首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus infections induce the expression of ARGONAUTE1 (AGO1) mRNA and in parallel enhance the accumulation of miR168 (regulator of AGO1 mRNA). Here, we show that in virus‐infected plants the enhanced expression of AGO1 mRNA is not accompanied by increased AGO1 protein accumulation. We also show that the induction of AGO1 mRNA level is a part of the host defence reaction, whereas the induction of miR168, which overlaps spatially with virus‐occupied sectors, is mediated mainly by the Tombusvirus p19 RNA‐silencing suppressor. The absence of p19 results in the elimination of miR168 induction and accompanied with the enhanced accumulation of AGO1 protein. In transient expression study, p19 mediates the induction of miR168 and the down‐regulation of endogenous AGO1 level. P19 is not able to efficiently bind miR168 in virus‐infected plants, indicating that this activity is uncoupled from the small RNA‐binding capacity of p19. Our results imply that plant viruses can inhibit the translational capacity of AGO1 mRNA by modulating the endogenous miR168 level to alleviate the anti‐viral function of AGO1 protein.  相似文献   

2.
Plant viruses ubiquitously mediate the induction of miR168 trough the activities of viral suppressors of RNA silencing (VSRs) controlling the accumulation of ARGONAUTE1 (AGO1), one of the main components of RNA silencing based host defence system. Here we used a mutant Tombusvirus p19 VSR (p19-3M) disabled in its main suppressor function, small interfering RNA (siRNA) binding, to investigate the biological role of VSR-mediated miR168 induction. Infection with the mutant virus carrying p19-3M VSR resulted in suppressed recovery phenotype despite the presence of free virus specific siRNAs. Analysis of the infected plants revealed that the mutant p19-3M VSR is able to induce miR168 level controlling the accumulation of the antiviral AGO1, and this activity is associated with the enhanced accumulation of viral RNAs. Moreover, saturation of the siRNA-binding capacity of p19 VSR mediated by defective interfering RNAs did not influence the miR168-inducing activity. Our data indicate that p19 VSR possesses two independent silencing suppressor functions, viral siRNA binding and the miR168-mediated AGO1 control, both of which are required to efficiently cope with the RNA-silencing based host defence. This finding suggests that p19 VSR protein evolved independent parallel capacities to block the host defence at multiple levels.  相似文献   

3.
Micro RNAs (miRNAs) are processed from precursor RNA molecules with precisely defined secondary stem-loop structures. ARGONAUTE1 (AGO1) is the main executor component of miRNA pathway and its expression is controlled via the auto-regulatory feedback loop activity of miR168 in plants. Previously we have shown that AGO1 loading of miR168 is strongly restricted leading to abundant cytoplasmic accumulation of AGO-unbound miR168. Here, we report, that intrinsic RNA secondary structure of MIR168a precursor not only defines the processing of miR168, but also precisely adjusts AGO1 loading efficiency determining the biologically active subset of miR168 pool. Our results show, that modification of miRNA duplex structure of MIR168a precursor fragment or expression from artificial precursors can alter the finely adjusted loading efficiency of miR168. In dcl1-9 mutant where, except for miR168, production of most miRNAs is severely reduced this mechanism ensures the elimination of unloaded AGO1 proteins via enhanced AGO1 loading of miR168. Based on this data, we propose a new competitive loading mechanism model for miR168 action: the miR168 surplus functions as a molecular buffer for controlled AGO1 loading continuously adjusting the amount of AGO1 protein in accordance with the changing size of the cellular miRNA pool.  相似文献   

4.
5.
6.
7.
8.
9.
RNA silencing plays an important role in plants in defence against viruses. To overcome this defence, plant viruses encode suppressors of RNA silencing. The most common mode of silencing suppression is sequestration of double‐stranded RNAs involved in the antiviral silencing pathways. Viral suppressors can also overcome silencing responses through protein–protein interaction. The poleroviral P0 silencing suppressor protein targets ARGONAUTE (AGO) proteins for degradation. AGO proteins are the core component of the RNA‐induced silencing complex (RISC). We found that P0 does not interfere with the slicer activity of pre‐programmed siRNA/miRNA containing AGO1, but prevents de novo formation of siRNA/miRNA containing AGO1. We show that the AGO1 protein is part of a high‐molecular‐weight complex, suggesting the existence of a multi‐protein RISC in plants. We propose that P0 prevents RISC assembly by interacting with one of its protein components, thus inhibiting formation of siRNA/miRNA–RISC, and ultimately leading to AGO1 degradation. Our findings also suggest that siRNAs enhance the stability of co‐expressed AGO1 in both the presence and absence of P0.  相似文献   

10.
RNA silencing refers to a conserved sequence‐specific gene‐regulation mechanism mediated by small RNA molecules. In plants, microRNA (miRNA) and small interfering RNA (siRNA) represent two major types of small RNA molecules which play pivotal roles in plant developmental control and antiviral defences. To escape these plant defences, plant viruses have encoded a vast array of viral suppressors of RNA silencing (VSRs) to attack the host antiviral silencing pathway by interfering with small RNA processing, RNA‐induced silencing complex (RISC) assembly, viral mRNA cleavage etc. Transgenic plants expressing distinct VSRs often show developmental aberrations that resemble the phenotype of miRNA‐deficient mutants, implying a potential intrinsic link between VSRs and the miRNA pathway (at least in Arabidopsis thaliana) even though their pathogenic mechanisms remain largely unknown. In this review, we summarise our current structural understandings of the arms race between the host and virus along the RNA silencing pathway in A. thaliana by focusing on several important ribonucleoprotein (RNP) structures involved in RNA silencing and unique structural features adopted by VSRs.  相似文献   

11.
12.

Background

Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved.

Results

We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors.

Conclusions

Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show that rapid evolution and likely loss of expression of miR168 isoforms in tobacco is related to the insertion of MITE-like transposons between miRNA and miRNA* sequences, a possible mechanism showing how miRNAs are lost in few plant lineages even though other close relatives have abundantly expressing miRNAs.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1049) contains supplementary material, which is available to authorized users.  相似文献   

13.
An antiviral defense role of AGO2 in plants   总被引:2,自引:0,他引:2  

Background

Argonaute (AGO) proteins bind to small-interfering (si)RNAs and micro (mi)RNAs to target RNA silencing against viruses, transgenes and in regulation of mRNAs. Plants encode multiple AGO proteins but, in Arabidopsis, only AGO1 is known to have an antiviral role.

Methodology/Principal Findings

To uncover the roles of specific AGOs in limiting virus accumulation we inoculated turnip crinkle virus (TCV) to Arabidopsis plants that were mutant for each of the ten AGO genes. The viral symptoms on most of the plants were the same as on wild type plants although the ago2 mutants were markedly hyper-susceptible to this virus. ago2 plants were also hyper-susceptible to cucumber mosaic virus (CMV), confirming that the antiviral role of AGO2 is not specific to a single virus. For both viruses, this phenotype was associated with transient increase in virus accumulation. In wild type plants the AGO2 protein was induced by TCV and CMV infection.

Conclusions/Significance

Based on these results we propose that there are multiple layers to RNA-mediated defense and counter-defense in the interactions between plants and their viruses. AGO1 represents a first layer. With some viruses, including TCV and CMV, this layer is overcome by viral suppressors of silencing that can target AGO1 and a second layer involving AGO2 limits virus accumulation. The second layer is activated when the first layer is suppressed because AGO2 is repressed by AGO1 via miR403. The activation of the second layer is therefore a direct consequence of the loss of the first layer of defense.  相似文献   

14.
Potyviral helper component proteinase (HCPro) is a well‐characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus‐infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S–adenosyl‐l –methionine synthase and S–adenosyl‐l –homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus‐infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA‐induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC‐mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome‐associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1.  相似文献   

15.
Plant viruses encode RNA silencing suppressors (VSRs) to counteract the antiviral RNA silencing response. Based on in-vitro studies, several VSRs were proposed to suppress silencing through direct binding of short-interfering RNAs (siRNAs). Because their expression also frequently hinders endogenous miRNA-mediated regulation and stabilizes labile miRNA* strands, VSRs have been assumed to prevent both siRNA and miRNA loading into their common effector protein, AGO1, through sequestration of small RNA (sRNA) duplexes in vivo. These assumptions, however, have not been formally tested experimentally. Here, we present a systematic in planta analysis comparing the effects of four distinct VSRs in Arabidopsis. While all of the VSRs tested compromised loading of siRNAs into AGO1, only P19 was found to concurrently prevent miRNA loading, consistent with a VSR strategy primarily based on sRNA sequestration. By contrast, we provide multiple lines of evidence that the action of the other VSRs tested is unlikely to entail siRNA sequestration, indicating that in-vitro binding assays and in-vivo miRNA* stabilization are not reliable indicator of VSR action. The contrasted effects of VSRs on siRNA versus miRNA loading into AGO1 also imply the existence of two distinct pools of cellular AGO1 that are specifically loaded by each class of sRNAs. These findings have important implications for our current understanding of RNA silencing and of its suppression in plants.  相似文献   

16.
17.
18.
19.
RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus infected Drosophila. Furthermore, we demonstrate that the Nora virus VP1 protein contains RNAi suppressive activity in vitro and in vivo that enhances pathogenicity of recombinant Sindbis virus in an RNAi dependent manner. Nora virus VP1 and the viral suppressor of RNAi of Cricket paralysis virus (1A) antagonized Argonaute-2 (AGO2) Slicer activity of RNA induced silencing complexes pre-loaded with a methylated single-stranded guide strand. The convergent evolution of AGO2 suppression in two unrelated insect RNA viruses highlights the importance of AGO2 in antiviral defense.  相似文献   

20.
Recently, CRISPR‐Cas (clustered, regularly interspaced short palindromic repeats–CRISPR‐associated proteins) system has been used to produce plants resistant to DNA virus infections. However, there is no RNA virus control method in plants that uses CRISPR‐Cas system to target the viral genome directly. Here, we reprogrammed the CRISPR‐Cas9 system from Francisella novicida to confer molecular immunity against RNA viruses in Nicotiana benthamiana and Arabidopsis plants. Plants expressing FnCas9 and sgRNA specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV) exhibited significantly attenuated virus infection symptoms and reduced viral RNA accumulation. Furthermore, in the transgenic virus‐targeting plants, the resistance was inheritable and the progenies showed significantly less virus accumulation. These data reveal that the CRISPR/Cas9 system can be used to produce plant that stable resistant to RNA viruses, thereby broadening the use of such technology for virus control in agricultural field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号