首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
R-(-)-1-(benzofuran-2-yl)-2-propylaminopentane [(-)-BPAP] is a potent "catecholaminergic and serotonergic activity enhancer (CAE/SAE)", which enhances the impulse-evoked catecholamines and serotonin release, e.g. (-)-BPAP enhances in vitro norepinephrine efflux from the slices of locus coeruleus in a bipolar manner with the two effective ranges of low (fM-pM level) and high (nM-microM level) concentrations. Here, the effects of (-)-BPAP and selegiline on the cultured mouse astrocytes were studied. The protein levels of the neurotrophic factors (NGF, BDNF and GDNF) in the conditioned medium of cultured astrocytes were determined by using ELISA. In the cultured astrocytes incubated for 24 h with selegiline, the synthesis of NGF and BDNF was significantly enhanced in the concentration dependent manner, with minimum effective concentrations of 4 x 10(-4) and 5 x 10(-4) M, respectively. (-)-BPAP also enhanced the NGF, BDNF and GDNF synthesis, with minimum effective concentrations of 5 x 10(-5), 1 x 10(-5), and 1 x 10(-6) M, respectively. Although the effects of (-)-BPAP on the NGF synthesis was tested in the range of 1 x 10(-15)-5 x 10(-4) M, the concentration response curve of (-)-BPAP was a single bell shape with the peak effect at 1 x 10(-4) M, and did not show any effects in low concentrations such as fM-pM level. Each concentration response curve of (-)-BPAP on BDNF and GDNF synthesis was a single bell shape with peak effects at 1 x 10(-3) M and 1 x 10(-4) M, respectively.  相似文献   

4.
The age-dependent trophic responses of sympathetic, sensory, and nodose neurons to the neuro-trophins NGF, BDNF, and NT-3 and to glial cell line-derived neurotrophic factor (GDNF) were examined by an explant culture system. Superior cervical ganglia (SCG), dorsal root ganglia (DRG), and nodose ganglia (NG) were removed from rat embryos (E18), neonatals ( 1 day old), young adults (3–6 months old), and aged adults (>24 months old). The ganglia were cultured with and without each neurotrophic factor; the neurite extension and neurite density were then assessed. The SCG from rats of all ages were significantly influenced by NGF, NT-3, and GDNF; the effects of NT-3 and GDNF were reduced after maturation. The DRG from embryos and neonates were influenced by all neurotrophic factors; however, the effects of BDNF and NT-3 disappeared after maturation. The GDNF showed little effect on adult DRG and no effect on aged DRG. The effect of NGF was preserved over all ages of DRG. The NG from embryonic rats were significantly responsive to BDNF and GDNF; their effects decreased in the neonatal NG, but a minimum effect remained in the aged NG. These results indicate that age-dependent profiles of trophic effects differ extensively among the lineages of the peripheral nervous system and also among the individual neurotrophic factors.  相似文献   

5.
Triptolide (T10), an extract from the traditional Chinese herb, Tripterygium wilfordii Hook F (TWHF), has been shown to attenuate the rotational behavior induced by d-amphetamine and prevent the loss of dopaminergic neurons in the substantia nigra in rat models of Parkinson’s disease. To examine if the neuroprotective effect is mediated by its stimulation of production of neurotrophic factors from astrocytes, we investigated the effect of T10 on synthesis and release of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in rat astrocyte cultures. T10 did not affect the synthesis and release of either BDNF or GDNF. However, it significantly increased NGF mRNA expression. It also increased both intracellular NGF and NGF level in culture medium. These results indicate that the neuroprotective effect of T10 might be mediated, at least in part, via a stimulation of the production and release of NGF in astrocytes. Authors Bing Xue and Jian Jiao contributed equally to this work.  相似文献   

6.
A method for the simultaneous determination of selegiline and its metabolite, desmethylselegiline, in human whole blood and urine is presented. The method, which combines a fiber-based headspace solid-phase microextraction (SPME) technique with gas chromatography-mass spectrometry (GC-MS), required optimization of various parameters (e.g., salt additives, extraction temperatures, extraction times and the extraction properties of the SPME fiber coatings). Pargyline was used as the internal standard. Extraction efficiencies for both selegiline and desmethylselegiline were 2.0-3.4% for whole blood, and 8.0-13.2% for urine. The regression equations for selegiline and desmethylselegiline extracted from whole blood were linear (r(2)=0.996 and 0.995) within the concentration ranges 0.1-10 and 0.2-20 ng/ml, respectively. For urine, the regression equations for selegiline and desmethylselegiline were linear (r(2)=0.999 and 0.998) within the concentration ranges 0.05-5.0 and 0.1-10 ng/ml, respectively. The limit of detection for selegiline and desmethylselegiline was 0.01-0.05 ng/ml for both samples. The lower and upper limits of quantification for each compound were 0.05-0.2 and 5-20 ng/ml, respectively. Intra- and inter-day coefficients of variation for selegiline and desmethylselegiline in both samples were not greater than 8.7 and 11.7%, respectively. The determination of selegiline and desmethylselegiline concentrations in Parkinson's disease patients undergoing continuous selegiline treatment is presented and is shown to validate the present methodology.  相似文献   

7.
Nitric oxide (NO) mediates pharmacological effects of opiates including dependence and abstinence. Modulation of NO synthesis during the induction phase of morphine dependence affects manifestations of morphine withdrawal syndrome, though little is known about mechanisms underlying this phenomenon. Neurotrophic and growth factors are involved in neuronal adaptation during opiate dependence. NO-dependent modulation of morphine dependence may be mediated by changes in expression and activity of neurotrophic and/or growth factors in the brain. Here, we studied the effects of NO synthesis inhibition during the induction phase of morphine dependence on the expression of brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and insulin-like growth factor 1 (IGF1) as well as their receptors in rat brain regions after spontaneous morphine withdrawal in dependent animals. Morphine dependence in rats was induced within 6 days by 12 injections of morphine in increasing doses (10–100 mg/kg), and NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME) (10 mg/kg) was given 1 h before each morphine injection. The expression of the BDNF, GDNF, NGF, IGF1, and their receptors in the frontal cortex, striatum, hippocampus, and midbrain was assessed 40 h after morphine withdrawal. L-NAME treatment during morphine intoxication resulted in an aggravation of the spontaneous morphine withdrawal severity. Morphine withdrawal was accompanied by upregulation of BDNF, IGF1, and their receptors TrkB and IGF1R, respectively, on the mRNA level in the frontal cortex, and only BDNF in hippocampus and midbrain. L-NAME administration during morphine intoxication decreased abstinence-induced upregulation of these mRNAs in the frontal cortex, hippocampus and midbrain. L-NAME prevented from abstinence-induced elevation of mature but not pro-form of BDNF polypeptide in the frontal cortex. While morphine abstinence did not affect TrkB protein levels as well as its phosphorylation status, inhibition of NO synthesis decreased levels of phosphorylated TrkB after withdrawal. Thus, NO signaling during induction of dependence may be involved in the mechanisms of BDNF expression and processing at abstinence, thereby affecting signaling through TrkB in the frontal cortex.  相似文献   

8.
Previous reports have shown that neuronal and glial cells express functionally active thrombin receptors. The thrombin receptor (PAR-1), a member of a growing family of protease activated receptors (PARs), requires cleavage of the extracellular amino-terminus domain by thrombin to induce signal transduction. Studies from our laboratory have shown that PAR-1 activation following the addition of thrombin or a synthetic thrombin receptor activating peptide (TRAP) induces motoneuron cell death both in vitro and in vivo. In addition to increasing motoneuron cell death, PAR- 1 activation leads to decreases in the mean neurite length and side branching in highly enriched motoneuron cultures. It has been suggested that motoneuron survival depends on access to sufficient target-derived neurotrophic factors through axonal branching and synaptic contacts. However, whether the thrombininduced effects on motoneurons can be prevented by neurotrophic factors is still unknown. Using highly enriched avian motoneuron cultures, we show here that alone, soluble chick skeletal muscle extracts (CMX), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial cell line-derived neurotrophic factor (GDNF) significantly increased motoneuron survival compared to controls, whereas nerve growth factor (NGF) did not have a significant effect on motoneuron survival. Furthermore, cotreatment with muscle-derived agents (i.e., CMX, BDNF, GDNF) significantly prevented the death of motoneurons induced by alpha-thrombin. Yet, non-muscle-derived agents (CNTF and NGF) had little or no significant effect in reversing thrombin-induced motoneuron death. CMX and CNTF significantly increased the mean length of neurites, whereas NGF, BDNF, and GDNF failed to enhance neurite outgrowth compared to controls. Furthermore, CMX and CNTF significantly prevented thrombin-induced inhibition of neurite outgrowth, whereas BDNF and GDNF only partially reversed thrombin-induced inhibition of neurite outgrowth. These findings show differential effects of neurotrophic factors on thrombin-induced motoneuron degeneration and suggest specific overlaps between the trophic and stress pathways activated by some neurotrophic agents and thrombin, respectively.  相似文献   

9.
The isthmo-optic nucleus (ION) of chick embryos is a model system for the study of retrograde trophic signaling in developing CNS neurons. The role of brain-derived neurotrophic factor (BDNF) is well established in this system. Recent work has implicated neurotrophin-4 (NT-4), glial cell line-derived neurotrophic factor (GDNF), and insulin-like growth factor I (IGF-I) as additional trophic factors for ION neurons. Here it was examined in vitro and in vivo whether these factors are target-derived trophic factors for the ION in 13- to 16-day-old chick embryos. Unlike BDNF, neither GDNF, NT-4, nor IGF-I increased the survival of ION neurons in dissociated cultures identified by retrograde labeling with the fluorescent tracer DiI. BDNF and IGF-I promoted neurite outgrowth from ION explants, whereas GDNF and NT-4 had no effect. Injections of NT-4, but not GDNF, in the retina decreased the survival of ION neurons and accelerated cell death in the ION. NT-4-like immunoreactivity was present in the retina and the ION. Exogenous, radiolabeled NT-4, but not GDNF or IGF-I, was retrogradely transported from the retina to the ION. NT-4 transport was significantly reduced by coinjection of excess cold nerve growth factor (NGF), indicating that the majority of NT-4 bound to p75 neurotrophin receptors during axonal transport. Binding of NT-4 to chick p75 receptors was confirmed in L-cells, which express chick p75 receptors. These data indicate that GDNF has no direct trophic effects on ION neurons. IGF-I may be an afferent trophic factor for the ION, and NT-4 may act as an antagonist to BDNF, either by competing with BDNF for p75 and/or trkB binding or by signaling cell death via p75.  相似文献   

10.
The mRNAs of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) exhibit a similar, though not identical, regional and cellular distribution in the rodent brain. In situ hybridization experiments have shown that BDNF, like NGF, is predominantly expressed by neurons. The neuronal localization of the mRNAs of these two neurotrophic molecules raised the question as to whether neuronal activity might be involved in the regulation of their synthesis. After we had demonstrated that depolarization with high potassium (50 mM) resulted in an increase in the levels of both BDNF and NGF mRNAs in cultures of hippocampal neurons, we investigated the effect of a large number of transmitter substances. Kainic acid, a glutamate receptor agonist, was by far the most effective in increasing BDNF and NGF mRNA levels in the neurons, but neither N-methyl-D-aspartic acid (NMDA) nor inhibitors of the NMDA glutamate receptors had any effect. However, the kainic acid mediated increase was blocked by antagonists of non-NMDA receptors. Kainic acid also elevated levels of BDNF and NGF mRNAs in rat hippocampus and cortex in vivo. These results suggest that the synthesis of these two neurotrophic factors in the brain is regulated by neuronal activity via non-NMDA glutamate receptors.  相似文献   

11.
神经营养因子与神经干细胞   总被引:17,自引:0,他引:17  
Sun Y  Shi J  Lu PH 《生理科学进展》2002,33(4):313-316
生长因子在神经干细胞的增殖,分化和存活过程中有重要作用。神经营养因子是其中的一类,它包括神经生长因子(NGF)家族,胶质源性神经营养因子(GDNF)家族和其它神经营养因子。NGF家族包括NGF,BDNF,NT-3,NT-4/5和NT-6。这一家族可促进epidermic growth facter(EGF)反应 海马及前脑室管膜下区神经干细胞的存活和分化。GDNF家族包括GDNF,NTN,PSP和ART。GDNF家族促神经发育的作用主要在外周,它促进肠神经嵴前体细胞的存活和增殖,且对外周感觉神经的发育至关重要。其它生长因子如bFGF和EGF,它们能促进神经干细胞增殖和存活;CNTF和LIF等在神经干细胞的分化中也有重要作用。  相似文献   

12.
Expression patterns of neurotrophic factor mRNAs in developing human teeth   总被引:5,自引:0,他引:5  
Neurotrophic factors regulate survival, differentiation, growth and plasticity in the nervous system. In addition, based on their specific and shifting temporospatial expression patterns, neurotrophic factors have been implicated in morphogenetic events during tooth development in rodents. To determine whether these findings in rodents could be related to humans, we have now studied nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), glial cell-line derived neurotrophic factor (GDNF), and neurturin (NTN) mRNA expression patterns in developing human teeth during gestational weeks 6.5-11. Using in situ hybridization histochemistry, we found distinct and specific patterns of neurotrophin and GDNF mRNA expression in the developing human teeth. NGF mRNA labeling was weak and confined predominantly to the dental papilla. BDNF mRNA labeling was stronger than NGF mRNA and was seen in the mesenchyme located lateral to the dental organ, as well as in epithelial structures (inner dental epithelium and enamel knot). NT-3 mRNA was observed in the dental papilla and in the area of the cervical loop. NT-4 mRNA was expressed in both oral and dental epithelia in all stages studied. GDNF mRNA was found in the dental follicle and at different sites in the inner dental epithelium. Weak NTN mRNA labeling was also found in the developing teeth. Based on these findings, we suggest that neurotrophins, GDNF and NTN might be involved in morphogenetic events during early stages of tooth development in humans. Protein gene product (PGP) 9.5-immunoreactive nerve fibers were observed in the dental follicle by 11 weeks coinciding with the labeling for neurotrophic factor mRNAs in this structure. This suggests that these neurotrophic factors might be involved in the innervation of dental structures. The rich expression of neurotrophic factors in developing dental tissues suggests that developing, or possibly adult, dental tissue might be used as an allograft source of trophic support for diseases of the nervous system.  相似文献   

13.
We compared the effects of glial cell line-derived neurotrophic factor (GDNF) on dorsal root ganglion (DRG) sensory neurons to that of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3). All of these factors were retrogradely transported to sub-populations of sensory neuron cell bodies in the L4/L5 DRG of neonatal rats. The size distribution of 125I-GDNF-labeled neurons was variable and consisted of both small and large DRG neurons (mean of 506.60 μm2). 125I-NGF was preferentially taken up by small neurons with a mean cross-sectional area of 383.03 μm2. Iodinated BDNF and NT-3 were transported by medium to large neurons with mean sizes of 501.48 and 529.27 μm2, respectively. A neonatal, sciatic nerve axotomy-induced cell death model was used to determine whether any of these factors could influence DRG neuron survival in vivo. GDNF and NGF rescued nearly 100% of the sensory neurons. BDNF and NT-3 did not promote any detectable level of neuronal survival despite the fact that they underwent retrograde transport. We examined the in vitro survival-promoting ability of these factors on neonatal DRG neuronal cultures derived from neonatal rats. GDNF, NGF, and NT-3 were effective in vitro, while BDNF was not. The range of effects seen in the models described here underscores the importance of testing neuronal responsiveness in more than one model. The biological responsiveness of DRG neurons to GDNF in multiple models suggests that this factor may play a role in the development and maintenance of sensory neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 22–32, 1997.  相似文献   

14.
Previous reports have shown that neuronal and glial cells express functionally active thrombin receptors. The thrombin receptor (PAR‐1), a member of a growing family of protease activated receptors (PARs), requires cleavage of the extracellular amino‐terminus domain by thrombin to induce signal transduction. Studies from our laboratory have shown that PAR‐1 activation following the addition of thrombin or a synthetic thrombin receptor activating peptide (TRAP) induces motoneuron cell death both in vitro and in vivo. In addition to increasing motoneuron cell death, PAR‐1 activation leads to decreases in the mean neurite length and side branching in highly enriched motoneuron cultures. It has been suggested that motoneuron survival depends on access to sufficient target‐derived neurotrophic factors through axonal branching and synaptic contacts. However, whether the thrombin‐induced effects on motoneurons can be prevented by neurotrophic factors is still unknown. Using highly enriched avian motoneuron cultures, we show here that alone, soluble chick skeletal muscle extracts (CMX), brain‐derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial cell line–derived neurotrophic factor (GDNF) significantly increased motoneuron survival compared to controls, whereas nerve growth factor (NGF) did not have a significant effect on motoneuron survival. Furthermore, cotreatment with muscle‐derived agents (i.e., CMX, BDNF, GDNF) significantly prevented the death of motoneurons induced by α‐thrombin. Yet, non–muscle‐derived agents (CNTF and NGF) had little or no significant effect in reversing thrombin‐induced motoneuron death. CMX and CNTF significantly increased the mean length of neurites, whereas NGF, BDNF, and GDNF failed to enhance neurite outgrowth compared to controls. Furthermore, CMX and CNTF significantly prevented thrombin‐induced inhibition of neurite outgrowth, whereas BDNF and GDNF only partially reversed thrombin‐induced inhibition of neurite outgrowth. These findings show differential effects of neurotrophic factors on thrombin‐induced motoneuron degeneration and suggest specific overlaps between the trophic and stress pathways activated by some neurotrophic agents and thrombin, respectively. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 571–580, 1999  相似文献   

15.
It has been shown that panaxydol (PND) can mimic the neurotrophic effect of nerve growth factor (NGF) normally secreted by Schwann cells (SC) and protect neurons against injury. To evaluate the effect of PND on hypoxia-induced SC death and expression and secretion of neurotrophic factors (NGF and brain derived neurotrophic factor (BDNF)), hypoxic SCs were cultured in vitro and then treated with PND (0-20 microM). The MTT (3(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, immunocytochemistry, ELISA and RT-PCR were employed to examine the effects. We found that hypoxia resulted in a significant decrease in SCs viability (MTT: 64+/-4.7% of control group) and nearly a 3.3-fold increase of intracellular level of active caspase-3. PND (5-20 microM) treatment significantly rescued the SCs from hypoxia-induced injury (85+/-8.2%; 92+/-8.6%; 87+/-7.3%) and reduced caspase-3 activity with the maximal effect occurred at 10 microM (P<0.01), reducing to about 1.6-fold of control level. Furthermore, PND treatment also enhanced NGF and BDNF mRNA levels in hypoxic SCs and promoted protein expression and secretion. BDNF mRNA in hypoxic SCs was restored to about 90% of normal level and NGF mRNA was elevated to 1.4-fold of control after 10 microM PND treatment. These observations showed that PND protects primary cultured SCs against hypoxia-induced injury and enhances NTF-associated activities.  相似文献   

16.
Neurotrophic factors play a key role in development, differentiation, synaptogenesis, and survival of neurons in the brain as well as in the process of their adaptation to external influences. The serotonergic (5-HT) system is another major factor in the development and neuroplasticity of the brain. In the present review, the results of our own research as well as data provided in the corresponding literature on the interaction of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) with the 5-HT-system of the brain are considered. Attention is given to comparison of BDNF and GDNF, the latter belonging to a different family of neurotrophic factors and being mainly considered as a dopaminergic system controller. Data cited in this review show that: (i) BDNF and GDNF interact with the 5-HT-system of the brain through feedback mechanisms engaged in autoregulation of the complex involving 5-HT-system and neurotrophic factors; (ii) GDNF, as well as BDNF, stimulates the growth of 5-HT neurons and affects the expression of key genes of the brain 5-HT-system–those coding tryptophan hydroxylase-2 and 5-HT1A and 5-HT2A receptors. In turn, 5-HT affects the expression of genes that control BDNF and GDNF in brain structures; (iii) the difference between BDNF and GDNF is manifested in different levels and relative distribution of expression of these factors in brain structures (BDNF expression is highest in hippocampus and cortex, GDNF expression in the striatum), in varying reaction of 5-HT2A receptors on BDNF and GDNF administration, and in different effects on certain types of behavior.  相似文献   

17.
The mammalian tooth pulp becomes innervated by nociceptive and sympathetic axons relatively late during development, when part of the root has formed. In the adult, regenerating axons from an injured tooth nerve or sprouting axons from uninjured nerves in the vicinity rapidly reinnervate denervated tooth pulps. These observations indicate that tooth pulp tissue can use molecular factors to attract pulpal axons from local nerve trunks. The present study examines the hypothesis that these factors include nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF). Explants of trigeminal ganglia from neonatal rat pups showed a distinct neurite outgrowth when co-cultured with pulpal explants collected from molar teeth of 12-day old pups, or after application of a pulpal extract. Control cultures, containing single ganglionic explants, or explants co-cultured with heat-treated pulpal tissue, exhibited a sparse neurite outgrowth. Exogenous NGF and/or GDNF, but not exogenous BDNF, stimulated neurite outgrowth from ganglionic explants. Unexpectedly, application of antibodies against NGF, BDNF and/or GDNF to co-cultures of ganglionic and pulpal explants did not inhibit neuritogenesis. Control experiments showed that IgG molecules readily penetrate the gel used for culture and that even very high concentrations of NGF and GDNF antibodies in combination failed to block neurite growth. On the basis of these data we suggest that other as yet unknown neurite-promoting factors might be present and active in TG/pulpal co-cultures.  相似文献   

18.
Although human amnion derived mesenchymal stem cells (AMSC) are a promising source of stem cells, their therapeutic potential for traumatic brain injury (TBI) has not been widely investigated. In this study, we evaluated the therapeutic potential of AMSC using a rat TBI model. AMSC were isolated from human amniotic membrane and characterized by flow cytometry. After induction, AMSC differentiated in vitro into neural stem-like cells (AM-NSC) that expressed higher levels of the neural stem cell markers, nestin, sox2 and musashi, in comparison to undifferentiated AMSC. Interestingly, the neurotrophic factors, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT-3), glial cell derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) were markedly upregulated after neural stem cell induction. Following transplantation in a rat TBI model, significant improvements in neurological function, brain tissue morphology, and higher levels of BDNF, NGF, NT-3, GDNF and CNTF, were observed in the AM-NSC group compared with the AMSC and Matrigel groups. However, few grafted cells survived with minimal differentiation into neural-like cells. Together, our results suggest that transplantation of AM-NSC promotes functional rehabilitation of rats with TBI, with enhanced expression of neurotrophic factors a likely mechanistic pathway.  相似文献   

19.
Li R  Xia W  Zhang Z  Wu K 《PloS one》2011,6(6):e21663

Background

Human milk contains a wide variety of nutrients that contribute to the fulfillment of its functions, which include the regulation of newborn development. However, few studies have investigated the concentrations of S100B protein, brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) in human milk. The associations of the concentrations of S100B protein, BDNF, and GDNF with maternal factors are not well explored.

Methodology/Principal Findings

To investigate the concentrations of S100B protein, BDNF, and GDNF in human milk and characterize the maternal factors associated with their levels in human milk, human milk samples were collected at days 3, 10, 30, and 90 after parturition. Levels of S100B protein, BDNF, and GDNF, and their mRNAs in the samples were detected. Then, these concentrations were compared with lactation and other maternal factors. S100B protein levels in human milk samples collected at 3, 10, 30, and 90 d after parturition were 1249.79±398.10, 1345.05±539.16, 1481.83±573.30, and 1414.39±621.31 ng/L, respectively. On the other hand, the BDNF concentrations in human milk samples were 10.99±4.55, 13.01±5.88, 13.35±6.43, and 2.83±5.47 µg/L, while those of GDNF were 10.90±1.65, 11.38±1., 11.29±3.10, and 11.40±2.21 g/L for the same time periods. Maternal post-pregnancy body mass index was positively associated with S100B levels in human milk (r = 0.335, P = 0.030<0.05). In addition, there was a significant correlation between the levels of S100B protein and BDNF (z = 2.09, P = 0.037<0.05). Delivery modes were negatively associated with the concentration of GDNF in human milk.

Conclusions

S100B protein, BDNF, and GDNF are present in all samples of human milk, and they may be responsible for the long term effects of breast feeding.  相似文献   

20.
The isthmo‐optic nucleus (ION) of chick embryos is a model system for the study of retrograde trophic signaling in developing CNS neurons. The role of brain‐derived neurotrophic factor (BDNF) is well established in this system. Recent work has implicated neurotrophin‐4 (NT‐4), glial cell line–derived neurotrophic factor (GDNF), and insulin‐like growth factor I (IGF‐I) as additional trophic factors for ION neurons. Here it was examined in vitro and in vivo whether these factors are target‐derived trophic factors for the ION in 13‐ to 16‐day‐old chick embryos. Unlike BDNF, neither GDNF, NT‐4, nor IGF‐I increased the survival of ION neurons in dissociated cultures identified by retrograde labeling with the fluorescent tracer DiI. BDNF and IGF‐I promoted neurite outgrowth from ION explants, whereas GDNF and NT‐4 had no effect. Injections of NT‐4, but not GDNF, in the retina decreased the survival of ION neurons and accelerated cell death in the ION. NT‐4–like immunoreactivity was present in the retina and the ION. Exogenous, radiolabeled NT‐4, but not GDNF or IGF‐I, was retrogradely transported from the retina to the ION. NT‐4 transport was significantly reduced by coinjection of excess cold nerve growth factor (NGF), indicating that the majority of NT‐4 bound to p75 neurotrophin receptors during axonal transport. Binding of NT‐4 to chick p75 receptors was confirmed in L‐cells, which express chick p75 receptors. These data indicate that GDNF has no direct trophic effects on ION neurons. IGF‐I may be an afferent trophic factor for the ION, and NT‐4 may act as an antagonist to BDNF, either by competing with BDNF for p75 and/or trkB binding or by signaling cell death via p75. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 289–303, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号