactions and epistasis-by-environment interactions. A new mapping strategy, including marker interval selection, detection of marker interval interactions and genome scans, is used to evaluate putative locations of multiple QTLs and their interactions. All the mapping procedures are performed in the framework of mixed linear model that are flexible to model environmental factors regardless of fix or random effects being assumed. An F-statistic based on Henderson method III is used for hypothesis tests. This method is less computationally greedy than corresponding likelihood ratio test. In each of the mapping procedures, permutation testing is exploited to control for genome-wide false positive rate, and model selection is used to reduce ghost peaks in F-statistic profile. Parameters of the full-QTL model are estimated using a Bayesian method via Gibbs sampling. Monte Carlo simulations help define the reliability and efficiency of the method. Two real-world phenotypes (BXD mouse olfactory bulb weight data and rice yield data) are used as exemplars to demonstrate our methods. AVAILABILITY: A software package is freely available at http://ibi.zju.edu.cn/software/qtlnetwork 相似文献
6.
Twins. Novel uses to study complex traits and genetic diseases 总被引:9,自引:0,他引:9
The challenge faced by research into the genetic basis of complex disease is to identify genes of small relative effect against a background of substantial genetic and environmental variation. This has focused interest on a classical epidemiological design: the study of twins. Through their precise matching for age, the common family environment and background environmental variation, studying diseases in non-identical twins provides a means to enhance the power of conventional strategies to detect genetic influence through linkage and association. The unique matching of identical twins provides researchers with ways to isolate the function of individual genes involved in disease together with approaches to understanding how genes and the environment interact. 相似文献
7.
George AW Basu S Li N Rothstein JH Sieberts SK Stewart W Wijsman EM Thompson EA 《BMC genetics》2003,4(Z1):S71
Our Markov chain Monte Carlo (MCMC) methods were used in linkage analyses of the Framingham Heart Study data using all available pedigrees. Our goal was to detect and map loci associated with covariate-adjusted traits log triglyceride (lnTG) and high-density lipoprotein cholesterol (HDL) using multipoint LOD score analysis, Bayesian oligogenic linkage analysis and identity-by-descent (IBD) scoring methods. Each method used all marker data for all markers on a chromosome. Bayesian linkage analysis detected a linkage signal on chromosome 7 for lnTG and HDL, corroborating previously published results. However, these results were not replicated in a classical linkage analysis of the data or by using IBD scoring methods.We conclude that Bayesian linkage analysis provides a powerful paradigm for mapping trait loci but interpretation of the Bayesian linkage signals is subjective. In the absence of a LOD score method accommodating genetically complex traits and linkage heterogeneity, validation of these signals remains elusive. 相似文献
8.
9.
Lin Chen Chunhui Li Yongxiang Li Yanchun Song Dengfeng Zhang Tianyu Wang Yu Li Yunsu Shi 《Molecular breeding : new strategies in plant improvement》2016,36(9):134
Improving grain yield is the ultimate goal of the maize-breeding programs. In this study, analyses of conditional and unconditional quantitative trait locus (QTL) and epistatic interactions were used to elucidate the genetic architecture of yield and its related traits. A total of 15 traits of a recombinant inbred line population, including yield per plant (YPP), seven ear-related traits, and seven kernel-related traits, were measured in six different environments. Based on the genetic linkage map constructed using 2091 bins as markers, 56 main-effect QTLs for these traits were identified. These QTLs were distributed across eight genomic regions (bin 1.06, bin 4.02/4.05/4.08, bin 5.04, bin 7.04, bin 8.08, and bin 9.04), within the marker intervals of 85.45–6260.66 kb, and the phenotypic variance explained ranging from 5.69 to 11.56 %. One gene (GRMZM2G168229) encoding SBP-box domain protein was located in the small interval of qKRN4-3 and may be involved in patterning of kernel row number. Seventeen conditional QTLs identified for YPP were conditioned on its related traits and explained 6.18–23.15 % of the phenotypic variance. Conditional mapping analysis revealed that qYPP4-1, qYPP6-1, and qYPP8-1 are partially influenced by YPP-related traits at the individual QTL level. Digenic epistatic analysis identified 12 digenic interactions involving 22 loci across the whole genome. In addition, conditional digenic epistatic analysis identified 14 digenic interactions involving 21 loci. This study provides valuable information for understanding the genetic relationship between YPP and related traits and constitutes the first step toward the cloning of the relevant genes. 相似文献
10.
11.
Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping 总被引:2,自引:0,他引:2
Chaoshu Zhang Zhiqiang Zhou Hongjun Yong Xiaochong Zhang Zhuanfang Hao Fangjun Zhang Mingshun Li Degui Zhang Xinhai Li Zhenhua Wang Jianfeng Weng 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2017,130(5):1011-1029
Key message
Using combined linkage and association mapping, 26 stable QTL and six stable SNPs were detected across multiple environments for eight ear and grain morphological traits in maize. One QTL, PKS2, might play an important role in maize yield improvement.Abstract
In the present study, one bi-parental population and an association panel were used to identify quantitative trait loci (QTL) for eight ear and grain morphological traits. A total of 108 QTL related to these traits were detected across four environments using an ultra-high density bin map constructed using recombinant inbred lines (RILs) derived from a cross between Ye478 and Qi319, and 26 QTL were identified in more than two environments. Furthermore, 64 single nucleotide polymorphisms (SNPs) were found to be significantly associated with the eight ear and grain morphological traits (?log10(P)?>?4) in an association panel of 240 maize inbred lines. Combining the two mapping populations, a total of 17 pleiotropic QTL/SNPs (pQTL/SNPs) were associated with various traits across multiple environments. PKS2, a stable locus influencing kernel shape identified on chromosome 2 in a genome-wide association study (GWAS), was within the QTL confidence interval defined by the RILs. The candidate region harbored a short 13-Kb LD block encompassing four SNPs (SYN11386, PHM14783.16, SYN11392, and SYN11378). In the association panel, 13 lines derived from the hybrid PI78599 possessed the same allele as Qi319 at the PHM14783.16 (GG) locus, with an average value of 0.21 for KS, significantly lower than that of the 34 lines derived from Ye478 that carried a different allele (0.25, P?<?0.05). Therefore, further fine mapping of PKS2 will provide valuable information for understanding the genetic components of grain yield and improving molecular marker-assisted selection (MAS) in maize.12.
Weber AL Briggs WH Rucker J Baltazar BM de Jesús Sánchez-Gonzalez J Feng P Buckler ES Doebley J 《Genetics》2008,180(2):1221-1232
Previous association analyses showed that variation at major regulatory genes contributes to standing variation for complex traits in Balsas teosinte, the progenitor of maize. This study expands our previous association mapping effort in teosinte by testing 123 markers in 52 candidate genes for association with 31 traits in a population of 817 individuals. Thirty-three significant associations for markers from 15 candidate genes and 10 traits survive correction for multiple testing. Our analyses suggest several new putative causative relationships between specific genes and trait variation in teosinte. For example, two ramosa genes (ra1 and ra2) associate with ear structure, and the MADS-box gene, zagl1, associates with ear shattering. Since zagl1 was previously shown to be a target of selection during maize domestication, we suggest that this gene was under selection for its effect on the loss of ear shattering, a key domestication trait. All observed effects were relatively small in terms of the percentage of phenotypic variation explained (<10%). We also detected several epistatic interactions between markers in the same gene that associate with the same trait. Candidate-gene-based association mapping appears to be a promising method for investigating the inheritance of complex traits in teosinte. 相似文献
13.
Yi Liu Yongxin Liu Yingjie Liu Xiaoyan Zhang Fei Si Zhaohui Sun Guixing Wang Yufen Wang Runqing Yang Haijin Liu 《Biologia》2013,68(6):1221-1228
A genetic linkage map of Japanese flounder was constructed using 165 doubled haploids (DHs) derived from a single female. A total of 574 genomic microsatellites (type II SSRs) and expressed sequence tag (EST)-derived markers (EST-SSRs) were mapped to 24 linkage groups. The length of linkage map was estimated as 1270.9 centiMorgans (cM), with an average distance between markers of 2.2 cM. The EST-SSRs were used together with type II SSR markers to construct the Japanese flounder genetic linkage map which will facilitate identify quantitative trait locus (QTL) controlling important economic traits in Japanese flounder. Thus, twelve skeletal traits at 2 years of age were measured for all DHs. Forty-one QTLs were detected on 14 linkage groups and totally account for a small proportion of phenotypic variation (4.5 to 17.3%). Most of QTLs detected distribute on linkage groups 5 (9 QTLs), 8 (9 QTLs), 9 (5 QTLs) and 20 (4 QTLs), in which, some QTLs perform the pleiotropy. 相似文献
14.
Many important problems in biology involve complex traits affected by multiple coding or regulatory parts of the genome. How well the underlying genetic architecture can be inferred by statistical methods such as mapping and association studies are active research areas. ForSim is a flexible forward evolutionary simulation tool for exploring the consequences of evolution by phenotype, whereby demographic, chance, behavioral and selective effects mold genetic architecture. Simulation is useful for exploring these issues as well as the choice of study design inferential methods. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. 相似文献
15.
Constructing a dense genetic linkage map and mapping QTL for the traits of flower development in Brassica carinata 总被引:1,自引:0,他引:1
Jun Zou Harsh Raman Shaomin Guo Dandan Hu Zili Wei Ziliang Luo Yan Long Wenxia Shi Zhong Fu Dezhi Du Jinling Meng 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2014,127(7):1593-1605
Key message
An integrated dense genetic linkage map was constructed in a B. carinata population and used for comparative genome analysis and QTL identification for flowering time.Abstract
An integrated dense linkage map of Brassica carinata (BBCC) was constructed in a doubled haploid population based on DArT-SeqTM markers. A total of 4,031 markers corresponding to 1,366 unique loci were mapped including 639 bins, covering a genetic distance of 2,048 cM. We identified 136 blocks and islands conserved in Brassicaceae, which showed a feature of hexaploidisation representing the suggested ancestral crucifer karyotype. The B and C genome of B. carinata shared 85 % of commonly conserved blocks with the B genome of B. nigra/B. juncea and 80 % of commonly conserved blocks with the C genome of B. napus, and shown frequent structural rearrangements such as insertions and inversions. Up to 24 quantitative trait loci (QTL) for flowering and budding time were identified in the DH population. Of these QTL, one consistent QTL (qFT.B4-2) for flowering time was identified in all of the environments in the J block of the B4 linkage group, where a group of genes for flowering time were aligned in A. thaliana. Another major QTL for flowering time under a winter-cropped environment was detected in the E block of C6, where the BnFT-C6 gene was previously localised in B. napus. This high-density map would be useful not only to reveal the genetic variation in the species with QTL analysis and genome sequencing, but also for other applications such as marker-assisted selection and genomic selection, for the African mustard improvement. 相似文献16.
17.
Neuenschwander S Hospital F Guillaume F Goudet J 《Bioinformatics (Oxford, England)》2008,24(13):1552-1553
quantiNemo is an individual-based, genetically explicit stochastic simulation program. It was developed to investigate the effects of selection, mutation, recombination and drift on quantitative traits with varying architectures in structured populations connected by migration and located in a heterogeneous habitat. quantiNemo is highly flexible at various levels: population, selection, trait(s) architecture, genetic map for QTL and/or markers, environment, demography, mating system, etc. quantiNemo is coded in C++ using an object-oriented approach and runs on any computer platform. Availability: Executables for several platforms, user's manual, and source code are freely available under the GNU General Public License at http://www2.unil.ch/popgen/softwares/quantinemo. 相似文献
18.
Yang R Li J Wang X Zhou X 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,123(3):483-492
Without consideration of other linked QTLs responsible for dynamic trait, original functional mapping based on a single QTL
model is not optimal for analyzing multiple dynamic trait loci. Despite that composite functional mapping incorporates the
effects of genetic background outside the tested QTL in mapping model, the arbitrary choice of background markers also impact
on the power of QTL detection. In this study, we proposed Bayesian functional mapping strategy that can simultaneously identify
multiple QTL controlling developmental patterns of dynamic traits over the genome. Our proposed method fits the change of
each QTL effect with the time by Legendre polynomial and takes the residual covariance structure into account using the first
autoregressive equation. Also, Bayesian shrinkage estimation was employed to estimate the model parameters. Especially, we
specify the gamma distribution as the prior for the first-order auto-regressive coefficient, which will guarantee the convergence
of Bayesian sampling. Simulations showed that the proposed method could accurately estimate the QTL parameters and had a greater
statistical power of QTL detection than the composite functional mapping. A real data analysis of leaf age growth in rice
is used for the demonstration of our method. It shows that our Bayesian functional mapping can detect more QTLs as compared
to composite functional mapping. 相似文献
19.
Rostam Abdollahi-Arpanahi Abbas Pakdel Ardeshir Nejati-Javaremi Mohammad Moradi Shahrbabak Farhad Ghafouri-Kesbi 《Journal of applied genetics》2014,55(3):373-381
The genetic architecture of a quantitative trait refers to the number of genetic variants, allele frequencies, and effect sizes of variants that affect a trait and their mode of gene action. This study was conducted to investigate the effect of four shapes of allelic frequency distributions (constant, uniform, L-shaped and U-shaped) and different number of trait-affecting loci (50, 100, 200, 500) on allelic frequency changes, long term genetic response, and maintaining genetic variance. To this end, a population of 440 individuals composed of 40 males and 400 females as well as a genome of 200 cM consisting of two chromosomes and with a mutation rate of 2.5?×?10?5 per locus was simulated. Selection of superior animals was done using best linear unbiased prediction (BLUP) with assumption of infinitesimal model. Selection intensity was constant over 30 generations of selection. The highest genetic progress obtained when the allelic frequency had L-shaped distribution and number of trait-affecting loci was high (500). Although quantitative genetic theories predict the extinction of genetic variance due to artificial selection in long time, our results showed that under L- and U-shapped allelic frequency distributions, the additive genetic variance is persistent after 30 generations of selection. Further, presence or absence of selection limit can be an indication of low (<50) or high (>100) number of trait-affecting loci, respectively. It was concluded that the genetic architecture of complex traits is an important subject which should be considered in studies concerning long-term response to selection. 相似文献