共查询到20条相似文献,搜索用时 11 毫秒
1.
Ultrastructure of the rat mesencephalic trigeminal nucleus. 总被引:1,自引:0,他引:1
2.
3.
4.
5.
6.
7.
Carbon monoxide (CO) and nitric oxide (NO) are two endogenously produced gases that can function as second messenger molecules in the nervous system. The enzyme systems responsible for CO and NO biosynthesis are heme oxygenase (HO) and nitric oxide synthase (NOS), respectively. The present study was undertaken to examine the distribution of HO-2 and NOS of the trigeminal primary afferent neurons of the rat, located in the trigeminal ganglion (TG) and mesencephalic trigeminal nucleus (MTN), using histochemistry and immunohistochemistry. NADPH-d staining was found in most neurons in TG. The intensely NADPH-d-stained neurons were small- or medium-sized, while the large-sized neurons were less intensely stained. Immunocytochemistry for HO-2 revealed that almost all neurons in TG expressed HO-2, but they did not appear cell size-specific pattern. NADPH-d and HO-2 positive neurons appeared the same pattern, which was NADPH-d activity and HO-2 expression progressively declined from the caudal to rostral part of the MTN. A double staining revealed that the colocalization of NADPH-d/HO-2 neurons was 97.3% in TG and 97.6% in MTN. The remarkable parallels between NADPH-d and HO-2 suggest that NO and CO are likely neurotransmitters and mediate the orofacial nociception and sensory feedback of the masticatory reflex arc together. 相似文献
8.
G Faccioli G Lalatta Costerbosa M L Lucchi R Bortolami 《Archives italiennes de biologie》1985,123(1):43-62
The mesencephalic trigeminal nucleus (MTN) cells of both young and adult ducks as well as of rabbits were investigated by scanning electron microscope. The rabbit showed only ovoid unipolar cells, while the duck also presented polyhedral cells. Few of these latter revealed processes originating from their surface and were recognized as multipolar cells. Some differences between the MTN cell surface of young and adult ducks were noticed. Synaptic bulbs were observed on the MTN cells in both duck and rabbit. 相似文献
9.
Properties of neurons of the trigeminal nucleus caudalis, with projections into the facial nucleus, were investigated in cats by a microelectrode technique. These neurons were found to be located mainly in the ventral parts of the trigeminal nucleus caudalis and in the adjacent lateral reticular formation. Monosynaptic and polysynaptic activation of efferent neurons of the trigeminal nucleus caudalis was found in response to pyramidal impulsation. Repeated discharges were recorded in the test neurons in response to stimulation of their axons, to direct stimulation of the trigeminal nucleus caudalis, and also to stimulation of the pyramidal tract and facial nerve. The synaptic mechanisms of regulation of motoneuron activity in the facial nerve nucleus are discussed.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 264–269, May–June, 1981. 相似文献
10.
Mineff EM Popratiloff A Usunoff KG Marani E 《Archives of physiology and biochemistry》1998,106(3):203-209
The mesencephalic trigeminal nucleus is composed of large (35-50 microns) pseudo-unipolar neurons. Closely associated with them are small (< 20 microns) multipolar neurons. An unique peculiarity of the pseudo-unipolar perikarya is that they receive synaptic input from various sources, which sets them apart from the dorsal root and cranial nerves sensory ganglia neurons. Whereas glutamate is the best neurotransmitter candidate in pseudo-unipolar neurons, glutamatergic input into them has not yet been reported. AMPA glutamate receptors are implicated in fast excitatory glutamatergic synaptic transmission. They have been localized ultrastructurally at postsynaptic sites. This study demonstrates that the pseudo-unipolar neurons of the mesencephalic trigeminal nucleus express AMPA glutamate receptor subunits, which indicates that these neurons receive glutamatergic input. Serial sections from the rostral pons and midbrain of Sprague-Dawley rats were immunostained with antibodies against C-terminus of AMPA receptor subunits: GluR1, GluR2/3, and GluR4. The immunoreaction was visualized with avidin-biotin-peroxidase/DAB for light and electron microscopy. With GluR1 antibody only the smallest multipolar neurons were recognized as immunopositive within the mesencephalic trigeminal nucleus. GluR2/3 stained the pseudo-unipolar neurons intensely within the entire rostro-caudal extent of the nucleus. In addition the former antibody stained small multipolar neurons within the mesencephalic trigeminal nucleus, though with somewhat larger dimensions than those immunoreactive for GluR1. Whereas the overall staining with GluR4 antibody was scant, those pseudo-unipolar neurons that were stained, were strongly stained. Furthermore, a considerable number of microglial cells within and surrounding the mesencephalic trigeminal nucleus displayed very intense immunoreactivity for GluR4. These results are discussed in the light of the glutamate receptor subunit composition. 相似文献
11.
12.
13.
14.
The distribution of synapses and synaptic bouton types in the mesencephalic trigeminal (Me5) nucleus was examined in a quantitative electron-microscopical study. Of 588 terminal boutons that were counted in the compact caudal part of the Me5 nucleus, less than 8% formed synapses on the somata of the predominantly unipolar Me5 neurons. About 79% formed synapses on fibres located between the Me5 somata, while about 13% of the vesicle-containing terminals had no clear synaptic specialization. All of these non-synaptic terminals were G type boutons, with pleomorphic and large characteristic dense-core vesicles. Approximately 60% of the axosomatic synapses were of the S type, containing spherical vesicles and an asymmetrical or symmetrical synaptic specialization. About 20, respectively 15% of the axosomatic synapses, were of the F, respectively P type; both are symmetrical synapse types containing either a majority of flat or pleomorphic vesicles. Less than 10% of the axosomatic synapses were of the G type. Although some proportional differences were noted, an almost similar bouton type distribution pattern was found for the axodendritic synapses suggesting that the axosomatic and axodendritic synapses in the Me5 nucleus are part of the same afferent fibre plexus covering the Me5 nucleus. 相似文献
15.
Horseradish peroxidase (HRP) was injected into either a single maxillary or a single mandibular primary (deciduous) cuspid tooth of 8- to 10-week-old kittens. The large apex of the primary cuspid allowed for some leakage of the HRP from the pulpal chamber to the periodontal ligament (PDL). Thus, the injection procedure resulted in the application of HRP to the PDL as well as to the pulpal tissues. The transganglionic transport of HRP resulted in discrete terminal fields within the spinal trigeminal nucleus (STN) and the main sensory nucleus (MSN). These projections were clearly somatotopically organized within the STN, but less so within MSN. Within pars oralis (PO) and pars interpolaris (PI), mandibular cuspid dental structures (MdCDS) were represented in a dorsal position relative to the maxillary cuspid dental structures (MxCDS), whereas within pars caudalis (PC) and the adjacent reticular formation the somatotopic representation was not dorsoventral, but rather mediolateral, with the MdCDS represented more medially than the MxCDS. Areas of overlap between MxCDS and MdCDS were found within MSN and to a lesser degree within the superficial laminae of PC. In addition, the fiber pathway leading to labeled somata in the mesencephalic trigeminal (Mes V) nucleus was clearly identified. The majority of the fibers traced to the Mes V nucleus exited the spinal trigeminal tract at the level of the transition from PO to the MSN and traversed the nuclear region in a position dorsal to and separate from the trigeminal motor tract. As in STN, fibers within the caudal Mes V tract appeared to be somatotopically organized, with the fibers from the MdCDS generally more dorsal than the ones from the MxCDS. Labeled fibers, some with terminal arbors, were also identified in close association with the trigeminal motor tract. The findings show a complex pattern of central representation in the immature feline central nervous system for deciduous dental structures. 相似文献
16.
K N Chen C Y Wen J Y Shieh 《Proceedings of the National Science Council, Republic of China. Part B, Life sciences》1989,13(4):298-306
The neurons innervating the muscles of mastication were labeled retrogradely with horseradish peroxidase (HRP) which was injected into each muscle of mastication of the rats. The TMB-HRP labeled neurons were for light microscopic and DAB-HRP labeled neurons for electron microscopic study. Many HRP-labeled mesencephalic neurons were observed in the trigeminal mesencephalic nucleus (TMEN) after HRP injection in jaw-closing muscles (JCM). On the other hand, no labeled neurons were found following the application of HRP to the lateral pterygoid and the anterior belly of the digastric muscles, with the exception of a very few from the mylohyoid muscle. The latter three muscles were jaw-opening muscles (JOM). The mesencephalic neurons of each JCM in the TMEN were rather randomly distributed, although they were concentrated more in the caudal region of this nucleus. These neurons were typically unipolar, with spherical to oval perikarya. Each neuron had a single process which coursed caudolaterally to join the mesencephalic tract of the trigeminal nerve. Ultrastructurally, mesencephalic masticatory neurons had a rather regular nucleus locating either centrally or eccentrically in the perikaryon, which is rather plump. The cytoplasm was endowed with very well developed Golgi apparatus and rough endoplasmic reticulum. Neurofilaments, varying in number, intermingled mostly with the Golgi apparatus in the cytoplasm. Somatic spines were frequently observed; however, synapses abutting upon the soma were few. Macula adherens-like structures were occassionally encountered in the contact zone between two cells. 相似文献
17.
The trigeminal ganglion (TrG) and mesencephalic trigeminal nucleus (MTN) neurons are involved in the transmission of orofacial sensory information. The presence of nitric oxide (NO), a putative neurotransmitter substance in the nervous system, was examined in the cat TrG and MTN using nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and nitric oxide synthase (NOS) immunohistochemistry. In the TrG, where the majority of the trigeminal primary afferent perikarya are located, most of the intensely NADPH-d/ NOS-stained cells were small in size and distributed randomly throughout the ganglion. The medium-sized neurons were moderately stained. A plexus of pericellular varicose arborizations around large unstained ganglion cells and densely stained fibers in-between could also be observed. In the caudal part of the MTN, both NADPH-d activity and NOS immunoreactivity was present in MTN neurons. In addition, a few scattered NADPH-d/NOS-containing neurons were found in the mesencephalic-pontine junction part of the nucleus. In contrast, only nerve fibers and their terminals were present at a more rostral level in the mid- and rostral MTN. MTN neuronal perikarya were enveloped in fine basket-like NADPH-d/ NOS-positive networks. Differential expression patterns of NOS and its marker NADPH-d suggest that trigeminal sensory information processing in the cat MTN is controlled by nitrergic input through different mechanisms. We introduce the concept that NO can act as a neurotransmitter in mediating nociceptive and proprioceptive information from periodontal mechanoreceptors but may also participate in modulating the activity of jaw-closing muscle afferent MTN neurons. 相似文献
18.
The effect of a single intracerebroventricular injection of colchicine on the distribution of organelles in neurons of the mesencephalic nucleus of the trigeminal nerve, the inferior colliculus and the deep cerebellar nuclei was studied. In the mesencephalic nucleus of the trigeminal nerve colchicine produced a dramatic accumulation of neurofilament bundles in the soma of these neurons and did not produce a reduction in the number of lysosomes. In other neuronal populations studied, colchicine produced neurofilament bundles in the dendrites and a reduction of lysosomes from the soma of neurons. 相似文献
19.