首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When crossing the genetically marked yeast strains obtained from the Gif collection we observed the appearance of haploid nucleo-cytoplasmic hybrids carrying the 3 nuclear markers of the ρ parent and the mitochondrial markers (rho+ ER CR) of the other parent. The frequency of such cytoduction was about 1 per cent. The mitochondrial markers ER and CR were transmited to cytoductants together and did not segregate. The possible mechanisms of the cytoduction and its significance are discussed.  相似文献   

2.
Summary A novel and efficient genetic procedure is described for generating mitochondrial mutants of the green alga Chlamydomonas reinhardtii. The development of a mutagenesis procedure using manganese cations and the application of cytoduction techniques resulted in a combined approach for the generation and analysis of mitochondrial mutants. Although mitochondrial mutations are inherited in sexual crosses from the minus mating type parent, the cytoduction technique can be used to transfer mitochondrial mutations into recipient strains with different genetic backgrounds, irrespective of their mating type. Cytoduction allows the transfer of mitochondrial markers from diploid to haploid cells also, which is of great benefit since diploid cells do not germinate in C. reinhardtii. We report here the isolation and characterisation of eight mutants, which are resistant to the antibiotics myxothiazol and mucidin. The mutants all have point mutations in the mitochondrial gene for apocytochrome b. Using in vitro-amplified cytb gene fragments as probes for direct DNA sequencing, three different types of single base pair substitutions were revealed in all mutants tested. In particular, amino acid substitutions in the mutant apocytochrome b polypeptide have been identified at residues 129, 132 and 137, which have been implicated in forming part of an antibiotic-binding niche. The amino acid substitution at position 132 has not been so far described for mutant apocytochrome b in any other organism, prokaryotic or eukaryotic. The genetic approach presented here confirms C. reinhardtii as a model system that is unique among plant cells.  相似文献   

3.
Summary When crossing the haploid cells of genetically marked yeast strains we observed the appearance of both normal diploid zygotes and haploid nuclear cytoplasmic hybrids. The latter had the nuclear markers of one and the cytoplasmic marker (rho+) of the other parent. The autonomous cytoplasmic factor transfer was termed as cytoduction. Cytoduction is supposed to be the abortive form of yeast cell mating. Only about 1% of cytoductants is usually observed.Cytoduction can be used as a simple test on cytoplasmic determination of some characters. We observed the transfer into cytoductant cells of not only rho+ marker but of resistance factors to antibiotics (erythromycin, neomycin) and killer factor as well. Cytoduction can be applied towards constructing strains having the identical nucleus genotype with mitochondria and other cytoplasmic factors of different origin.In crossing strains with doubly marked mitochondria recombination of mitochondrial markers in cytoductant haploid cells was observed, the pattern of which was similar to that of mitochondrial recombination in normal zygotes.  相似文献   

4.
5.
Saturated free fatty acids (FFAs) have been implicated in the increase of oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, autophagy, and insulin resistance (IR) observed in skeletal muscle. Previously, we have shown that palmitate-induced mitochondrial DNA (mtDNA) damage triggers mitochondrial dysfunction, mitochondrial reactive oxygen species (mtROS) production, apoptosis and IR in L6 myotubes. The present study showed that mitochondrial overexpression of human 8-oxoguanine DNA glycosylase/AP lyase (hOGG1) decreased palmitate-induced carbonylation of proteins in mitochondria. Additionally, we found that protection of mtDNA from palmitate-induced damage significantly diminished markers of both ER stress and autophagy in L6 myotubes. Moreover, we observed that the addition of ROS scavenger, N-acetylcystein (NAC), to palmitate diminished both ER stress and autophagy markers mimicking the effect of mitochondrial overexpression of hOGG1. This is the first study to show that mtDNA damage is upstream of palmitate-induced ER stress and autophagy in skeletal muscle cells.  相似文献   

6.

Aims

The purpose of the study was to establish if enzyme activities from key metabolic pathways and levels of markers of oxidative damage to proteins and lipids differed between distinct liver mitochondrial sub-populations, and which specific sub-populations contributed to these differences.

Main methods

Male C57BL/6J mice were fed non-purified diet for one month then separated into two groups, control and calorie-restricted (CR). The two groups were fed semi-purified diet (AIN93G), with the CR group receiving 40% less calories than controls. After two months, enzyme activities and markers of oxidative damage in mitochondria were determined.

Key findings

In all mitochondrial sub-populations, enzyme activities and markers of oxidative damage, from control and CR groups, showed a pattern of M1 > M3 > M10. Higher acyl-CoA dehydrogenase (β-oxidation) and β-hydroxybutyrate dehydrogenase (ketogenesis) activities and lower carbonyl and TBARS levels were observed in M1 and M3 fractions from CR mice. ETC enzyme activities did not show a consistent pattern. In the Krebs cycle, citrate synthase and aconitase activities decreased while succinate dehydrogenase and malate dehydrogenase activities increased in the M1 mitochondria from the CR versus control mice.

Significance

CR does not produce uniform changes in enzyme activities or markers of oxidative damage in mitochondrial sub-populations, with changes occurring primarily in the heavy mitochondrial populations. Centrifugation at 10,000 g to isolate mitochondria likely dilutes the mitochondrial populations which show the greatest response to CR. Use of lower centrifugal force (3000 g or lower) may be beneficial for some studies.  相似文献   

7.
8.

Background

A high-calorie (HC) diet induces renal injury and promotes aging, and calorie restriction (CR) may ameliorate these responses. However, the effects of long-term HC and CR on renal damage and aging have been not fully determined. Autophagy plays a crucial role in removing protein aggregates and damaged organelles to maintain intracellular homeostasis and function. The role of autophagy in HC-induced renal damage is unknown.

Methods

We evaluated the expression of LC3/Atg8 as a marker of the autophagosome; p62/SQSTM1; polyubiquitin aggregates as markers of autophagy flux; Ambra1, PINK1, Parkin and Bnip3 as markers of mitophagy; 8-hydroxydeoxyguanosine (8-OHdG) as a marker of DNA oxidative damage; and p16 as a marker of organ aging by western blot and immunohistochemical staining in the kidneys of 24-month-old Fischer 344 rats. We also observed mitochondrial structure and autolysosomes by transmission electron microscopy.

Results

Expression of the autophagosome formation marker LC3/Atg8 and markers of mitochondrial autophagy (mitophagy) were markedly decreased in the kidneys of the HC group, and markedly increased in CR kidneys. p62/SQSTM1 and polyubiquitin aggregates increased in HC kidneys, and decreased in CR kidneys. Transmission electron microscopy demonstrated that HC kidneys showed severe abnormal mitochondrial morphology with fewer autolysosomes, while CR kidneys exhibited normal mitochondrial morphology with numerous autolysosomes. The level of 8-hydroxydeoxyguanosine was increased in HC kidneys and decreased in CR kidneys. Markers of aging, such as p16 and senescence-associated-galactosidase, were increased significantly in the HC group and decreased significantly in the CR group.

Conclusion

The study firstly suggests that HC diet inhibits renal autophagy and aggravates renal oxidative damage and aging, while CR enhances renal autophagy and ameliorates oxidative damage and aging in the kidneys.  相似文献   

9.
V P Stepanova  I A Zakharov 《Genetika》1979,15(7):1177-1185
Effects of gamma- and UV-irradiation of one parent on progenies of yeast crosses are studied. In the crosses of the type: p+ a alc4 X p-alpha ade2 (alc4--nuclear respiration deficiency) zygotic colonies (white) and haploid p+ cytoductant colonies (red) were scored. The irradiation of p+ parent increases the cytoductant frequency up to 17%. When both parents are radiation-sensitive (xrs1, allelic to rad54), the frequency of cytoduction reaches 90%. Crosses p+xrs1 X p-xrs+ or p+xrs+ X p-xrs1 are similar to crosses of wild types. The same results were observed in the case of xrs4 mutants as well as for UV-irradiation. In the progenies of crosses irradiated p+ a alc4 (xrs+ or xrs1) X non-irradiated p-alpha ade2 ura (xrs+ or xrs1) the genotype of red colonies was analysed: in most cases (82.3%-99.8%) they were p+ alpha ade2 ura, that was true haploid cytoductants. It is concluded that irradiation induces particular damages of yeast nuclei leading to a block of normal karyogamy and thus to a cytoductant formation. The highest frequency of cytoduction was observed in crosses of radiosensitive mutants.  相似文献   

10.
11.
An approach to the study of nuclear-mitochondrial interactions is reported. A number of spontaneous mutations compensating the respiratory deficiency in nuclear ribosomal suppressor mutants sup1 and sup2 were obtained and analysed. Among mutations analysed, mitochondrial as well as nuclear ones were found. Mitochondrial mutations neutralizing the expression of nuclear mutations were identified using the cytoduction test and their meiotic inheritance. The interaction of these mutations with sup1 and sup2 mutations resulting in restoration of respiratory competence was gene and allele nonspecific. Earlier we proposed that the respiratory deficiency of sup1 and sup2 mutants reflects the participation of sup1 and sup2 proteins not only in cytoplasmic, but also in mitochondrial translation. The interactions revealed open up the possibility of experimental examination of this hypothesis by means of identification of mitochondrial genes bearing compensating mutations.  相似文献   

12.
In Saccharomyces cerevisiae, previous studies on the inheritance of mitochondrial genes controlling antibiotic resistance have shown that some crosses produce a substantial number of uniparental zygotes, which transmit to their diploid progeny mitochondrial alleles from only one parent. In this paper, we show that uniparental zygotes are formed especially when one parent (majority parent) contributes substantially more mitochondrial DNA molecules to the zygote than does the other (minority) parent. Cellular contents of mitochondrial DNA (mtDNA) are increased in these experiments by treatment with cycloheximide, alpha-factor, or the uvsp5 nuclear mutation. In such a biased cross, some zygotes are uniparental for mitochondrial alleles from the majority parent, and the frequency of such zygotes increases with increasing bias. In two- and three-factor crosses the cap1, ery1, and oli1 loci behave coordinately, rather than independently; minority markers tend to be transmitted or lost as a unit, suggesting that the uniparental mechanism acts on entire mtDNA molecules rather than on individual loci. This rules out the possibility that uniparental inheritance can be explained by the conversion of minority markers to the majority alleles during recombination. Exceptions to the coordinate behavior of different loci can be explained by marker rescue via recombination. Uniparental inheritance is largely independent of the position of buds on the zygote. We conclude that it is due to the failure of minority markers to replicate in some zygotes, possibly involving the rapid enzymatic destruction of such markers. We have considered two general classes of mechanisms: (1) random selection of molecules for replication, as for example by competition for replicating sites on a membrane; and (2) differential marking of mtDNA molecules in the two parents, possibly by modification enzymes, followed by a mechanism that "counts" molecules and replicates only the majority type. These classes of models are distinguished genetically by the fact that the first predicts that the output frequency of a given allele among the progeny of a large number of zygotes will approximately equal the average input frequency of that allele, while the second class predicts that any input bias will be amplified in the output. The data suggest that bias amplification does occur. We hypothesize that maternal inheritance of mitochondrial or chloroplast genes in many organisms may depend upon a biased input of organelle DNA molecules, which usually favors the maternal parent, followed by failure of the minority (paternal) molecules to replicate in many or all zygotes.  相似文献   

13.
Calorie restriction (CR) without malnutrition increases maximal life span in diverse species. It has been proposed that reduction in energy expenditure and reactive oxygen species (ROS) production could be a mechanism for life span extension with CR. As a step toward testing this theory, mitochondrial proton leak, H2O2 production, and markers of oxidative stress were measured in liver from FBNF1 rats fed control or 40% CR diets for 12 or 18 mo. CR was initiated at 6 mo of age. Proton leak kinetics curves, generated from simultaneous measures of oxygen consumption and membrane potential, indicated a decrease in proton leak after 18 mo of CR, while only a trend toward a proton leak decrease was observed after 12 mo. Significant shifts in phosphorylation and substrate oxidation curves also occurred with CR; however, these changes occurred in concert with the proton leak changes. Metabolic control analysis indicated no difference in the overall pattern of control of the oxidative phosphorylation system between control and CR animals. At 12 mo, no significant differences were observed between groups for H2O2 production or markers of oxidative stress. However, at 18 mo, protein carbonyl content was lower in CR animals, as was H2O2 production when mitochondria were respiring on either succinate alone or pyruvate plus malate in the presence of rotenone. These results indicate that long-term CR lowers mitochondrial proton leak and H2O2 production, and this is consistent with the idea that CR may act by decreasing energy expenditure and ROS production.  相似文献   

14.
The hepatitis C virus (HCV) core protein represents the first 191 amino acids of the viral precursor polyprotein and is cotranslationally inserted into the membrane of the endoplasmic reticulum (ER). Processing at position 179 by a recently identified intramembrane signal peptide peptidase leads to the generation and potential cytosolic release of a 179-amino-acid matured form of the core protein. Using confocal microscopy, we observed that a fraction of the mature core protein colocalized with mitochondrial markers in core-expressing HeLa cells and in Huh-7 cells containing the full-length HCV replicon. Subcellular fractionation confirmed this observation and showed that the core protein associates with purified mitochondrial fractions devoid of ER contaminants. The core protein also fractionated with mitochondrion-associated membranes, a site of physical contact between the ER and mitochondria. Using immunoelectron microscopy and in vitro mitochondrial import assays, we showed that the core protein is located on the mitochondrial outer membrane. A stretch of 10 amino acids within the hydrophobic C terminus of the processed core protein conferred mitochondrial localization when it was fused to green fluorescent protein. The location of the core protein in the outer mitochondrial membrane suggests that it could modulate apoptosis or lipid transfer, both of which are associated with this subcellular compartment, during HCV infection.  相似文献   

15.
1. Several nuclear mutants have been isolated which showed thermo- or cryo-sensitive growth on non-fermentable media. Although the original strain carried mitochondrial drug resistance mutations (CR, ER, OR and PR), the resistance to one or several drugs was suppressed in these mutants. Two of them showed a much reduced amount of the mitochondrial small ribosomal subunit (37S) and of the corresponding 16S ribosomal RNA. Two dimensional electrophoretic analysis did not reveal any change in the position of any of the mitochondrial ribosomal proteins. However one of the mitochondrial ribosomal proteins. However one of the mutants showed a striking decrease in the amounts of three ribosomal proteins S3, S4 and S15. 2. Four temperature-sensitive mitochondrial mutations have been localized in the region of the gene coding for the large mitochondrial ribosomal RNA (23S). These mutants all showed a marked anomaly in the mitochondrial large ribosomal subunit (50S) and/or the corresponding 23S ribosomal RNA.  相似文献   

16.
Phylogenetic analyses provide information that can be useful in the conservation of genetic variation by identifying intraspecific genetic structure. Reconstruction of phylogenetic relationships requires the use of markers with the appropriate amount of variation relative to the timeframe and purpose of the study. Here, genetic structure and clustering are inferred from comparative analyses of three widely used mitochondrial markers, the CR, cytb and the COI region, merged and separately, using Eurasian reindeer as a model. A Bayesian phylogeny and a MJ network, both based on the merged dataset, indicate several distinct maternal haplotype clusters within Eurasian reindeer. In addition to confirm previously described clusters, two new subclusters were found. When comparing the results from the merged dataset with the results from analyses of the three markers separately, similar clustering was found in the CR and COI phylogenies, whereas the cytb region showed poor resolution. Phylogenetic analyses of the merged dataset and the CR revealed congruent results, implying that single sequencing analysis of the CR is an applicable method for studying the haplotype structure in Eurasian reindeer.  相似文献   

17.
Dysfunction of autophagy, mitochondrial dynamics and endoplasmic reticulum (ER) stress are currently considered as major contributing factors in the pathogenesis of Parkinson’s disease (PD). Accumulation of oxidatively damaged cytoplasmic organelles and unfolded proteins in the lumen of the ER causes ER stress and it is associated with dopaminergic cell death in PD. Rotenone is a pesticide that selectively kills dopaminergic neurons by a variety of mechanism, has been implicated in PD. Geraniol (GE; 3,7-dimethylocta-trans-2,6-dien-1-ol) is an acyclic monoterpene alcohol occurring in the essential oils of several aromatic plants. In this study, we investigated the protective effect of GE on rotenone-induced mitochondrial dysfunction dependent oxidative stress leads to cell death in SK-N-SH cells. In addition, we assessed the involvement of GE on rotenone-induced dysfunction in autophagy machinery via α-synuclein accumulation induced ER stress. We found that pre-treatment of GE enhanced cell viability, ameliorated intracellular redox, preserved mitochondrial membrane potential and improves the level of mitochondrial complex-1 in rotenone treated SK-N-SH cells. Furthermore, GE diminishes autophagy flux by reduced autophagy markers, and decreases ER stress by reducing α-synuclein expression in SK-N-SH cells. Our results demonstrate that GE possess its neuroprotective effect via reduced rotenone-induced oxidative stress by enhanced antioxidant status and maintain mitochondrial function. Furthermore, GE reduced ER stress and improved autophagy flux in the neuroblastomal SK-N-SH cells. The present study could suggest that GE a novel therapeutic avenue for clinical intervention in neurodegenerative diseases especially for PD.  相似文献   

18.
19.
Summary Mitochondrial mutants resistant to erythromycin, neomycin and monomycin were isolated. Mitochondria were transmitted from different natural strains to the cells of the same nuclear genotype. In bifactorial crosses of such isochromosomal and anisomitochondrial yeasts we tested random samples of diploid colonies. The distribution of mitochondrial markers in parent and recombinant classes has been shown to occur unequally. The asymmetry of parent and the polarity of recombinant classes were observed to differ in different mitochondrial mutants.Anisomitochondrial strain crosses proved that mitochondrial origin essentially influenced both the parent and recombinant classes distribution and the susceptibility of the transmission to the effect of mating type locus. One can distinguish between homo- and heterosexual cross combinations in terms of recombination polarity.The new type of mitochondria was found to occur with high frequency of transmission to the zygote progeny of markers resistant to erythromycin but not of markers resistant to neomycin. The problem of sex in mitochondria is discussed.  相似文献   

20.

Background

Recent studies showed a link between a high fat diet (HFD)-induced obesity and lipid accumulation in non-adipose tissues, such as skeletal muscle and liver, and insulin resistance (IR). Although the mechanisms responsible for IR in those tissues are different, oxidative stress and mitochondrial dysfunction have been implicated in the disease process. We tested the hypothesis that HFD induced mitochondrial DNA (mtDNA) damage and that this damage is associated with mitochondrial dysfunction, oxidative stress, and induction of markers of endoplasmic reticulum (ER) stress, protein degradation and apoptosis in skeletal muscle and liver in a mouse model of obesity-induced IR.

Methodology/Principal Findings

C57BL/6J male mice were fed either a HFD (60% fat) or normal chow (NC) (10% fat) for 16 weeks. We found that HFD-induced IR correlated with increased mtDNA damage, mitochondrial dysfunction and markers of oxidative stress in skeletal muscle and liver. Also, a HFD causes a change in the expression level of DNA repair enzymes in both nuclei and mitochondria in skeletal muscle and liver. Furthermore, a HFD leads to activation of ER stress, protein degradation and apoptosis in skeletal muscle and liver, and significantly reduced the content of two major proteins involved in insulin signaling, Akt and IRS-1 in skeletal muscle, and Akt in liver. Basal p-Akt level was not significantly influenced by HFD feeding in skeletal muscle and liver.

Conclusions/Significance

This study provides new evidence that HFD-induced mtDNA damage correlates with mitochondrial dysfunction and increased oxidative stress in skeletal muscle and liver, which is associated with the induction of markers of ER stress, protein degradation and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号