首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MCT1 confirmed in rat striated muscle mitochondria.   总被引:3,自引:0,他引:3  
We sought to test the hypothesis that monocarboxylate transporter isoform 1 (MCT1) is the inner mitochondrial membrane lactate/pyruvate transporter, and, as such, contributes to functioning of the intracellular lactate shuttle. However, presence of a mammalian mitochondrially localized MCT1 (mMCT1) has been contested. We sought to confirm by Western blotting the mitochondrial localization of MCT1 in rat cardiac, soleus, and extensor digitorum longus muscles utilizing three different cell fractionation methods and three different antibodies. We performed Western blotting using antibodies to cell membrane glucose transporter isoform GLUT1, inner mitochondrial constituent cytochrome oxidase, the monocarboxylate transporter protein chaperone CD147, as well as custom and commercially available MCT1 antibodies. Western blots demonstrated similar results with each MCT1 antibody and two of three methods of fractionation. MCT1 was found in the mitochondria, as well as in the sarcolemmal membrane and whole muscle homogenates. Probing with GLUT1 and CD147 demonstrated that mitochondrial fractions were not contaminated with sarcolemmal remnants. Probing with cytochrome oxidase showed mitochondrial localization of MCT1. Comparison of these results to the findings of others indicates that the most likely source of discrepancy is the cell fractionation procedure utilized.  相似文献   

2.
We hypothesized that a part of therapeutic effects of endurance training on insulin resistance is mediated by increase in cardiac and skeletal muscle mitochondrial lactate transporter, monocarboxylate transporter 1 (MCT1). Therefore, we examined the effect of 7 weeks endurance training on the mRNA and protein expression of MCT1 and MCT4 and their chaperon, CD147, on both sarcolemmal and mitochondrial membrane, separately, in healthy and type 2 diabetic rats. Diabetes was induced by injection of low dose of streptozotocin and feeding with high-fat diet. Insulin resistance was confirmed by homeostasis model assessment-estimated insulin resistance index and accuracy of two membranes separation was confirmed by negative control markers (glucose transporter 1 and cytochrome c oxidase. Real-time PCR and western blotting were used for mRNA and protein expression, respectively. Diabetes dramatically reduced MCT1 and MCT4 mRNA and their expression on sarcolemmal membrane whereas the reduction in MCT1 expression was less in mitochondrial membrane. Training increased the MCT1 mRNA and protein expression in both membranes and decreased insulin resistance as an adaptive consequence. In both tissues increase in CD147 mRNA was only parallel to MCT1 expression. The response of MCT1 on sarcolemmal and mitochondrial membranes was different between cardiac and skeletal muscles which indicate that intracellular lactate kinetic is tissue specific that allows a tissue to coordinate whole organism metabolism.  相似文献   

3.
CD147 is a broadly expressed plasma membrane glycoprotein containing two immunoglobulin-like domains and a single charge-containing transmembrane domain. Here we use co-immunoprecipitation and chemical cross-linking to demonstrate that CD147 specifically interacts with MCT1 and MCT4, two members of the proton-linked monocarboxylate (lactate) transporter family that play a fundamental role in metabolism, but not with MCT2. Studies with a CD2-CD147 chimera implicate the transmembrane and cytoplasmic domains of CD147 in this interaction. In heart cells, CD147 and MCT1 co-localize, concentrating at the t-tubular and intercalated disk regions. In mammalian cell lines, expression is uniform but cross-linking with anti-CD147 antibodies caused MCT1, MCT4 and CD147, but not GLUT1 or MCT2, to redistribute together into 'caps'. In MCT-transfected cells, expressed protein accumulated in a perinuclear compartment, whereas co-transfection with CD147 enabled expression of active MCT1 or MCT4, but not MCT2, in the plasma membrane. We conclude that CD147 facilitates proper expression of MCT1 and MCT4 at the cell surface, where they remain tightly bound to each other. This association may also be important in determining their activity and location.  相似文献   

4.
The monocarboxylate (lactate) transporters MCT1 and MCT4 require the membrane-spanning glycoprotein CD147 for their correct plasma membrane expression and function. We have successfully expressed CD147 and MCT1 tagged on their C or N termini with either the cyan (CFP) or yellow (YFP) variants of green fluorescent protein. The tagged proteins were correctly targeted to the plasma membrane of COS-7 cells and were functionally active. Measurements of fluorescence resonance energy transfer (FRET) between all combinations of the tagged proteins were made. FRET was observed when either the C or N terminus of MCT1 (intracellular) is tagged with CFP or YFP and co-expressed with CD147 tagged with YFP or CFP on the C terminus (intracellular) but not the N terminus (extracellular). FRET was also observed between two CD147 molecules when both YFP and CFP were on the C terminus but not when both were on the N terminus or one on either end. No FRET was observed between MCT1-YFP and MCT-CFP in any combination. A wide range of controls including photobleaching were employed to confirm that where FRET was observed, it was not an artifact of direct excitation of YFP by the CFP excitation laser. It was also shown that nonspecific overcrowding of proteins did not induce FRET. Because FRET only occurs between two fluorophores if they are less than 100 A apart and in a suitable orientation, our data provide important information on the topology of CD147 and MCT1 within the plasma membrane. The minimum configuration consistent with the data is a dimer of CD147 associating with two MCT1 molecules such that the C terminus of CD147 in the cytosol is close to the C terminus of its partner CD147 and to the C and N termini of an associated MCT1 molecule. FRET may provide a non-invasive technique for measuring changes in these interactions in living cells.  相似文献   

5.
The expression of monocarboxylate transporters MCT1, MCT2 and MCT4 in the rumen, small intestine and liver was examined in free-ranging and captive reindeer. In addition, expression of chaperone protein CD147, which is needed for the activity of MCT1 and MCT4, was studied in the rumen of suckling calves. Immunoblotting of cell membrane proteins showed the expression of MCT1 and MCT4, but not that of MCT2 in the rumen of reindeer. In free-ranging reindeer the amount of MCT1 was higher than in the captive ones (P<0.01). Developing rumen of suckling calves expressed MCT1 and MCT4 and positive correlation was found between MCT1 and CD147. Both MCT1 and CD147 correlated also with age in calves less than 10 days. In the small intestine all the isoforms studied were expressed, but the amounts were lower than in the rumen (P<0.05). In the liver MCT1 and MCT2 were found while MCT4 was nearly undetectable. The expression of MCT isoforms in the rumen and small intestine reflects the site of absorption and concentrations of short chain fatty acids (SCFA). In the liver the expression of high affinity transporters, MCT1 and MCT2, is in accordance with almost complete uptake of propionate from portal blood.  相似文献   

6.
Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer. The majority of patients present advanced stage disease and has poor survival. Therefore, it is imperative to search for new biomarkers and new alternative and effective treatment options. Most cancer cells rely on aerobic glycolysis to generate energy and metabolic intermediates. This phenotype is a hallmark of cancer, characterized by an increase in glucose consumption and production of high amounts of lactate. Consequently, cancer cells need to up-regulate many proteins and enzymes related with the glycolytic metabolism. Thus, the aim of this study was to characterize metabolic phenotype of oral cavity cancers (OCC) by assessing the expression pattern of monocarboxylate transporters (MCTs) 1, 2 and 4 and other proteins related with the glycolytic phenotype. Material and Methods: We evaluated the immunohistochemical expression of MCT1, MCT4, CD147, GLUT1 and CAIX in 135 human samples of OCC and investigated the correlation with clinicopathological parameters and the possible association with prognosis. Results: We observed that all proteins analyzed presented significantly higher plasma membrane expression in neoplastic compared to non-neoplastic samples. MCT4 was significantly associated with T-stage and advanced tumoral stage, while CD147 was significantly correlated with histologic differentiation. Interestingly, tumors expressing both MCT1 and MCT4 but negative for MCT2 were associated with shorter overall survival. Conclusion: Overexpression of MCT1/4, CD147, GLUT1 and CAIX, supports previous findings of metabolic reprograming in OCC, warranting future studies to explore the hyper-glycolytic phenotype of these tumors. Importantly, MCT expression revealed to have a prognostic value in OCC survival.  相似文献   

7.
In the intestine, butyrate constitutes the major energy fuel for colonocytes. However, little is known about the transport of butyrate and its regulation in the intestine. In this study we demonstrate that the monocarboxylate transporter (MCT-1) is apically polarized in model human intestinal epithelia and is involved in butyrate uptake by Caco2-BBE cell monolayers. The butyrate uptake by Caco2-BBE cell monolayers displayed conventional Michaelis-Menten kinetics and was found to be pH-dependent, Na(+)-independent, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid-insensitive, and inhibited by the monocarboxylate transporter inhibitor alpha-cyano-4-hydroxycinnamate and by an excess of unlabeled butyrate. We show that MCT-1 associates with CD147 at the apical plasma membrane in Caco2-BBE cell monolayers. Using antisense CD147, we demonstrate that the association of CD147 with MCT-1 is critical for the butyrate transport activity. Interestingly, we show for the first time hormonal regulation of CD147/MCT-1 mediated butyrate uptake. Specifically, luminal leptin significantly up-regulates MCT-1-mediated butyrate uptake by increasing its maximal velocity (V(max)) without any modification in the apparent Michaelis-Menten constant (K(m)). Finally, we show that luminal leptin up-regulates butyrate uptake in Caco2-BBE monolayers by two distinct actions: (i) increase of the intracellular pool of MCT-1 protein without affecting CD147 expression and (ii) translocation of CD147/MCT-1 to the apical plasma membrane of Caco2-BBE cell monolayers.  相似文献   

8.
Translocation of monocarboxylate transporters MCT1 and MCT4 to the plasma membrane requires CD147 (basigin) with which they remain tightly associated. However, the importance of CD147 for MCT activity is unclear. MCT1 and MCT4 are both inhibited by the cell-impermeant organomercurial reagent p-chloromercuribenzene sulfonate (pCMBS). Here we demonstrate by site-directed mutagenesis that removal of all accessible cysteine residues on MCT4 does not prevent this inhibition. pCMBS treatment of cells abolished co-immunoprecipitation of MCT1 and MCT4 with CD147 and enhanced labeling of CD147 with a biotinylated-thiol reagent. This suggested that CD147 might be the target of pCMBS, and further evidence for this was obtained by treatment of cells with the bifunctional organomercurial reagent fluorescein dimercury acetate that caused oligomerization of CD147. Site-directed mutagenesis of CD147 implicated the disulfide bridge in the Ig-like C2 domain of CD147 as the target of pCMBS attack. MCT2, which is pCMBS-insensitive, was found to co-immunoprecipitate with gp70 rather than CD147. The interaction between gp70 and MCT2 was confirmed using fluorescence resonance energy transfer between the cyan fluorescent protein- and yellow fluorescent protein-tagged MCT2 and gp70. pCMBS strongly inhibited lactate transport into rabbit erythrocytes, where MCT1 interacts with CD147, but not into rat erythrocytes where it interacts with gp70. These data imply that inhibition of MCT1 and MCT4 activity by pCMBS is mediated through its binding to CD147, whereas MCT2, which associates with gp70, is insensitive to pCMBS. We conclude that ancillary proteins are required to maintain the catalytic activity of MCTs as well as for their translocation to the plasma membrane.  相似文献   

9.
10.
This study is the first to examine the expression of the 14 monocarboxylate transporter genes (MCT1–MCT14) in the mammary gland of mammals. RT-PCR, Western blot, immunohistochemistry, and immunofluorescence confocal laser microscopy were applied in a comprehensive approach to assess the expression and cellular localization of MCTs in the mammary gland of lactating cattle. RT-PCR revealed the existence of nine MCT isoforms, namely MCT1, MCT2, MCT3, MCT4, MCT5, MCT8, MCT10, MCT13, and MCT14 in cow mammary gland. The amplified cDNA segments were confirmed by sequence analysis and deposited in the GenBank. Using the commercially available antibodies against MCT1–MCT8, Western blotting verified the protein expression of MCT1, MCT2, MCT3, MCT4, MCT5, and MCT8 in the cow mammary gland. The precise cellular localization of the identified MCT proteins showed that both MCT1 and MCT2 were basolaterally localized on the cow mammary alveolar epithelial cells. In contrast, MCT4 protein signal was expressed on the apical membrane of these alveolar epithelia. MCT8, however, was predominantly localized on the basolateral membranes of the lactocytes, along with its weak labeling on the apical membrane of the same cells. No immunoreactive staining for MCT3 and MCT5 proteins could be detected histochemically in lactating bovine mammary tissue. Additionally, we proved the colocalization of CD147 with both MCT1 and MCT4 on the boundaries of the cow mammary alveolar epithelia. The existence and localization pattern of MCT genes in the mammary gland of lactating cows suggest their possible involvement in the transport of essential elements required for milk synthesis and secretion.  相似文献   

11.
Recent studies from our laboratory and others have demonstrated the involvement of monocarboxylate transporter (MCT)1 in the luminal uptake of short-chain fatty acids (SCFAs) in the human intestine. Functional studies from our laboratory previously demonstrated kinetically distinct SCFA transporters on the apical and basolateral membranes of human colonocytes. Although apical SCFA uptake is mediated by the MCT1 isoform, the molecular identity of the basolateral membrane SCFA transporter(s) and whether this transporter is encoded by another MCT isoform is not known. The present studies were designed to assess the expression and membrane localization of different MCT isoforms in human small intestine and colon. Immunoblotting was performed with the purified apical and basolateral membranes from human intestinal mucosa obtained from organ donor intestine. Immunohistochemistry studies were done on paraffin-embedded sections of human colonic biopsy samples. Immunoblotting studies detected a protein band of 39 kDa for MCT1, predominantly in the apical membranes. The relative abundance of MCT1 mRNA and protein increased along the length of the human intestine. MCT4 (54 kDa) and MCT5 (54 kDa) isoforms showed basolateral localization and were highly expressed in the distal colon. Immunohistochemical studies confirmed that human MCT1 antibody labeling was confined to the apical membranes, whereas MCT5 antibody staining was restricted to the basolateral membranes of the colonocytes. We speculate that distinct MCT isoforms may be involved in SCFA transport across the apical or basolateral membranes in polarized colonic epithelial cells. monocarboxylate transporter; short-chain fatty acids; absorption; short-chain fatty acid transport; mammalian colon  相似文献   

12.
One of the many functions of liver peroxisomes is the beta-oxidation of long-chain fatty acids. It is essential for the continuation of peroxisomal beta-oxidation that a redox shuttle system exist across the peroxisomal membrane to reoxidize NADH. We propose that this redox shuttle system consists of a substrate cycle between lactate and pyruvate. Here we present evidence that purified peroxisomal membranes contain both monocarboxylate transporter 1 (MCT 1) and MCT 2 and that along with peroxisomal lactate dehydrogenase (pLDH) form a Peroxisomal Lactate Shuttle. Peroxisomal beta-oxidation was greatly stimulated by the addition of pyruvate and this increase was partially inhibited by the addition of the MCT blocker alpha-cyano-4-hydroxycinnamate (CINN). We also found that peroxisomes generated lactate in the presence of pyruvate. Together these data provide compelling that the Peroxisome Lactate Shuttle helps maintain organelle redox and the proper functioning of peroxisomal beta-oxidation.  相似文献   

13.
Increased use of the glycolytic pathway, even in the presence of oxygen, has recently been recognized as a key characteristic of malignant cells. However, the glycolytic phenotype results in increased lactic acid production and, in order to prevent cellular acidosis, tumor cells must increase proton efflux via upregulation of pH regulators such as proton-pumps, sodium-proton exchangers, and/or monocarboxylate transporters (MCT) (e.g., MCT1, MCT4). Interestingly, expression of MCT1 and MCT4 has been previously shown to be dependent upon expression of the transmembrane glycoprotein CD147. Recently, we demonstrated that primary patient multiple myeloma (MM) cells and human MM cell lines (HMCLs) overexpress CD147. Therefore, the goal of the current study was to specifically determine if MCT1 and MCT4 were also overexpressed in MM cells. RT-PCR analysis demonstrated both primary patient MM cells and HMCLs overexpress MCT1 and MCT4 mRNA. Notably, primary MM cells or HMCLs were found to express variable levels of MCT1 and/or MCT4 at the protein level despite CD147 expression. In those HMCLs positive for MCT1 and/or MCT4 protein expression, MCT1 and/or MCT4 were found to be associated with CD147. Specific siRNA-mediated downregulation of MCT1 but not MCT4 resulted in decreased HMCL proliferation, decreased lactate export, and increased cellular media pH. However, western blot analysis revealed that downregulation of MCT1 also downregulated CD147 and vice versa despite no effect on mRNA levels. Taken together, these data demonstrate the association between MCT1 and CD147 proteins in MM cells and importance of their association for lactate export and proliferation in MM cells.  相似文献   

14.
Many solute transporters are heterodimers composed of non-glycosylated catalytic and glycosylated accessory subunits. These transporters are specifically polarized to the apical or basolateral membranes of epithelia, but this polarity may vary to fulfill tissue-specific functions. To date, the mechanisms regulating the tissue-specific polarity of heteromeric transporters remain largely unknown. Here, we investigated the sorting signals that determine the polarity of three members of the proton-coupled monocarboxylate transporter (MCT) family, MCT1, MCT3 and MCT4, and their accessory subunit CD147. We show that MCT3 and MCT4 harbor strong redundant basolateral sorting signals (BLSS) in their C-terminal cytoplasmic tails that can direct fusion proteins with the apical marker p75 to the basolateral membrane. In contrast, MCT1 lacks a BLSS and its polarity is dictated by CD147, which contains a weak BLSS that can direct Tac, but not p75 to the basolateral membrane. Knockdown experiments in MDCK cells indicated that basolateral sorting of MCTs was clathrin-dependent but clathrin adaptor AP1B-independent. Our results explain the consistently basolateral localization of MCT3 and MCT4 and the variable localization of MCT1 in different epithelia. They introduce a new paradigm for the sorting of heterodimeric transporters in which a hierarchy of apical and BLSS in the catalytic and/or accessory subunits regulates their tissue-specific polarity.  相似文献   

15.
16.
Concurrent with compaction, preimplantation mouse embryos switch from the high pyruvate consumption that prevailed during cleavage stages to glucose consumption against a constant background of pyruvate uptake. However, zygotes exposed to and subsequently deprived of glucose can form blastocysts by increasing pyruvate uptake. This metabolic switch requires cleavage-stage exposure to glucose and is one aspect of metabolic differentiation that normally occurs in vivo. Monocarboxylates, such as pyruvate and lactate, are transported across membranes via the SLC16 family of H(+)-monocarboxylate cotransporter (MCT) proteins. Thus, the increase in pyruvate uptake in embryos developing without glucose must involve changes in activity and localization of MCT. In mouse embryos, continued expression of Slc16a1 (MCT1) requires glucose supply. Messenger RNA for Slc17a7 (MCT2) and Slc16a3 (MCT4) has been detected in mouse preimplantation embryos; however, protein function, localization, and regulation of expression at the basis of these net pyruvate uptake changes remain unclear. The expression and localization of SLC16A7 and SLC16A3 have therefore been examined to clarify their respective roles in embryos derived from the reproductive tract and cultured under varied conditions. SLC16A3 appears localized to the plasma membrane until the morula stage and also maintains a nuclear distribution throughout preimplantation development. However, continued Slc16a3 mRNA expression is dependent on prior exposure to glucose. SLC16A7 localizes to apical cortical regions with punctate, vesicular expression throughout blastomeres, partially colocalizing in peroxisomes with peroxisomal catalase (CAT). In contrast to SLC16A3 and SLC16A1, SLC16A7 and CAT demonstrate upregulation in the absence of glucose. These striking differences between the two isoforms in expression localization and regulation suggest unique roles for each in monocarboxylate transport and pH regulation during preimplantation development, and implicate peroxisomal SLC16A7 as an important redox regulator in the absence of glucose.  相似文献   

17.
18.
19.
The goal of the present work was to evaluate the correlation of glucose transporter 1 (GLUT1) and carbonic anhydrase IX (CAIX) with the monocarboxylate transporters 1 (MCT1) and 4 (MCT4) and their chaperone, CD147, in breast cancer. The clinico-pathological value of GLUT1 and CAIX was also evaluated. For that, we analysed the immunohistochemical expression of GLUT1 and CAIX, in a large series of invasive breast carcinoma samples (n=124), previously characterized for MCT1, MCT4 and CD147 expression. GLUT1 expression was found in 46% of the cases (57/124), while CAIX was found in 18% of the cases (22/122). Importantly, both MCT1 and CD147, but not MCT4, were associated with GLUT1 and CAIX expression. Also, GLUT1 and CAIX correlated with each other. Concerning the clinico-pathological values, GLUT1 was associated with high grade tumours, basal-like subtype, absence of progesterone receptor, presence of vimentin and high proliferative index as measured by Ki-67. Additionally, CAIX was associated with large tumour size, high histological grade, basal-like subtype, absence of estrogen and progesterone receptors and presence of basal cytokeratins and vimentin expression. Finally, patients with CAIX positive tumours had a significantly shorter disease-free survival. The association between MCT1 and both GLUT1 and CAIX may result from hypoxia-mediated metabolic adaptations, which confer a glycolytic, acid-resistant and more aggressive phenotype to cancer cells.  相似文献   

20.
Monocarboxylate transporter 7 (MCT7) is an orphan transporter expressed in the liver, brain, and in several types of cancer cells. It has also been reported to be a survival factor in melanoma and breast cancers. However, this survival mechanism is not yet fully understood due to MCT7’s unidentified substrate(s). Therefore, here we sought to identify MCT7 substrate(s) and characterize the transport mechanisms by analyzing amino acid transport in HEK293T cells and polarized Caco-2 cells. Analysis of amino acids revealed significant rapid reduction in taurine from cells transfected with enhanced green fluorescent protein-tagged MCT7. We found that taurine uptake and efflux by MCT7 was pH-independent and that the uptake was not saturated in the presence of taurine excess of 200 mM. Furthermore, we found that monocarboxylates and acidic amino acids inhibited MCT7-mediated taurine uptake. These results imply that MCT7 may be a low-affinity facilitative taurine transporter. We also found that MCT7 was localized at the basolateral membrane in polarized Caco-2 cells and that the induction of MCT7 expression in polarized Caco-2 cells enhanced taurine permeation. Finally, we demonstrated that interactions of MCT7 with ancillary proteins basigin/CD147 and embigin/GP70 enhanced MCT7-mediated taurine transport. In summary, these findings reveal that taurine is a novel substrate of MCT7 and that MCT7-mediated taurine transport might contribute to the efflux of taurine from cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号