首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Soret-excited resonance Raman (RR) spectra of the spinach cytochrome b6f complex (cyt b6f) are reported for the oxidized, native, ascorbate-reduced, and dithionite-reduced forms. Using excitations at 441.6, 413.1, and 406.7 nm, RR contributions of chlorophyll a, beta-carotene, the c-type heme of cytochrome f, and the b-type hemes of cytochrome b6 of the b6f complex were identified and the data compared to those previously obtained for the Rhodospirillum rubrum bc1 complex [Le Moigne, C., Schoepp, B., Othman, S., Verméglio, A., and Desbois, A. (1999) Biochemistry 38, 1066-1076]. RR bands arising from the b(6)f-associated chlorophyll a and beta-carotene pigments were found to be particularly intense in the spectra excited at 441.6 nm. The frequencies of the phorbin skeleton of chlorophyll a at 1606, 1552, and 1525 cm(-1) are typical of a Mg atom with a single axial ligand. Strong RR bands corresponding to stretching or deformation modes of beta-carotene were detected at 1137, 1157, 1191, 1216, and 1531 cm(-1) in the different forms of cyt b6f. This set of frequencies is assigned to an all-trans configuration of the polyene chain. The redox titrations of the b(6)f complex allow the characterization of RR bands of the three hemes. The nu10, nu2, nu3, and nu8 modes of reduced cyt f are detected at 1619, 1591, 1492, and 356 cm(-1), respectively. From this set of frequencies, one can conclude that the particular histidine/amine heme coordination found in the truncated soluble domain of cyt f is a specific feature of the entire cyt f included in the b6f complex. The frequencies of the nu2, nu8, and nu10 marker modes are consistent with different conformations for the two b-type hemes of cyt b6f. One of these hemes is strongly distorted (nu2, nu8, and nu10 at 1581, 351, and 1610 cm(-1), respectively), while the other one is planar (1586, 345, and 1618 cm(-1), respectively). Largely different structures for the b-type hemes appear to be a common property for the bc1/b6f complexes.  相似文献   

2.
Absorption UV-VIS and pre-resonance Raman spectra of acidic cyt c solutions with a series of thiols added (thiophenol, n-propanethiol, isopropanethiol, L-cysteine, dithiothreitol, 2-mercaptoethanol, N-acetyl-L-cysteine, p-acetamidothiophenol, 2-mercaptoethanamine, thioglycolic acid and mercaptopropionic acid), are presented. Interactions of cyt c molecule with the thiols were studied with the aim to identify binding of the thiols with the cyt c heme as its iron axial ligands. Absorption and Raman spectra showed some correlation between maxima of 700 nm region absorption band (typical for Fe-S axial bond in cyt c heme) and also wave numbers of spin state marker and axial ligand sensitive Raman bands on one, and pKa constant values of appropriate thiols on the other hand. These results imply thiol replacement of Met-80 from axial bond with heme iron and suggest that the force of Fe-L-cysteine axial bond is very close to the native axial bond (Fe-Met) for cyt c in neutral solution.  相似文献   

3.
We have characterized the ferric and ferrous forms of the heme-containing (1-56 residues) N-fragment of horse heart cytochrome c (cyt c) at different pH values and low ionic strength by UV-visible absorption and resonance Raman (RR) scattering. The results are compared with native cyt c in the same experimental conditions as this may provide a deeper insight into the cyt c unfolding-folding process. Folding of cyt c leads to a state having the heme iron coordinated to a histidine (His18) and a methionine (Met80) as axial ligands. At neutral pH the N-fragment (which lacks Met80) shows absorption and RR spectra that are consistent with the presence of a bis-His low spin heme, like several non-native forms of the parental protein. In particular, the optical spectra are identical to those of cyt c in the presence of a high concentration of denaturants; this renders the N-fragment a suitable model to study the heme pocket microenvironment of the misfolded (His-His) intermediate formed during folding of cyt c. Acid pH affects the ligation state in both cyt c and the N-fragment. Data obtained as a function of pH allow a correlation between the structural properties in the heme pocket of the N-fragment and those of non-native forms of cyt c. The results underline that the (57-104 residues) segment under native-like conditions imparts structural stability to the protein by impeding solvent access into the heme pocket.  相似文献   

4.
The ligand substitutions that occur during the folding of ferrocytochrome c [Fe(II)cyt c] have been monitored by transient absorption spectroscopy. The folding reaction was triggered by photoinduced electron transfer to unfolded Fe(III)cyt c in guanidine hydrochloride (GuHCl) solutions. Assignments of ligation states were made by reference to the spectra of the imidazole and methionine adducts of N-acetylated microperoxidase 8. At pH 7, the heme in unfolded Fe(II)cyt c is ligated by native His18 and HisX (X = 26, 33) residues. The native Met80 ligand displaces HisX only in the last stages of folding. The ferroheme is predominantly five-coordinate in acidic solution; it remains five-coordinate until the native methionine binds the heme to give the folded protein (the rate of the methionine binding step is 16 +/- 5 s-1 at pH 5, 3.2 M GuHCl). The evidence suggests that the substitution of histidine by methionine is strongly coupled to backbone folding.  相似文献   

5.
Tetraheme cytochrome c 3 (cyt c 3) exhibits extremely low reduction potentials and unique properties. Since axial ligands should be the most important factors for this protein, every axial histidine of Desulfovibrio vulgaris Miyazaki F cyt c 3 was replaced with methionine, one by one. On mutation at the fifth ligand, the relevant heme could not be linked to the polypeptide, revealing the essential role of the fifth histidine in heme linking. The fifth histidine is the key residue in the structure formation and redox regulation of a c-type cytochrome. A crystal structure has been obtained for only H25M cyt c 3. The overall structure was not affected by the mutation except for the sixth methionine coordination at heme 3. NMR spectra revealed that each mutated methionine is coordinated to the sixth site of the relevant heme in the reduced state, while ligand conversion takes place at hemes 1 and 4 during oxidation at pH 7. The replacement of the sixth ligand with methionine caused an increase in the reduction potential of the mutated heme of 222-244 mV. The midpoint potential of a triheme H52M cyt c 3 is higher than that of the wild type by approximately 50 mV, suggesting a contribution of the tetraheme architecture to the lowering of the reduction potentials. The hydrogen bonding of Thr24 with an axial ligand induces a decrease in reduction potential of approximately 50 mV. In conclusion, the bis-histidine coordination is strategically essential for the structure formation and the extremely low reduction potential of cyt c 3.  相似文献   

6.
Ferric, ferrous and ferrous-CO hemoprotein H-450 from rat liver have been examined with magnetic circular dichroism spectroscopy under alkaline (pH 8.0) and acidic (pH 6.0) conditions. The spectral properties of these species require that one of the axial heme iron ligands in the alkaline ferric and ferrous states must be a thiolate sulfur, presumably from cysteine. The data are most consistent with the ligand trans to thiolate being either histidine or methionine. The reversible pH effects on the spectral properties of the ferrous protein, but not of the ferric protein, appear to involve protonation or displacement of the thiolate. As treatment of the ferrous protein with CO does not yield a thiolate-ligated ferrous-CO adduct, CO either displaces the thiolate or its addition is accompanied by protonation of the thiolate.  相似文献   

7.
A L Raphael  H B Gray 《Proteins》1989,6(3):338-340
Semisynthesis has been employed to replace the axial methionine in horse heart cytochrome c with histidine. The reduction potential of the His-80 protein (cyt c-His-80) is 41 mV vs NHE (0.1 M phosphate; pH 7.0; 25 degrees C). The absorption spectra of oxidized and reduced cyt c-His-80 are very similar to those of the native protein in the porphyrin region, but the 695 nm band is absent in the oxidized His-80 protein.  相似文献   

8.
Lou BS  Snyder JK  Marshall P  Wang JS  Wu G  Kulmacz RJ  Tsai AL  Wang J 《Biochemistry》2000,39(40):12424-12434
Prostaglandin H synthase isoforms 1 and 2 (PGHS-1 and -2) catalyze the first two steps in the biosynthesis of prostaglandins. Resonance Raman spectroscopy was used to characterize the PGHS heme active site and its immediate environment. Ferric PGHS-1 has a predominant six-coordinate high-spin heme at room temperature, with water as the sixth ligand. The proximal histidine ligand (or the distal water ligand) of this hexacoordinate high-spin heme species was reversibly photolabile, leading to a pentacoordinate high-spin ferric heme iron. Ferrous PGHS-1 has a single species of five-coordinate high-spin heme, as evident from nu(2) at 1558 cm(-1) and nu(3) at 1471 cm(-1). nu(4) at 1359 cm(-1) indicates that histidine is the proximal ligand. A weak band at 226-228 cm(-1) was tentatively assigned as the Fe-His stretching vibration. Cyanoferric PGHS-1 exhibited a nu(Fe)(-)(CN) line at 446 cm(-1) and delta(Fe)(-)(C)(-)(N) at 410 cm(-1), indicating a "linear" Fe-C-N binding conformation with the proximal histidine. This linkage agrees well with the open distal heme pocket in PGHS-1. The ferrous PGHS-1 CO complex exhibited three important marker lines: nu(Fe)(-)(CO) (531 cm(-1)), delta(Fe)(-)(C)(-)(O) (567 cm(-1)), and nu(C)(-)(O) (1954 cm(-1)). No hydrogen bonding was detected for the heme-bound CO in PGHS-1. These frequencies markedly deviated from the nu(Fe)(-)(CO)/nu(C)(-)(O) correlation curve for heme proteins and porphyrins with a proximal histidine or imidazolate, suggesting an extremely weak bond between the heme iron and the proximal histidine in PGHS-1. At alkaline pH, PGHS-1 is converted to a second CO binding conformation (nu(Fe)(-)(CO): 496 cm(-1)) where disruption of the hydrogen bonding interactions to the proximal histidine may occur.  相似文献   

9.
Vibrational frequencies associated with FeC and CO stretching and FeCO bending modes have been determined via resonance Raman (RR) and infrared (IR) spectroscopy for cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn; Trp-191---Phe) and distal (Trp-51----Phe; Arg-48----Leu and Lys) side of the heme. The data were analyzed with the aid of a recently established correlation between nu FeC and nu CO, which can be used to distinguish between back-bonding and axial ligand donor effects. At high pH all adducts showed essentially the same vibrational pattern (form I') with nu FeC approximately 505 cm-1, nu CO approximately 1948 cm-1, and delta FeCO (weak RR band) approximately 576 cm-1. These frequencies are very similar to those shown by the myoglobin CO adduct and imply a "normal" H-bond of the proximal histidine. At pH 7 (pH 6 for Asn-235 and Leu-48), different forms are seen for different proteins: form I (nu FeC approximately 500 cm-1, nu CO = 1922-1941 cm-1, and delta FeCO approximately 580 cm-1, very weak) in the case of CCP(MI) and Phe-191, as well as bakers' yeast CCP, or form II (nu FeC approximately 530 cm-1, nu CO = 1922-1933 cm-1, and delta FeCO = 585 cm-1, moderately strong) for Asn-235 and Phe-51.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Cytochrome c' (cyt c') from Methylophilus methylotrophus is unusual insofar as the heme has two axial histidine ligands in the oxidized form but one is detached when the protein is reduced. Despite cyt c' having an axial site available for binding small ligands, we show here that only NO binds readily to the ferrous cyt c'. Binding of CO, as well as CN(-), on the other hand requires considerable structural reorganization, or reduction of the disulfide bridge close to the heme. Standard free energies for the binding of NO and CO reveal high selectivity of the ferrous cyt c' for NO, indicating its putative physiological role. In this work, we characterize in detail the kinetics of NO binding and the structural features of the Fe(2+)-NO adduct by stopped-flow and resonance Raman spectroscopy, respectively.  相似文献   

11.
Andrew CR  Green EL  Lawson DM  Eady RR 《Biochemistry》2001,40(13):4115-4122
Resonance Raman (RR) studies have been conducted on Alcaligenes xylosoxidans cytochrome c', a mono-His ligated hemoprotein which reversibly binds NO and CO but not O(2). Recent crystallographic characterization of this protein has revealed the first example of a hemoprotein which can utilize both sides of its heme (distal and proximal) for binding exogenous ligands to its Fe center. The present RR investigation of the Fe coordination and heme pocket environments of ferrous, carbonyl, and nitrosyl forms of cytochrome c' in solution fully supports the structures determined by X-ray crystallography and offers insights into mechanisms of ligand discrimination in heme-based sensors. Ferrous cytochrome c' reacts with CO to form a six-coordinate heme-CO complex, whereas reaction with NO results in cleavage of the proximal linkage to give a five-coordinate heme-NO adduct, despite the relatively high stretching frequency (231 cm(-1)) of the ferrous Fe-N(His) bond. RR spectra of the six-coordinate CO adduct indicate that CO binds to the Fe in a nonpolar environment in line with its location in the hydrophobic distal heme pocket. On the other hand, RR data for the five-coordinate NO adduct suggest a positively polarized environment for the NO ligand, consistent with its binding close to Arg 124 on the opposite (proximal) side of the heme. Parallels between certain physicochemical properties of cytochrome c' and those of heme-based sensor proteins raise the possibility that the latter may also utilize both sides of their hemes to discriminate between NO and CO binding.  相似文献   

12.
Resonance Raman spectra were measured for various C-type cytochromes (mammalian cytochrome c, bacterial cytochrome c3, algal photosynthetic cytochrome f, and alkylated cytochrome c) and a B-type cytochrome (cytochrome b5) in their reduced and oxidized states. (1) For ferrous alkylated cytochrome c, a Raman line sensitive to the replacement of an axial ligand of the heme iron uas found around 1540 cm=1. This ligand-sensitive Raman line indicated the transition from acidic (1545 cm-1) to alkaline (1533 cm-1) forms with pK 7.9. The pH dependence of the Raman spectrum corresponded well to that of the optical absorption spectra. (2) For ferrous cytochrome f, the ligand-sensitive Raman line was found at the same frequency as cytochrome c (1545 cm-1). Accordingly two axial ligands are likely to be histidine and methionine as in cytochrome c. (3) For ferrous cytochrome c3, the frequency of the ligand-sensitive Raman line was between those of cytochrome c and cytochrome b5. Since two axial ligands of the heme iron in cytochrome c3 might be histidines. However, a combination of histidine and methionine as a possible set of two axial ligands was not completely excluded for one or two of the four hemes. (4) In ferrous cytochrome b5, two weak Raman lines appeared at 1302 and 1338 cm-1 instead of the strongest band at 1313 cm-1 of C-type ferrous cytochromes. This suggests the practical use of these bands for the identification of types of cytochromes. The difference in frequency and intensity between B- and C-types of hemes implies that the low effective symmetry of the heme in ferrous cytochrome c is due to vibrational coupling of ring modes with peripheral substituents rather than geometrical disortion of heme.  相似文献   

13.
Hemoglobin (Hb) isolated from the backswimmer Buenoa margaritacea has been analyzed spectroscopically. The met form at pH less than 6 shows a 30nm red shift in the Qv and Qo bands and a 5nm red shift in the Soret band compared to mammalian Hb, while only minor differences are seen in the spectra of the CO and O2 adducts of Hb from Buenoa and mammals. EPR spectra of the metHb show a superposition of signals; at low pH they are mainly of axial high-spin character, while at high pH a low-spin signal predominates with an O-type g-tensor (2.54, 2.61, 1.85) comparable to that of hydroxy myoglobin. Infrared spectra of Hb12C-16O at pH 8.2 reveal two major absorption bands at 1934 cm-1 and 1967 cm-1, which shift to 1892 cm-1 and 1923 cm-1, respectively, for Hb12C-18O. As isolated the Buenoa Hb consists of several isozymes, all of which have a histidine as the proximal ligand of the heme iron.  相似文献   

14.
E Darrouzet  S Mandaci  J Li  H Qin  D B Knaff  F Daldal 《Biochemistry》1999,38(25):7908-7917
The cytochrome (cyt) c1 heme of the ubihydroquinone:cytochrome c oxidoreductase (bc1 complex) is covalently attached to two cysteine residues of the cyt c1 polypeptide chain via two thioether bonds, and the fifth and sixth axial ligands of its iron atom are histidine (H) and methionine (M), respectively. The latter residue is M183 in Rhodobacter capsulatus cyt c1, and previous mutagenesis studies revealed its critical role for the physicochemical properties of cyt c1 [Gray, K. A., Davidson, E., and Daldal, F. (1992) Biochemistry 31, 11864-11873]. In the homologous chloroplast b6f complex, the sixth axial ligand is provided by the amino group of the amino terminal tyrosine residue. To further pursue our investigation on the role played by the sixth axial ligand in heme-protein interactions, novel cyt c1 variants with histidine-lysine (K) and histidine-histidine axial coordination were sought. Using a R. capsulatus genetic system, the cyt c1 mutants M183K and M183H were constructed by site-directed mutagenesis, and chromatophore membranes as well as purified bc1 complexes obtained from these mutants were characterized in detail. The studies revealed that these mutants incorporated the heme group into the mature cyt c1 polypeptides, but yielded nonfunctional bc1 complexes with unusual spectroscopic and thermodynamic properties, including shifted optical absorption maxima (lambdamax) and decreased redox midpoint potential values (Em7). The availability and future detailed studies of these stable cyt c1 mutants should contribute to our understanding of how different factors influence the physicochemical and folding properties of membrane-bound c-type cytochromes in general.  相似文献   

15.
Hybrid density functional theory (DFT) calculations for the electronic and vibrational structures of compound I species with a methoxide (MeO-) (1) or cysteinate (CysS-) (2) axial ligand are carried out in order to elucidate the natures of a methoxide-coordinating new type of compound I species (Bull. Chem. Soc. Jpn. 71 (1998) 1343) and cysteinate-coordinating compound I species of chloroperoxidase (CPO-I) and cytochrome P450s (P450-I). DFT computations of 1 and 2 demonstrate that these "anionic" ligands are a spin carrier; 70% (80%) of a spin density resides on the O (S) atom of the axial ligand and 30% (20%) is distributed on the porphyrin ring. These results suggest that for the generation of the compound I species, one electron is removed from the iron centers and the rest of the one electron is supplied from the oxidizable axial ligands instead of the iron centers or the porphyrin ring. Vibrational analyses demonstrate that the Fe=O bond is more strongly activated in 1 compared with 2 with the stretching mode at 849 cm(-1) (878 cm(-1)) for the doublet state1a (2a) and at 814 cm(-1) (875 cm(-1)) in the quartet state 1b (2b). This reverse order of the Fe=O bond strength with respect to the axial donor strength should have relevance to the significantly oxidized character of the CysS- axial ligand. In conjunction with the recent results of the extensive resonance Raman (RR) studies, some interpretations of unsettled RR results for compound I of chloroperoxidase (CPO-I) and a synthetic compound I species [O=FeIV(TMP*+)(alcohol)] (J. Am. Chem. Soc. 113 (1991) 6542) concerning the O=Fe stretching frequencies are discussed.  相似文献   

16.
17.
J Ramsden  T G Spiro 《Biochemistry》1989,28(8):3125-3128
The resonance Raman band assigned to Fe--CO stretching in the sperm whale myoglobin CO adduct shifts from 507 cm-1 at neutral pH to 488 cm-1 at low pH, in concert with a shift of the C-O stretching infrared band from 1947 to 1967 cm-1 (Fuchsman & Appleby, 1979), while the 575-cm-1 Fe-C-O bending RR band loses intensity. The pKa that characterizes these changes is approximately 4.4. The vibrational frequencies at low pH are well modeled by the protein-free CO, imidazole adduct of protoheme in a nonpolar solvent while those at high pH are modeled by the adduct of a heme with a covalent strap (Yu et al., 1983) which inhibits upright CO binding. It is inferred that the Fe-C-O unit changes from a tilted to an upright geometry when the distal histidine is protonated, because its side chain swings out of the heme pocket due to electrostatic repulsion with a nearby arginine residue. A different protonation step (pKa = 5.7), which has been shown to modulate the CO rebinding kinetics (Doster et al., 1982) as well as the optical spectrum (Fuchsman & Appleby, 1979), is suggested to involve a global structure change associated with protonation of histidine residues distant from the heme.  相似文献   

18.
The structural changes of ferrous Cyt-c that are induced by binding to SDS micelles, phospholipid vesicles, DeTAB, and GuHCl as well as by high temperatures and changes in the pH have been studied by RR and UV-Vis absorption spectroscopies. Four species have been identified in which the native methionine-80 ligand is removed from the heme iron. This coordination site is either occupied by a histidine (His-33 or His-26) to form a 6cLS configuration, which is the prevailing species in GuHCl at pH 7.0 and ambient temperature, or remains vacant to yield a 5cHS configuration. The three identified 5cHS species differ with respect to the hydrogen-bond interactions of the proximal histidine ligand (His-18) and include a nonhydrogen-bonded, a hydrogen-bonded, and a deprotonated imidazole ring. These structural motifs have been found irrespective of the unfolding conditions used. An unambiguous spectroscopic distinction of these 5cHS species is possible on the basis of the Fe-N(imidazole) stretching vibrations, the RR bands in the region between 1300 and 1650 cm(-1), and the electronic transitions in the Soret- and Q-band regions. In acid and neutral solutions, the species with a hydrogen-bonded and a nonhydrogen-bonded His-18 prevail, whereas in alkaline solutions a configuration with a deprotonated His-18 ligand is also observed. Upon lowering the pH or increasing the temperature in GuHCl solutions, the structure on the proximal side of the heme is perturbed, resulting in a loss of the hydrogen-bond interactions of the His-18 ligand. Conversely, the hydrogen-bonded His-18 of ferrous Cyt-c is stabilized by electrostatic interactions which increase in strength from phospholipid vesicles to SDS micelles. The results here suggest that unfolding of Cyt-c is initiated by the rupture of the Fe-Met-80 bond and structural reorganizations on the distal side of the heme pocket, whereas the proximal part is only affected in a later stage of the denaturation process.  相似文献   

19.
The kinetics of sulfite adduct formation with the bound flavin in flavocytochromes c from the purple phototrophic bacterium Chromatium vinosum and the green phototrophic bacterium Chlorobium thiosulfatophilum have been investigated as a function of pH. Both species of flavocytochrome c rapidly react with sulfite to form a flavin sulfite adduct (k = 10(3)-10(5) M-1 s-1) which is bleached at 450-475 nm and has associated charge-transfer absorbance at 660 nm. The rate constant for adduct formation in flavocytochrome c is 2-4 orders of magnitude faster than for model flavins of comparable redox potential and is likely to be due to a basic residue near the N-1 position of the flavin, which not only raises the redox potential but also stabilizes the negatively charged adduct. There is a pK for adduct formation at 6.5, which suggests that the order of magnitude larger rate constant at pH 5 as compared to pH 10 in flavocytochrome c is due the influence of another positive charge, possibly a protonated histidine residue. The adduct is indefinitely stable at pH 5 but decomposes (the flavin recolors) in a first-order process accelerating above pH 6 (at pH 10, k = 0.1 s-1). The pK for recoloring is 8.5, which is suggestive of a cysteine sulfhydryl. On the basis of the observed pK and available chemical information, we believe that recoloring is due to a secondary effect of the reaction of sulfite with a protein cystine disulfide, which is adjacent to the flavin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Resonance Raman spectroscopy and step-scan Fourier transform infrared (FTIR) spectroscopy have been used to identify the ligation state of ferrous heme iron for the H93G proximal cavity mutant of myoglobin in the absence of exogenous ligand on the proximal side. Preparation of the H93G mutant of myoglobin has been previously reported for a variety of axial ligands to the heme iron (e.g., substituted pyridines and imidazoles) [DePillis, G., Decatur, S. M., Barrick, D., and Boxer, S. G. (1994) J. Am. Chem. Soc. 116, 6981-6982]. The present study examines the ligation states of heme in preparations of the H93G myoglobin with no exogenous ligand. In the deoxy form of H93G, resonance Raman spectroscopic evidence shows water to be the axial (fifth) ligand to the deoxy heme iron. Analysis of the infrared C-O and Raman Fe-C stretching frequencies for the CO adduct indicates that it is six-coordinate with a histidine trans ligand. Following photolysis of CO, a time-dependent change in ligation is evident in both step-scan FTIR and saturation resonance Raman spectra, leading to the conclusion that a conformationally driven ligand switch exists in the H93G protein. In the absence of exogenous nitrogenous ligands, the CO trans effect stabilizes endogenous histidine ligation, while conformational strain favors the dissociation of histidine following photolysis of CO. The replacement of histidine by water in the five-coordinate complex is estimated to occur in < 5 micros. The results demonstrate that the H93G myoglobin cavity mutant has potential utility as a model system for studying the conformational energetics of ligand switching in heme proteins such as those observed in nitrite reductase, guanylyl cyclase, and possibly cytochrome c oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号