首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Studies in vitro have not adequately resolved the role of intronic and upstream elements in regulating expression of the alpha 1(I) collagen gene. To address this issue, we generated 12 separate lines of transgenic mice with alpha 1(I) collagen-human growth hormone (hGH) constructs containing different amounts of 5'-flanking sequence, with or without most of the first intron. Transgenes driven by 2.3 kb of alpha 1(I) 5'-flanking sequence, whether or not they contained the first intron, were expressed at a high level and in a tissue-specific manner in seven out of seven independent lines of transgenic mice. In most tissues, the transgene was expressed at levels approaching that of the endogenous alpha 1(I) gene and was regulated identically with the endogenous gene as animals aged. However, in lung, expression of the transgene was anomalously high, and in muscle, expression was lower than that of the endogenous gene, suggesting that in these tissues other regions of the gene may participate in directing appropriate expression. Five lines of mice were generated containing transgenes driven by 0.44 kb of alpha 1(I) 5'-flanking sequence (with or without the first intron), and expression was detected in four out of five of these lines. The level of expression of the 0.44-kb constructs in the major collagen-producing tissues was 15- to 500-fold lower than that observed with the longer 2.3-kb promoter. While transgenes containing the 0.44-kb promoter and the first intron retained a modest degree of tissue-specific expression, those without the first intron lacked tissue specificity and were poorly expressed in all tissues except lung. These results contribute to our understanding of the role of the first intron in regulating alpha1(I) gene expression and identify a region, upstream of the basal alpha1(I) promotor, which is necessary for full tissue-specific, developmentally regulated expression of the alpha1(I) collagen gene.  相似文献   

7.
8.
9.
10.
11.
We have characterized the role of c-Myb and B-Myb in the regulation of human type I collagen alpha2 chain gene expression in fibroblastic cells. We have identified four Myb-binding sites (MBSs) in the promoter. Transactivation assays on wild type and mutant promoter-reporter constructs demonstrated that c-Myb, but not B-Myb, can transactivate the human type I collagen alpha 2 chain gene promoter via the MBS-containing region. Electrophoretic mobility shift assay experiments showed that c-Myb specifically binds to each of the four MBS; however, the mutagenesis of site MBS-4 completely inhibited transactivation by c-Myb, at least in the full-length promoter. In agreement with these results, c-myb(-/-) mouse embryo fibroblasts (MEFs) showed a selective lack of expression of type I collagen alpha 2 chain gene but maintained the expression of fibronectin and type III collagen. Furthermore, transforming growth factor-beta induced type I collagen alpha 2 chain gene expression in c-myb(-/-) MEFs, implying that the transforming growth factor-beta signaling pathway is maintained and that the absence of COL1A2 gene expression in c-myb(-/-) MEFs is a direct consequence of the lack of c-Myb. The demonstration of the importance of c-Myb in the regulation of the type I collagen alpha 2 chain gene suggests that uncontrolled expression of c-Myb could be an underlying mechanism in the pathogenesis of several fibrotic disorders.  相似文献   

12.
13.
14.
15.
Genes whose expression patterns are altered in a cell line immortalized by mutant p53 were isolated by differential screening of a cDNA library. Levels of alpha 1 (I) collagen mRNA were reduced in the majority of immortalized cell lines which greatly overproduced the transfected mutant p53. This may reflect a co-selection during the establishment of the cell lines, rather than a direct effect of p53 on alpha 1 (I) collagen gene expression. On the other hand, a more direct relationship could be demonstrated between the expression of activated ras and a reduction in alpha 1 (I) collagen mRNA. Such reduction could partially account for the effects of ras on cell shape and cell proliferation.  相似文献   

16.
The methyl-sensitive restriction endonucleases HpaII and HhaI as well as the methyl-insensitive enzyme MspI were used to examine the methylation status of the pro-alpha 1(II) collagen gene of cartilage. Five different cell types with varying abilities to express type II collagen were studied. Chick embryo chondrocytes express type II collagen, while 5-bromodeoxyuridine-treated chondrocytes, retinoic acid-treated chondrocytes, chick embryo fibroblasts, and erythrocytes do not synthesize type II collagen. Both cDNA and genomic probes for the pro-alpha 1(II) collagen gene were used, covering the complete 3' end of the gene and its flanking sequences. The pro-alpha 1(II) collagen DNA was undermethylated in chondrocytes, compared to either fibroblasts or erythrocytes. However, the methylation of the 5-bromodeoxyuridine-treated and retinoic acid-treated chondrocytes was identical to that of control chondrocytes. The methylation pattern of two regions of the gene of the pro-alpha 2(I) collagen chain was identical in all cell types tested, whether or not the gene was expressed. Our results indicate that genes for these collagen chains differ in their methylation pattern. The type II collagen gene shows reduced methylation in expressing cartilage, but does not acquire an increase in methylation in "dedifferentiated" chondrocytes. The changes in DNA methylation that occur during cell differentiation do not appear to be sufficient to explain gene activation and deactivation.  相似文献   

17.
Ribozymes are a promising agent for the gene therapy of dominant negative genetic disorders by allele-specific mRNA suppression. To test allele-specific mRNA suppression in cells, we used fibroblasts from a patient with osteogenesis imperfecta (OI). These cells contain a mutation in one α1(I) collagen allele which both causes the skeletal disorder and generates a novel ribozyme cleavage site. In a preliminary in vitro assay, ribozymes cleaved mutant RNA substrate whereas normal substrate was left intact. For the studies in cell culture we generated cell lines stably expressing active (AR) and inactive (IR) ribozymes targeted to mutant α1(I) collagen mRNA. Quantitative competitive RT–PCR analyses of type I collagen mRNA, normalized to β-actin expression levels, revealed that the level of mutant α1(I) collagen mRNA was significantly decreased by ~50% in cells expressing AR. Normal α1(I) collagen mRNA showed no significant reduction when AR or IR was expressed from the pHβAPr-1-neo vector and a small (10–20%) but significant reduction when either ribozyme was expressed from the pCI.neo vector. In clonal lines derived from cells expressing AR the level of ribozyme expression correlated with the extent of reduction in the mutant:normal α1(I) mRNA ratio, ranging from 0.33 to 0.96. Stable expression of active ribozyme did not affect cell viability, as assessed by growth rates. Ribozyme cleavage of mutant mRNA results in a reduction in mutant type I collagen protein, as demonstrated by SDS–urea–PAGE. This is the first report of ribozymes causing specific suppression of an endogenous mutant mRNA in cells derived from a patient with a dominant negative genetic disorder.  相似文献   

18.
19.
Cultured skin fibroblasts from seven consecutive cases of lethal perinatal osteogenesis imperfecta (OI) expressed defects of type I collagen metabolism. The secretion of [14C]proline-labelled collagen by the OI cells was specifically reduced (51-79% of control), and collagen degradation was increased to twice that of control cells in five cases and increased by approx. 30% in the other two cases. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that four of the OI cell lines produced two forms of type I collagen consisting of both normally and slowly migrating forms of the alpha 1(I)- and alpha 2(I)-chains. In the other three OI cell lines only the 'slow' alpha (I)'- and alpha 2(I)'-chains were detected. In both groups inhibition of the post-translational modifications of proline and lysine resulted in the production of a single species of type I collagen with normal electrophoretic migration. Proline hydroxylation was normal, but the hydroxylysine contents of alpha 1(I)'- and alpha 2(I)'-chains purified by h.p.l.c. were greater than in control alpha-chains. The glucosylgalactosylhydroxylysine content was increased approx. 3-fold while the galactosylhydroxylysine content was only slightly increased in the alpha 1(I)'-chains relative to control alpha 1(I)-chains. Peptide mapping of the CNBr-cleavage peptides provided evidence that the increased post-translational modifications were distributed throughout the alpha 1(I)'- and alpha 2(I)'-chains. It is postulated that the greater modification of these chains was due to structural defects of the alpha-chains leading to delayed helix formation. The abnormal charge heterogeneity observed in the alpha 1 CB8 peptide of one patient may reflect such a structural defect in the type I collagen molecule.  相似文献   

20.
Cell lines were established from rabbit articular chondrocytes following transfection with a plasmid encoding SV40 early function genes. This resulted in cell immortalization (130 passages have been completed for the oldest cell line) with acquisition of characteristics of partial transformation such as reduced serum requirements for normal and clonal growth. The immortalized chondrocytes, called SVRAC, did not form multilayer foci when maintained in postconfluent culture. Their ability to form colonies in soft agar was not increased in comparison with normal chondrocytes, but they were weakly tumorigenic in nude mice. SVRAC lost the ability to synthesize type II collagen and Alcian blue-stainable matrix, which are markers of the differentiated chondrocyte phenotype, and synthesized predominantly type I collagen. Studies of collagen gene expression showed that pro alpha 1 (II) mRNA was undetectable, whereas pro alpha 1 (I) collagen mRNA was expressed even in late passage cultures. Unlike normal dedifferentiated chondrocytes, SVRAC were unable to re-express the differentiated phenotype in response to tridimensional culture or microfilament depolymerization. Cell lines obtained from chondrocytes transfected either in primary culture or just after release of cells from cartilage displayed the same behaviour. Thus SV40 early genes were able to immortalize rabbit articular chondrocytes, but the resulting cell lines displayed an apparently irreversibly dedifferentiated phenotype. These cell lines can be used as models to identify regulatory pathways that are required for the maintenance or reexpression of differentiated function in chondrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号