首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have isolated phycobilisomes from two classes of red algae, several subdivisions of the cyanobacteria, and the cyanelles of Cyanophora paradoxa. In addition to the major light harvesting biliproteins, these phycobilisomes also contain several other polypeptides, the largest of which ranges from 75 to 120 kilodaltons in the different species surveyed. This protein, previously isolated and characterized from three species, was shown to be the final emitter of excitation energy in phycobilisomes and is also thought to be involved in the attachment of the phycobilisomes to the thylakoid membrane. We have obtained polyclonal antibodies to the 95 kilodalton polypeptide isolated from phycobilisomes of the cyanobacterium, Nostoc sp. This protein shares no common antigenic determinants with either the α or β subunits of allophycocyanin, or any of the other biliproteins, as determined by the sensitive Western immunoblotting technique. However, this antiserum cross-reacts with the highest molecular weight polypeptide of all the rhodophytan and cyanobacterial phycobilisomes tested. That these proteins are immunologically related, but are unrelated to other biliproteins, is reminiscent of previous immunological studies of biliproteins which showed that while the three major spectroscopically distinct classes of biliproteins (phycoerythrin, phycocyanin, and allophycocyanin) shared no common antigenic determinants, there was a strong antigenic determinant to specific biliprotein classes which crossed taxonomic divisions.  相似文献   

2.
We have identified the function of the `extra' polypeptides involved in phycobilisome assembly in Nostoc sp. These phycobilisomes, as those of other cyanobacteria, are composed of an allophycocyanin core, phycoerythrin- and phycocyanin-containing rods, and five additional polypeptides of 95, 34.5, 34, 32, and 29 kilodaltons. The 95 kilodalton polypeptide anchors the phycobilisome to the thylakoid membrane (Rusckowski, Zilinskas 1982 Plant Physiol 70: 1055-1059); the 29 kilodalton polypeptide attaches the phycoerythrin- and phycocyanin-containing rods to the allophycocyanin core (Glick, Zilinskas 1982 Plant Physiol 69: 991-997). Two populations of rods can exist simultaneously or separately in phycobilisomes, depending upon illumination conditions. In white light, only one type of rod with phycoerythrin and phycocyanin in a 2:1 molar ratio is synthesized. Associated with this rod are the 29, 32, and 34 kilodalton colorless polypeptides; the 32 kilodalton polypeptide links the two phycoerythrin hexamers, and the 34 kilodalton polypeptide attaches a phycoerythrin hexamer to a phycocyanin hexamer. The second rod, containing predominantly phycocyanin, and the 34.5 and 29 kilodalton polypeptides, is synthesized by redlight-adapted cells; the 34.5 kilodalton polypeptide links two phycocyanin hexamers. These assignments are based on isolation of rods, dissociation of these rods into their component biliproteins, and analysis of colorless polypeptide composition, followed by investigation of complexes formed or not formed upon their recombination.  相似文献   

3.
Raps S 《Plant physiology》1990,92(2):358-362
Microcystis aeruginosa, a unicellular cyanobacterium, contains small phycobilisomes consisting of C-phycocyanin, allophycocyanin, and linker polypeptides. SDS-polyacrylamide gels of the phycobilisomes were examined for fluorescent bands before and after spraying with a solution of ZnSO4, followed by Coomassie brilliant blue staining for protein. This procedure provides a rapid and sensitive method for detecting small amounts of phycobilin-containing polypeptides and distinguishing them from other tetrapyrrole-containing polypeptides and from `colorless' ones. Three polypeptide bands, in addition to the α and β phycobiliprotein subunits, have been detected under these conditions. An 85 kilodalton polypeptide was identified as a phycobiliprotein due to its enhanced fluorescence in the presence of ZnSO4. The other polypeptides do not contain chromophores and are colorless. They are approximately 34.5 and 30 kilodaltons in size.  相似文献   

4.
A phycoerythrin (PE) and phycocyanin (PC) mixture was separated from allophycocyanin on calcium phosphate chromatography from completely dissociated phycobilisomes of the blue-green alga, Nostoc sp. After dialysis of the PE-PC mixture in 0.75 m potassium phosphate, pH 7, which allows reassociation of the dissociated pigment-proteins, complexes of PE and PC in a 2:1 m ratio (PE/PC complex) as well as complexes predominantly of PC (PC/PE complex) were then separated by sedimentation on linear sucrose gradients. These complexes resemble the rods of intact phycobilisomes and transfer energy efficiently from PE to PC. They contain the Group II colorless polypeptides described by Tandeau de Marsac and Cohen-Bazire (1977 Proc Natl Acad Sci USA 74: 1635 61639). Phycobilisomes can be reconstituted by combining the allophycocyanin pool with (a) the PE-PC mixture, (b) the PE/PC complex, or (c) the PC/PE complex. Successful reconstitution is measured by absorption, fluorescence, circular dichroism, and electron microscopy. The major requirement for reconstitution is the 29-kilodalton colorless polypeptide. In its absence, no phycobilisomes are formed. It is the only colorless polypeptide common to both the PE/PC complex and the PC/PE complex, and appears to be the polypeptide responsible for rod attachment to the allophycocyanin. In addition, high phosphate concentrations and 20 degrees C temperatures are needed for reconstitution.  相似文献   

5.
Allophycocyanin was isolated from dissociated phycobilisomes from Nostoc sp. and was separated into allophycocyanin I, II, III, and B as described elsewhere. If the separation of the proteins following phycobilisome isolation is done in the presence of the protease inhibitor, phenylmethylsulfonylfluoride, associated with allophycocyanin I are two colored polypeptides of 95 kilodalton (kD) and 80 kD, belonging to the class of Group I polypeptides as defined by Tandeau de Marsac and Cohen-Bazire (Proc Natl Acad Sci USA 1977 74: 1635-1639). Allophycocyanin I has a fluorescence maximum of 680 nanometers as do intact phycobilisomes and has thus been suggested to be the final emitter of excitation energy in phycobilisomes. Thylakoid membranes washed in low ionic strength buffer containing phenylmethylsulfonylfluoride lose all biliproteins, but retain the 95 kD and 80 kD polypeptides. As suggested by Tandeau de Marsac and Cohen-Bazire, these are likely to be the polypeptides involved in binding the phycobilisome to the membrane. As these polypeptides are isolated with allophycocyanin I, structural evidence is provided for placing allophycocyanin I as the bridge between the phycobilisome and the membrane. These Group I polypeptides and the 29 kD polypeptide (involved in rod attachment to the APC core) are particularly susceptible to proteolytic breakdown. It is thought that in vivo the active protease may be selectively attacking these polypeptides to detach the phycobilisome from the membrane and release the phycoerythrin and phycocyanin containing rods from the allophycocyanin core for greater susceptibility of the biliproteins to protease attack.  相似文献   

6.
Zilinskas BA 《Plant physiology》1982,70(4):1060-1065
Freshly isolated allophycocyanin is recovered from linear sucrose gradients made in 0.75 molar potassium phosphate buffer (pH 7.0) in three sizes: 19s, 10.3s, and 5.5s. The largest aggregate is a complex of a 680 nm fluorescing allophycocyanin I in the form (αβ)3γ, where γ is the 95 kilodalton (kD) polypeptide, and two 660 nanometer fluorescing allophycocyanin II (αβ)3 molecules; the complex, stabilized in high phosphate concentrations, fluoresces maximally at 675 nanometers. The 10.3s fraction is a hexamer of allophycocyanin of the 660 nanometer fluorescing type, perhaps attached through two polypeptides of 46 kD and 44 kD. The 5.5s component of the allophycocyanin pool is the usual trimeric form of allophycocyanin (αβ)3. A similar 19s fraction is the major component of allophycocyanin I isolated under optimum conditions in the presence of the protease inhibitor, phenylmethylsulfonylfluoride. This 19s fraction is apparently a central component of the core of the phycobilisome with its 95 kD polypeptide the attachment point of the phycobilisome and membrane. The 95 kD polypeptide has both long wavelength absorption and fluorescence bands which seem to account for the long wavelength fluorescence properties of allophycocyanin I.  相似文献   

7.
Cyanobacterial phycobilisomes   总被引:2,自引:0,他引:2  
Cyanobacterial phycobilisomes harvest light and cause energy migration usually toward photosystem II reaction centers. Energy transfer from phycobilisomes directly to photosystem I may occur under certain light conditions. The phycobilisomes are highly organized complexes of various biliproteins and linker polypeptides. Phycobilisomes are composed of rods and a core. The biliproteins have their bilins (chromophores) arranged to produce rapid and directional energy migration through the phycobilisomes and to chlorophyll a in the thylakoid membrane. The modulation of the energy levels of the four chemically different bilins by a variety of influences produces more efficient light harvesting and energy migration. Acclimation of cyanobacterial phycobilisomes to growth light by complementary chromatic adaptation is a complex process that changes the ratio of phycocyanin to phycoerythrin in rods of certain phycobilisomes to improve light harvesting in changing habitats. The linkers govern the assembly of the biliproteins into phycobilisomes, and, even if colorless, in certain cases they have been shown to improve the energy migration process. The Lcm polypeptide has several functions, including the linker function of determining the organization of the phycobilisome cores. Details of how linkers perform their tasks are still topics of interest. The transfer of excitation energy from bilin to bilin is considered, particularly for monomers and trimers of C-phycocyanin, phycoerythrocyanin, and allophycocyanin. Phycobilisomes are one of the ways cyanobacteria thrive in varying and sometimes extreme habitats. Various biliprotein properties perhaps not related to photosynthesis are considered: the photoreversibility of phycoviolobilin, biophysical studies, and biliproteins in evolution. Copyright 1998 Academic Press.  相似文献   

8.
A spontaneous, stable, pigmentation mutant of Nostoc sp. strain MAC was isolated. Under various growth conditions, this mutant, R-MAC, had similar phycoerythrin contents (relative to allophycocyanin) but significantly lower phycocyanin contents (relative to allophycocyanin) than the parent strain. In saturating white light, the mutant grew more slowly than the parent strain. In nonsaturating red light, MAC grew with a shorter generation time than the mutant; however, R-MAC grew more quickly in nonsaturating green light.

When the parental and mutant strains were grown in green light, the phycoerythrin contents, relative to allophycocyanin, were significantly higher than the phycoerythrin contents of cells grown in red light. For both strains, the relative phycocyanin contents were only slightly higher for cells grown in red light than for cells grown in green light. These changes characterize both MAC and R-MAC as belonging to chromatic adaptation group II: phycoerythrin synthesis alone photocontrolled.

A comparative analysis of the phycobilisomes, isolated from cultures of MAC and R-MAC grown in both red and green light, was performed by polyacrylamide gel electrophoresis in the presence of 8.0 molar urea or sodium dodecyl sulfate. Consistent with the assignment of MAC and R-MAC to chromatic adaptation group II, no evidence for the synthesis of red light-inducible phycocyanin subunits was found in either strain. Phycobilisomes isolated from MAC and R-MAC contained linker polypeptides with relative molecular masses of 95, 34.5, 34, 32, and 29 kilodaltons. When grown in red light, phycobilisomes of the mutant R-MAC appeared to contain a slightly higher amount of the 32-kilodalton linker polypeptide than did the phycobilisomes isolated from the parental strain under the same conditions. The 34.5-kilodalton linker polypeptide was totally absent from phycobilisomes isolated from cells of either MAC or R-MAC grown in green light.

  相似文献   

9.
Phycobilisomes in Griffithsia pacifica are closely spaced on the thylakoid membrane. By negative staining, attached and isolated phycobilisomes have been shown to have a block shaped appearance. They are 63 nm long, 38 nm high, and 38 nm wide, making them the largest thus far reported. Isolated phycobilisomes, shown to be functionally intact by their 675 nm fluorescence emission (excitation 545 nm) were stable for more than a day. Phycobiliproteins from dissociated phycobilisomes, separated on sucrose gradients and by polyacrylamide electrophoresis, yielded large (R-) and small (r-) molecular weight species of phycoerythrin (ca. 4:1 respectively) constituting 89% of the phycobiliprotein content, with R-phycocyanin 8%, and allophycocyanin 3% accounting for the rest. Phycobilisomes of Griffithsia pacifica and Porphyridium purpureum (Bory) Drew and Ross (P. cruentum) are structurally very similar with phycoerythrin being on the outside and surrounding a core of R-phycocyanin and allophycocyanin.  相似文献   

10.
Phycobilisomes isolated from actively growing Synechocystis sp. strain 6308 (ATCC 27150) consist of 12 polypeptides ranging in molecular mass from 11.5 to 95 kilodaltons. The phycobilisome anchor and linker polypeptides are glycosylated. Nitrogen starvation causes the progressive loss of phycocyanin and allophycocyanin subunits with molecular masses between 16 and 20 kilodaltons and of two linker polypeptides with molecular masses of 27 and 33 kilodaltons. Nitrogen starvation also leads to enrichment of four additional polypeptides with molecular masses of 46, 53, 57, and 61 kilodaltons and a transient enrichment of 35- and 41-kilodalton polypeptides in isolated phycobilisomes. The 57-kilodalton additional polypeptide was identified by immunoblotting as the large subunit of ribulosebisphosphate carboxylase/oxygenase. Proteins with the same molecular weights as the additional polypeptides were also coisolated with the 12 phycobilisome polypeptides in the supernatant of nitrogen-replete Synechocystis thylakoid membranes extracted in high-ionic-strength buffer and washed with deionized water. These observations suggest that the additional polypeptides in phycobilisomes from nitrogen-starved cells may be soluble or loosely bound membrane proteins which associate with phycobilisomes. The composition and degree of association of phycobilisomes with soluble and adjacent membrane polypeptides appear to be highly dynamic and specifically regulated by nitrogen availability. Possible mechanisms for variation in the strength of association between phycobilisomes and other polypeptides are suggested.  相似文献   

11.
A procedure is described for the preparation of stable phycobilisomes from the unicellular cyanobacterium Synechococcus sp. 6301 (also known as Anacystis nidulans). Excitation of the phycocyanin in these particles at 580 nm leads to maximum fluorescence emission, from allophycocyanin and allophycocyanin B, at 673 nm. Electron microscopy shows that the phycobilisomes are clusters of rods. The rods are made up of stacks of discs which exhibit the dimensions of short stacks made up primarily of phycocyanin (Eiserling, F. A., and Glazer, A. N. (1974) J. Ultrastruct. Res. 47, 16-25). Loss of the clusters, by dissociation into rods under suitable conditions, is associated with loss of energy transfer as shown by a shift in fluorescence emission maximum to 652 nm. Synechococcus sp. 6301 phycobilisomes were shown to contain five nonpigmented polypeptides in addition to the colored subunits (which carry the covalently bound tetrapyrrole prosthetic groups) of the phycobiliproteins. Evidence is presented to demonstrate that these colorless polypeptides are genuine components of the phycobilisome. The nonpigmented polypeptides represent approximately 12% of the protein of the phycobilisomes; phycocyanin, approximately 75%, and allophycocyanin, approximately 12%. Spectroscopic studies that phycocyanin is in the hexamer form, (alpha beta)6, in intact phycobilisomes, and that the circular dichroism and absorbance of this aggregate are little affected by incorporation into the phycobilisome structure.  相似文献   

12.
In exponentially growing cells of Synechococcus sp. 6301, over 95% of the phycobiliproteins are located in phycobilisomes, and the remainder is present in the form of low molecular weight aggregates. In addition to the subunits of the phycobiliproteins (C-phycocyanin, allophycocyanin, allophycocyanin B), the phycobilisomes of this unicellular cyanobacterium contain five non-pigmented polypeptides. During the initial phase of starvation (24 h after removal of combined nitrogen from the growth medium), the phycobiliproteins in the low molecular weight fraction largely disappeared. Phycocyanin was lost more rapidly from this fraction than allophycocyanin. Simultaneous changes in the phycobilisome were (1) a decrease in sedimentation coefficient, (2) a decrease in phycocyanin: allophycocyanin ratio, (3) a shift in the fluorescence emission maximum from 673 to 676 nm, and (4) a selective complete loss of a 30,000 dalton non-pigmented polypeptide. Upon extensive nitrogen starvation (72 h), the intracellular level of phycocyanin decreased by over 30-fold. These results indicate that in the early stage of nitrogen starvation, the free phycobiliproteins of the cell are degraded, as well as a significant proportion of the phycocyanin from the periphery of the phycobilisome. However, the structures partially depleted of phycocyanin still function efficiently in energy transfer. On extended starvation, total degradation of residual phycobilisomes takes place, possibly in conjunction with the detachment of these structures from the thylakoids.None of the effects of the absence of combined nitrogen were seen when cells were starved in the presence of chloramphenicol, or in a methionine auxotroph starved for methionine.Abbreviations Used NaK-PO4 NaH2PO4 titrated with K2HPO4 to a given pH - SDS sodium dodecyl sulfate - Tris Tris(hydroxymethyl)aminomethane  相似文献   

13.
The phycobiliproteins of the unicellular cyanobacterium Synechocystis sp. strain BO 8402 and its derivative strain BO 9201 are compared. The biliproteins of strain BO 8402 are organized in paracrystalline inclusion bodies showing an intense autofluorescence in vivo. These protein-pigment aggregates have been isolated. The highly purified complexes contain phycocyanin with traces of phycoerythrin, corresponding linker polypeptides LR35PC and LR33PE (the latter in a small amount), and a unique colored polypeptide with an M(r) of 55,000, designated L55. Allophycocyanin and the core linker polypeptides are absent. The substructure of the aggregates has been studied by electron microscopy. Repetitive subcomplexes of hexameric stacks of biliproteins form extraordinary long rods associated side by side in a highly condensed arrangement. Evidence that the linker polypeptides LR35PC and LR33PE stabilize the biliprotein hexamers is presented, while the location and function of the colored linker L55 remain uncertain. The derivative strain BO 9201 contains established hemidiscoidal phycobilisomes comprising phycoerythrin, phycocyanin, and allophycocyanin as well as the corresponding linker polypeptides. The core-membrane linker protein (LCM), and two polypeptides with M(r)s of 40,000 and 45,000 which are present in small amounts, exhibit strong cross-reactivity in Western blot (immunoblot) analysis using an antibody directed against the colored LCM of a Nostoc sp. In contrast, strain BO 8402 exhibits no polypeptide with a significant immunological cross-reactivity in Western blot analysis. Physiological and genetic implications of the unusual pigment compositions of both strains are discussed.  相似文献   

14.
Phycobilisomes from the nonchromatic adapting cyanobacterium Spirulina platensis are composed of a central core containing allophycocyanin and rods with phycocyanin and linker polypeptides in a regular array. Room temperature absorption spectra of phycobilisomes from this organism indicated the presence of phycocyanin and allophycocyanin. However, low temperature absorption spectra showed the association of a phycobiliviolin type of chromophore within phycobilisomes. This chromophore had an absorption maximum at 590 nanometers when phycobilisomes were suspended in 0.75 molar K-phosphate buffer (pH 7.0). Purified phycocyanin from this cyanobacterium was found to consist of three subparticles and the phycobiliviolin type of chromophore was associated with the lowest density subparticle. Circular dichroism spectra of phycocyanin subparticles also indicated the association of this chromophore with the lowest density subparticle. Absorption spectral analysis of α and β subunits of phycocyanin showed that phycobiliviolin type of chromophore was attached to the α subunit, but not the β subunit. Effect of light quality showed that green light enhanced the synthesis of this chromophore as analyzed from the room temperature absorption spectra of phycocyanin subparticles and subunits, while red or white light did not have any effect. Low temperature absorption spectra of phycobilisomes isolated from green, red, and white light conditions also indicated the enhancement of phycobiliviolin type of chromophore under green light.  相似文献   

15.
Synechocystis 6701 phycobilisomes contain phycoerythrin, phycocyanin, and allophycocyanin in a molar ratio of approximately 2:2:1, and other polypeptides of 99-, 46-, 33.5-, 31.5-, 30.5-, and 27-kdaltons. Wild- type phycobilisomes consist of a core of three cylindrical elements in an equilateral array surrounded by a fanlike array of six rods each made up of 3-4 stacked disks. Twelve nitrosoguanidine-induced mutants were isolated which produced phycobilisomes containing between 0 and 53% of the wild-type level of phycoerythrin and grossly altered levels of the 30.5- and 31.5-kdalton polypeptides. Assembly defects in these mutant particles were shown to be limited to the phycoerythrin portions of the rod substructures of the phycobilisome. Quantitative analysis of phycobilisomes from wild-type and mutant cells, grown either in white light or chromatically adapted to red light, indicated a molar ratio of the 30.5- and 31.5-kdalton polypeptides to phycoerythrin of 1:6, i.e., one 30.5- or one 31.5-kdaltons polypeptide per (alpha beta)6 phycoerythrin hexamer. Presence of the phycoerythrin-31.5-kdalton complex in phycobilisomes did not require the presence of the 30.5- kdalton polypeptide. The converse situation was not observed. These and earlier studies (R. C. Williams, J. C. Gingrich, and A. N. Glazer. 1980. J. Cell Biol. 85:558-566) show that the average rod in wild type Synechocystis 6701 phycobilisomes consists of four stacked disk-shaped complexes: phycocyanin (alpha beta)6-27 kdalton, phycocyanin (alpha beta)6-33.5 kdalton, phycoerythrin (alpha beta)6-31.5 kdalton, and phycoerythrin-30.5 kdalton, listed in order starting with the disk proximal to the core.  相似文献   

16.
Phycobilisome structure and function   总被引:3,自引:0,他引:3  
Phycobilisomes are aggregates of light-harvesting proteins attached to the stroma side of the thylakoid membranes of the cyanobacteria (blue-green algae) and red algae. The water-soluble phycobiliproteins, of which there are three major groups, tetrapyrrole chromophores covalently bound to apoprotein. Several additional protiens are found within the phycobilisome and serve to link the phycobiliproteins to each other in an ordered fashion and also to attach the phycobilisome to the thylakoid membrane. Excitation energy absorbed by phycoerythrin is transferred through phycocyanin to allophycocyanin with an efficiency approximating 100%. This pathway of excitation energy transfer, directly confirmed by time-resolved spectroscopic measurements, has been incorporated into models describing the ultrastructure of the phycobilisome. The model for the most typical type of phycobilisome describes an allophycocyanin-containing core composed of three cylinders arranged so that their longitudinal axes are parallel and their ends form a triangle. Attached to this core are six rod structures which contain phycocyanin proximal to the core and phycoerythrin distal to the core. The axes of these rods are perpendicular to the longitudinal axis of the core. This arrangement ensures a very efficient transfer of energy. The association of phycoerythrin and phycocyanin within the rods and the attachment of the rods to the core and the core to the thylakoid require the presence of several linker polypeptides. It is recently possible to assemble functionally and structurally intact phycobilisomes in vitro from separated components as well as to reassociate phycobilisomes with stripped thylakoids. Understanding of the biosynthesis and in vivo assembly of phycobilisomes will be greatly aided by the current advances in molecular genetics, as exemplified by recent identification of several genes encoding phycobilisome components.Combined ultrastructural, biochemical and biophysical approaches to the study of cyanobacterial and red algal cells and isolated phycobilisome-thylakoid fractions are leading to a clearer understanding of the phycobilisome-thylakoid structural interactions, energy transfer to the reaction centers and regulation of excitation energy distribution. However, compared to our current knowledge concerning the structural and functional organization of the isolated phycobilisome, this research area is relatively unexplored.  相似文献   

17.
The degradation of the major seed storage globulins of the soybean (Glycine max [L.] Merrill) was examined during the first 12 days of germination and seedling growth. The appearance of glycinin and β-conglycinin degradation products was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cotyledon extracts followed by electroblotting to nitrocellulose and immunostaining using glycinin and β-conglycinin specific antibodies. The three subunits of β-conglycinin were preferentially metabolized. Of the three subunits of β-conglycinin, the larger α and α′ subunits are rapidly degraded, generating new β-conglycinin cross-reactive polypeptides of 51,200 molecular weight soon after imbibition of the seed. After 6 days of growth the β-subunit is also hydrolyzed. At least six polypeptides, ranging from 33,100 to 24,000 molecular weight, appear as apparent degradation products of β-conglycinin. The metabolism of the glycinin acidic chains begins early in growth. The glycinin acidic chains present at day 3 have already been altered from the native form in the ungerminated seed, as evidenced by their higher mobility in an alkaline-urea polyacrylamide gel electrophoresis system. However, no change in the molecular weight of these chains is detectable by sodium dodecyl sulfate-polyarylamide gel electrophoresis. Examination of the glycinin polypeptide amino-termini by dansylation suggests that this initial modification of the acidic chains involves limited proteolysis at the carboxyl-termini, deamidation, or both. After 3 days of growth the acidic chains are rapidly hydrolyzed to a smaller (21,900 molecular weight) form. The basic polypeptides of glycinin appear to be unaltered during the first 8 days of growth, but are rapidly degraded thereafter to unidentified products. All of the original glycinin basic chains have been destroyed by day 10 of growth.  相似文献   

18.
Phycobilisomes, isolated in 500 mM Sorensen's phosphate buffer pH 6.8 from the red alga, Porphyridium cruentum, were analyzed by selective dissociation at various phosphate concentrations. The results are consistent with a structural model consisting of an allophycocyanin core, surrounded by a hemispherical layer of R-phycocyanin, with phycoerythrin being on the periphery. Such a structure also allows maximum energy transfer.Intact phycobilisomes transfer excitation energy ultimately to a pigment with a fluorescence emission maximum at 675 nm. This pigment is presumed to be allophycocyanin in an aggregated state. Uncoupling of energy transfer among the pigments, and physical release of the phycobiliproteins from the phycobilisome follow a parallel time-course; phycoerythrin is released first, followed by R-phycocyanin, and then allophycocyanin. In 55 mM phosphate buffer, the times at which 50% of each phycobiliprotein has dissociated are: phycoerythrin 40 min, R-phycocyanin 75 min, and allophycocyanin 140 min.The proposed arrangement of phycobiliproteins within phycobilisomes is also consistent with the results from precipitation reactions with monospecific antisera on intact and dissociated phycobilisomes. Anti-phycoerythrin reacts almost immediately with intact phycobilisomes, but reactivity with anti-R-phycocyanin and anti-allophycocyanin is considerably delayed, suggesting that the antigens are not accessible until a loosening of the phycobilisome structure occurs. Reaction with anti-allophycocyanin is very slow in P. cruentum phycobilisomes, but is much more rapid in phycobilisomes of Nostoc sp. which contains 6–8 times more allophycocyanin. It is proposed that allophycocyanin is partially exposed on the base of isolated intact phycobilisomes of both algae, but that in P. cruentum there are too few accessible sites to permit a rapid formation of a precipitate with anti-allophyocyanin.Phycobilisome dissociation is inversely proportional to phosphate concentration (500 mM to 2 mM), and is essentially unaffected by protein concentration in the range used (30–200 μg/ml). Phycobiliprotein release occurs in the same order (phycoerythrin > R-phycocyanin > allophycocyanin) in the pH range 5.4–8.0.  相似文献   

19.
Phycocyanin is an important component of the phycobilisome, which is the principal light-harvesting complex in cyanobacteria. The covalent attachment of the phycocyanobilin chromophore to phycocyanin is catalyzed by the enzyme phycocyanin lyase. The photosynthetic properties and phycobilisome assembly state were characterized in wild type and two mutants which lack holo-α-phycocyanin. Insertional inactivation of the phycocyanin α-subunit lyase (ΔcpcF mutant) prevents the ligation of phycocyanobilin to α-phycocyanin (CpcA), while disruption of the cpcB/A/C2/C1 operon in the CK mutant prevents synthesis of both apo-α-phycocyanin (apo-CpcA) and apo-β-phycocyanin (apo-CpcB). Both mutants exhibited similar light saturation curves under white actinic light illumination conditions, indicating the phycobilisomes in the ΔcpcF mutant are not fully functional in excitation energy transfer. Under red actinic light illumination, wild type and both phycocyanin mutant strains exhibited similar light saturation characteristics. This indicates that all three strains contain functional allophycocyanin cores associated with their phycobilisomes. Analysis of the phycobilisome content of these strains indicated that, as expected, wild type exhibited normal phycobilisome assembly and the CK mutant assembled only the allophycocyanin core. However, the ΔcpcF mutant assembled phycobilisomes which, while much larger than the allophycocyanin core observed in the CK mutant, were significantly smaller than phycobilisomes observed in wild type. Interestingly, the phycobilisomes from the ΔcpcF mutant contained holo-CpcB and apo-CpcA. Additionally, we found that the large form of FNR (FNRL) accumulated to normal levels in wild type and the ΔcpcF mutant. In the CK mutant, however, significantly less FNRL accumulated. FNRL has been reported to associate with the phycocyanin rods in phycobilisomes via its N-terminal domain, which shares sequence homology with a phycocyanin linker polypeptide. We suggest that the assembly of apo-CpcA in the phycobilisomes of ΔcpcF can stabilize FNRL and modulate its function. These phycobilisomes, however, inefficiently transfer excitation energy to Photosystem II.  相似文献   

20.
The polypeptide composition of thylakoid membrane fractions from the heterotrophic cyanobacterium Aphanocapsa 6714 was examined by electrophoretic and immunoblotting procedures. We have identified thylakoid cytochromes f, b6, c-550 and c-553 by tetramethylbenzidine staining of lithium dodecyl sulfate polyacrylamide gels; we also have identified the Rieske Fe-S center protein and subunit 4 of the cytochrome b6/f complex. We have characterized phycobilisomes and active core preparations of PS I and PS II. PS I is comprised of five polypeptides (62 kDa, 14.5 kDa, 10 kDa, and two proteins of less than 10 kDa), and our PS II preparation is highly enriched for three chlorophyll-binding proteins of 48, 45 and 36 kDa. Furthermore, we have resolved the chlorophyll-binding complexes on non-denaturing gels and have determined the polypeptide composition of each chlorophyll-containing band. Three bands are associated with PS I (I, IIa and IIb) and three bands are PS II components (III', IIIa and IIIb) as judged by low-temperature fluorescence emission spectra. Band III' contains a 64 kDa antenna polypeptide, IIIa contains the 48 kDa and 45 kDa polypeptides, and IIIb is comprised solely of a 36 kDa protein. The IIIb apoprotein represents a novel PS II component; its possible role in photochemistry is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号