首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nanoparticles with optical absorbance in the near-infrared (NIR) region and a strong magnetic moment. Here, we present a novel protocol for synthesis of such hybrid nanoparticles that is based on an oil-in-water microemulsion method. The unique feature of the protocol described herein is synthesis of magneto-plasmonic nanoparticles of various sizes from primary blocks which also have magneto-plasmonic characteristics. This approach yields nanoparticles with a high density of magnetic and plasmonic functionalities which are uniformly distributed throughout the nanoparticle volume. The hybrid nanoparticles can be easily functionalized by attaching antibodies through the Fc moiety leaving the Fab portion that is responsible for antigen binding available for targeting.  相似文献   

2.
Noble metal nanoparticles hold great potential as optical contrast agents due to a unique feature, known as the plasmon resonance, which produces enhanced scattering and absorption at specific frequencies. The plasmon resonance also provides a spectral tunability that is not often found in organic fluorophores or other labeling methods. The ability to functionalize these nanoparticles with antibodies has led to their development as contrast agents for molecular optical imaging. In this review article, we present methods for optimizing the spectral agility of these labels. We discuss synthesis of gold nanorods, a plasmonic nanoparticle in which the plasmonic resonance can be tuned during synthesis to provide imaging within the spectral window commonly utilized in biomedical applications. We describe recent advances in our group to functionalize gold and silver nanoparticles using distinct antibodies, including EGFR, HER-2 and IGF-1, selected for their relevance to tumor imaging. Finally, we present characterization of these nanoparticle labels to verify their spectral properties and molecular specificity.  相似文献   

3.
Metallic nanoparticles of gold functionalized with oligonucleotides conventionally use a terminal thiol modification and have been used in a wide range of applications. Although readily available, the oligonucleotide–nanoparticle conjugates prepared in this way suffer from a lack of stability when exposed to a variety of small molecules or elevated temperatures. If silver is used in place of gold then this lack of stability is even more pronounced. In this study we report the synthesis of highly stabilized oligonucleotide–nanoparticle conjugates using a simple oligonucleotide modification. A modified solid support was used to generate 3′-thioctic acid modified oligonucleotides by treatment with an N-hydroxysuccimidyl ester of thioctic acid. Unusually, both gold and silver nanoparticles have been investigated in this study and show that these disulphide-modified oligonucleotide probes offer significant improvements in nanoparticle stability when treated with dithiothreitol (DTT) compared with monothiol analogues. This is a significant advance in oligonucleotide–nanoparticle conjugate stability and for the first time allows silver nanoparticles to be prepared that are more stable than standard gold-thiol functionalized nanoparticles. This opens up the possibility of using silver nanoparticles functionalized with oligonucleotides as an alternative to gold.  相似文献   

4.
In the field of nanotechnology, silver nanoparticles have been considered a promising antibacterial material for a century. The potential applications of graphene-based materials are increasingly recognized for their special physico-chemical and biological properties. In particular, graphene and graphene oxide as the foundation of nanocomposites have garnered much interest among researchers in many fields. In this review, we concentrate on different aspects of silver nanoparticle composites with graphene and graphene oxide, focusing on their synthesis methods, special characteristics, and antibacterial properties; we also briefly discuss limitations and future research.  相似文献   

5.
Mycoendophytes are the fungi that occur inside the plant tissues without exerting any negative impact on the host plant. They are most frequently isolated endophytes from the leaf, stem, and root tissues of various plants. Among all fungi, the mycoendophytes as biosynthesizer of noble metal nanoparticles (NPs) are less known. However, some reports showing efficient synthesis of metal nanoparticles, mainly silver nanoparticles and its remarkable antimicrobial activity against bacterial and fungal pathogens of humans and plants. The nanoparticles synthesized from mycoendophytes present stability, polydispersity, and biocompatibility. These are non-toxic to humans and environment, can be gained in an easy and cost-effective manner, have wide applicability and could be explored as promising candidates for a variety of biomedical, pharmaceutical, and agricultural applications. Mycogenic silver nanoparticles have also demonstrated cytotoxic activity against cancer cell lines and may prove to be a promising anticancer agent. The present review focuses on the biological synthesis of metal nanoparticles from mycoendophytes and their application in medicine. In addition, different mechanisms of biosynthesis and activity of nanoparticles on microbial cells, as well as toxicity of these mycogenic metal nanoparticles, have also been discussed.  相似文献   

6.
Antimicrobial activity of silver nanoparticles is gaining importance due its broad spectrum of targets in cell compared to conventional antimicrobial agents. In this context, a UV photo-reduction method was used for the synthesis and the nanoparticles were characterized by UV–Visible spectroscopy, transmission electron microscopy, atomic force microscopy and thermogravimetric analysis techniques. The antibacterial activity of the synthesized silver nanoparticles was evaluated both in liquid and solid growth media employing various susceptibility assays on Pseudomonas aeruginosa, a ubiquitous bacterium. The dose dependent growth suppression by nanoparticles was studied with well diffusion method. By broth dilution method, the minimum inhibitory concentration (MIC) was found to be 2 μg/ml. It was observed that the bactericidal effect depends both on nanoparticle concentration and number of bacteria present. In our study, we could demonstrate the complete antibiofilm activity of silver nanoparticles at a concentration as low as 1 μg/ml. Our observations substantiated the association of reactive oxygen species and cell membrane damage in the antibacterial mechanism of silver nanoparticles. Our findings suggested that these nanoparticles can be exploited towards the development of potential antibacterial coatings for various biomedical and environmental applications.  相似文献   

7.

A facile, straightforward, and low-cost method is proposed to synthesize gold@silver@gold core double-shell nanoparticles. The technique is a seed-mediated growth protocol that contains four steps of (1) gold seed synthesis, (2) gold seed growth, (3) silver layer coating through silver salt reduction, and (4) gold layer deposition via gold precursor reduction. The prepared nanoparticles had a narrow size distribution and the average particle size of 28 ± 1 nm. Cysteine was introduced to the nanoparticles solution as a coupling agent to assemble nanoparticles. Aggregation-induced two-photon photoluminescence enhancement of three types assembled nanoparticles, i.e., gold@silver@gold, gold@silver, and gold nanoparticles, was studied. It was observed that the assembled core double-shell nanoparticles presented huge enhancement in two-photon photoluminescence signal in comparison with two other nanoparticles. Moreover, the gold@silver@gold nanoparticle is a stable and biocompatible plasmonic nanosystem. This paper provides a novel candidate for two-photon photoluminescence excitation sensing and imaging for biomedical applications.

  相似文献   

8.

The design, development, and biomedical applications of phytochemical-based green synthesis of biocompatible colloidal gold nanoparticles (AuNPs) are becoming an emerging field due to several advantages (safer, eco-friendly, simple, fast, energy efficient, low-cost, and less toxic) over conventional chemical synthetic procedures. Biosynthesized colloidal gold nanoparticles are remarkably attractive in several biomedical applications including cancer theranostics due to small size, unusual physico-chemical properties, facile surface modification, high biocompatibility, and numerous other advantages. Of late, several researchers have investigated the biosynthesis and prospective applications (diagnostics, imaging, drug delivery, and cancer therapeutics) of AuNPs in health care and medicine. However, not a single review article is available in the literature that demonstrates the anti-cancer potential of biosynthesized colloidal AuNPs with detailed mechanistic study. In the present review article, we for the first time discuss the biointerface of colloidal AuNPs, plants, and cancer mainly (i) comprehensive mechanistic aspects of phytochemical-based synthesis of AuNPs; (ii) proposed anti-cancer mechanisms along with biomedical applications in diagnostics, imaging, and drug delivery; and (iii) key challenges for biogenic AuNPs as future cancer nanomedicine.

  相似文献   

9.
With the rapid development of nanotechnology, nanomaterials are now being used for cancer treatment. Although studies on the application of silver nanoparticles in cancer treatment are burgeoning, few studies have investigated the toxicology mechanisms of autophagy in cancer cells under exposure to sublethal silver nanoparticles. Here, we clarified the distinct mechanisms of silver nanoparticles for the regulation of autophagy in prostate cancer PC‐3 cells under sublethal exposure. Silver nanoparticle treatment caused lysosome injury, including the decline of lysosomal membrane integrity, decrease of lysosomal quantity, and attenuation of lysosomal protease activity, which resulted in blockage of autophagic flux. In addition, sublethal silver nanoparticle exposure activated AMP‐activated protein kinase/mammalian target of rapamycin‐dependent signaling pathway to modulate autophagy, which resulted from silver nanoparticles‐induced cell hypoxia and energy deficiency. Taken together, the results show that silver nanoparticles could regulate autophagy via lysosome injury and cell hypoxia in PC‐3 cells under sublethal dose exposure. This study will provide an experimental basis for the cancer therapy of nanomaterials.  相似文献   

10.
The development of new and effective drug delivery systems for cancer treatment represents one of the significant challenges facing biomedical technology in the last decade. Among the different methods of drug delivery, magnetic drug targeting, by enabling specific delivery of chemotherapeutic agents through the use of magnetic nanoparticles and magnetic field gradient, could be a promising approach. Recently, magnetic nanoparticles have attracted additional attention because of their potential as contrast agents for magnetic resonance imaging and heat mediators for cancer therapy. This review summarizes these approaches in the use of magnetic nanoparticles in biomedical applications and novel methods for their optimization.  相似文献   

11.
相比于超顺磁性纳米颗粒,具有涡旋磁畴的磁性纳米颗粒,由于独特的磁化闭合分布、较大的粒径尺寸及外加磁场中的磁化翻转特性,使得其兼具弱的颗粒间磁相互作用和更优异的磁学性能,在生物医学领域展现出了更好的应用优势和潜力.本综述结合近年来国内外对涡旋磁畴的研究及涡旋磁纳米颗粒在生物医学领域的报道,提出了一类新型的生物医用涡旋磁溶胶体系,并以涡旋磁氧化铁纳米盘和纳米环为例,介绍了涡旋磁纳米颗粒的化学合成,并着重论述了这类具有独特涡旋畴结构的纳米颗粒在磁共振成像、抗肿瘤治疗等生物医学应用上的最新研究进展.  相似文献   

12.
The interaction between peptide and silver nanoparticle surfaces has been increasingly of interest for bionanotechnology applications. To fully understand how to control such interactions, we have studied the optical properties of peptide-modified silver nanoparticles. However, the impacts of peptide binding motif upon the surface characteristics and physicochemical properties of nanoparticles remain not yet fully understood. Here, we have prepared sodium citrate-stabilized silver nanoparticles and coated with peptide IVD (ID3). These nanomaterials were characterized by UV-visible, transmission electron microscopy (TEM), and z-potential measurement. The results indicate that silver nanoparticles (AgNP)-peptide interface is generated using ID3 peptide and suggested that the reactivity of peptide is governed by the conformation of the bound peptide on the nanoparticle surface. The peptide-nanoparticle interactions could potentially be used to make specific functionality into the peptide capped nanomaterials and antibacterial applications.  相似文献   

13.

Silver nanoparticles are the most desirable nanoparticles broadly used in diverse fields. This study intends to investigate the anticancer properties of synthesized silver/Lactobacillus rhamnosus GG nanoparticles (Ag-LNPs) as a reducing and stabilizing agent in the synthesis process. To prepare silver/Lactobacillus rhamnosus GG nanoparticles, 1 mg/ml cell lysate of Lactobacillus rhamnosus GG and 1 mM silver nitrate solution were mixed and incubated for 72 h. XRD, FTIR, and TEM methods were used for nanoparticle characterization. MTT assay and annexin/PI staining were employed to analyze the toxicity and apoptotic cells levels of Ag-LNPs, respectively. TEM showed that these nanoparticles are spherical shaped about 233 nm in size. FTIR spectroscopy demonstrated that Ag-LNPs were functionalized with biomolecules. XRD pattern showed high purity and face-centered crystal structure of Ag-LNPs. MTT assay revealed that the percentages of HT-29 live cells significantly reduced in the high concentration of Ag-LNPs. Annexin/PI staining showed that these nanoparticles could lead HT-29 cells to apoptosis. This study showed the new Ag-LNP-synthesizing method using Lactobacillus rhamnosus GG as a cost-effective and efficient approach. Also, it showed that these nanoparticles can be considered as a potential active agent for biomedical applications and drug delivery due to their anticancer activities.

  相似文献   

14.
The medicinal and physicochemical properties of nanoscale materials are strong functions of the particle size and the materials used in their synthesis. The nanoparticle shape also contributes significantly to their medicinal properties. Several shapes ranging from oval, spherical, rods, to teardrop structures may be obtained by chemical methods. Triangular and hexagonal nanoparticles have been synthesized by using a pine cone extract (PCE). Here, we report the discovery that PCE, when reacted with silver nitrate ions, yields a high percentage of thin, flat, single-crystalline nanohexagonal and nanotriangular silver nanoparticles. The nanohexagonal and nanotriangular nanoparticles appear to grow by a process involving rapid reduction with assembly at room temperature at a high pH. The nanoparticles were characterized by UV–Vis absorption spectroscopy, SEM-EDS, TEM, FTIR, and X-ray diffraction analyses. The anisotropy of the nanoparticle shape results in large near-infrared absorption by the particles. Highly anisotropic particles are applicable in various fields, including agriculture and medicine. The obtained silver nanoparticles (Ag NPs) had significant antibacterial action on both Gram classes of bacteria associated with agriculture. Because the Ag NPs are encapsulated with functional group-rich PCE, they can be easily integrated in various applications.  相似文献   

15.
The synthesis of nanoparticles (NP) using algae has been underexploited and even unexplored. In recent times, there are few reports on the synthesis of NP using algae, which are being used as a bio-factory for the synthesis. Moreover, the algae are a renewable source, so that it could be effectively explored in the green synthesis of NP. Hence, this review reports on the biosynthesis of NP especially gold and silver NP using algae. The most widely reported NP from algae are silver and gold than any other metallic NP, which might be due to their enormous biomedical field applications. The NP synthesized by this method is mainly in spherical shape; the reports are revealing the fact that the cell free extracts are highly exploited for the synthesis than the biomass, which is associated with the problem of recovering the particles. Besides, mechanism involving in the reduction and stabilization is well demonstrated to deepen the knowledge towards enhancement possibilities for the synthesis and applications.  相似文献   

16.
Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.  相似文献   

17.
Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV–visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM–EDS. The obtained silver nanoparticles were used to study their antimicrobial activity.  相似文献   

18.
The localized surface plasmon resonance of a silver nanoparticle is responsible for its ability to strongly absorb and scatter light at specific wavelengths. The absorption and scattering spectra (i.e., plots of cross sections as a function of wavelength) of a particle can be predicted using Mie theory (for a spherical particle) or the discrete dipole approximation method (for particles in arbitrary shapes). In this review, we briefly discuss the calculated spectra for silver nanoparticles with different shapes and the synthetic methods available to produce these nanoparticles. As validated in recent studies, there is good agreement between the theoretically calculated and the experimentally measured spectra. We conclude with a discussion of new plasmonic and sensing applications enabled by the shape-controlled nanoparticles.  相似文献   

19.
Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications.  相似文献   

20.
Gravitational force and shear forces induce various changes in gene expression and metabolite production of microorganisms. Previous reports have shown that there are differences in the expression of different sets of proteins and enzymes under microgravity conditions compared to normal gravity. The aim of this study is to utilize culture filtrates of Penicillium chrysogenum grown under microgravity and normal conditions to synthesize silver nanoparticles and to examine whether there is any difference between their physiochemical and biological function. Synthesized nanoparticles were characterized using UV–Vis spectroscopy, FTIR, XRD, and TEM. Biological functional studies such as antimicrobial activity, cytotoxic studies, and anticancer activity were carried out. Antimicrobial activity was tested using antibiotic susceptibility testing by Kirby–Bauer method and cytotoxicity tests were carried out using 3T3-L1 normal fibroblasts cells and Hep-G2 cancer cell lines. Interestingly, our results indicated that microgravity-synthesized silver nanoparticles possess enhanced antibacterial activity and cytotoxic effect against cancer cells compared to normal gravity-synthesized silver nanoparticle. This work highlighted the importance of gravitational vector on the fungal enzyme profiles and their role in silver nanoparticle synthesis with enhanced biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号