首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The two-spotted spider mite, Tetranychus uticae Koch (Acari: Tetranychidae), is globally one of the most devastating pests that feed on numerous crops, including common bean (Phaseolus vulgaris L.). This study was aimed to evaluate the effects of genotype and morphological attributes of common bean on T. uticae. Forty common bean accessions were used to investigate antixenosis and antibiosis through assessing mite feeding preference and reproduction under laboratory conditions. Three resistant (i.e., 56, 63, 238) and two susceptible (i.e., 182, 236) accessions, along with cultivars Naz (resistant) and Akhtar (susceptible), were used in a life-table study. Both antixenosis and antibiosis mechanism were observed in all of the accessions, albeit a negative correlation occurred. Significant differences were observed for all traits of T. urticae: developmental time of immature stages, reproduction, adult longevity and life-table parameters. Based on the intrinsic rate of increase, the accessions 56, 63, 182, 238, and cv. Naz impose high antibiotic effects on T. urticae. Although significant variation existed among accessions for morphological factors, only glandular trichomes correlated with mite fecundity and feeding preference.  相似文献   

2.
Cajanus platycarpus, a wild relative of Cajanus cajan, is an important source for various agronomically desirable traits, including resistance towards pod borer, Helicoverpa armigera. In the present study, the inhibitory activity of proteinase inhibitors (PIs) present in crude protein extracted from different accessions of C. platycarpus and cultivars of C. cajan was evaluated against H. armigera under in vitro and in vivo conditions. The PIs active against H. armigera gut trypsin-like proteinases (HGPs), referred to as ‘HGPIs’, were more pronounced in mature dry seeds of C. platycarpus accessions when compared with cultivars, which is also evident through gelatin activity staining studies. Therefore, the inhibitory activity of HGPIs was further evaluated in various plant organs of C. platycarpus accessions, such as leaves, flowers, pods, developing seeds at 8–10 days (DAP-I), 18–20 days (DAP-II), and 28–32 days after pollination (DAP-III). However, the HGPI activity was more pronounced in mature dry seeds > DAP-III > DAP-II > DAP-I > flowers > pods > leaves. The observed quantitative allocation of HGPIs closely resembled “Optimal Defense Theory”. Further, bioassays demonstrated that there was a significant reduction in the body weight of the larvae fed upon crude PI extracts of C. platycarpus accessions with concomitant increase in mortality rate and the formation of larval–pupal intermediates. Nevertheless, such changes were not observed when the larvae were fed on crude PI extracts of C. cajan cultivars. These results suggest that the PI gene(s) from C. platycarpus accessions could be exploited in the management of H. armigera by introgression into C. cajan cultivars.  相似文献   

3.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

4.

Aims

To identify Rhizobium strains’ ability to biocontrol Sclerotium rolfsii, a fungus that causes serious damage to the common bean and other important crops, 78 previously isolated rhizobia from common bean were assessed.

Methods

Dual cultures, volatiles, indole-acetic acid (IAA), siderophore production and 16S rRNA sequencing were employed to select strains for pot and field experiments.

Results

Thirty-three antagonistic strains were detected in dual cultures, 16 of which were able to inhibit ≥84% fungus mycelial growth. Antagonistic strains produced up to 36.5 μg mL?1 of IAA, and a direct correlation was verified between IAA production and mycelium inhibition. SEMIA 460 inhibited 45% of mycelial growth through volatile compounds. 16S rRNA sequences confirmed strains as Rhizobium species. In pot condition, common bean plants grown on S. rolfsii-infested soil and inoculated with SEMIA 4032, 4077, 4088, 4080, 4085, or 439 presented less or no disease symptoms. The most efficient strains under field conditions, SEMIA 439 and 4088, decreased disease incidence by 18.3 and 14.5% of the S. rolfsii-infested control.

Conclusions

Rhizobium strains could be strong antagonists towards S. rolfsii growth. SEMIA 4032, 4077, 4088, 4080, 4085, and 439 are effective in the biological control of the collar rot of the common bean.
  相似文献   

5.
6.

Key message

In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens.

Abstract

Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.
  相似文献   

7.
Drosophila suzukii (Matsumura) has been recently detected causing damage to strawberries in Brazil. Infestation in strawberry culture has often been observed jointly with the presence of Zaprionus indianus Gupta. This study investigated the susceptibility of strawberries at three ripening stages to infestation of D. suzukii and Z. indianus and their interaction. In the laboratory, strawberries cv. Albion at different ripening stages (green, semi-ripe and ripe) were exposed to D. suzukii and Z. indianus for 24 h in choice and no-choice bioassays. Additionally, we evaluated the effects of mechanical damage incurred artificially or by D. suzukii oviposition on Z. indianus infestation. In no-choice bioassay, there were no significant differences in fruit susceptibility to D. suzukii infestation at different ripening stages. However, in choice bioassay, D. suzukii adults preferred to oviposit on R fruit. The presence of mechanical damage did not increase susceptibility of fruit to D. suzukii oviposition. For Z. indianus, there was greater susceptibility of R fruit in relation to SR and G fruit in both the choice and no-choice bioassays. There was a significant and positive interaction of mechanical damage and damage caused by D. suzukii to R fruit and infestation by Z. indianus, which was not observed in SR and G fruit. Although infestation of Z. indianus is related to attack damaged or decaying fruit, this work shows that this species has the ability to oviposit and develop in healthy strawberry fruit with and increased infestation level when the fruit has damage to its epidermis.  相似文献   

8.
9.
A new anthracnose disease of Atractylodes chinensis was observed in Liaoning province in China. The causal agent was isolated from diseased leaves. Based on morphology and ITS sequence data, it was identified as a Colletotrichum species belonging to the C. destructivum species complex. A multi-locus DNA sequence analysis (ITS, GAPDH, CHS-1, ACT, TUB2) revealed that the fungus represents a new species that is described here as C. atractylodicola sp. nov. Pathogenicity tests confirmed that the isolated species is the causal agent of the observed anthracnose symptoms on A. chinensis leaves.  相似文献   

10.
Hybrid plants resistant to phosphinothricin (PPT) are obtained as a result of experiments with somatic hybridization between Brassica napus L. cv. Kalinins’kyy and Orychophragmus violaceus L. O.E. Shulz. The hybrids inherited PPT resistance from O. violaceus plants that had been previously transformed by a vector containing the maize transposon system Spm/dSPm with bar gene located within the nonautonomous transposon. The morphologically obtained plants occupy an intermediate position between the initial forms, which is in agreement with the results of isoenzyme analyses (analysis of multiple forms of amylase and esterase) and PCR analysis (presence of the genes bar, gus, and SpmTPase). Inheritance of the plastome occurs from oilseed rape, while that of the mitochondrion, from O. violaceus, which is proved by means of PCR-RFLP analysis. The plant hybrids may be utilized for further selection research with oilseed rape following determination of the edible quality of its oil as well as in experiments with chloroplast transformation, a topic which is of critical importance for oilseed rape.  相似文献   

11.
Phaseolus vulgaris cv. Korona plants were inoculated with the bacteria Pseudomonas syringae pv. phaseolicola (Psp), necrotrophic fungus Botrytis cinerea (Bc) or with both pathogens sequentially. The aim of the experiment was to determine how plants cope with multiple infection with pathogens having different attack strategy. Possible suppression of the non-specific infection with the necrotrophic fungus Bc by earlier Psp inoculation was examined. Concentration of reactive oxygen species (ROS), such as superoxide anion (O2 ?) and H2O2 and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were determined 6, 12, 24 and 48 h after inoculation. The measurements were done for ROS cytosolic fraction and enzymatic cytosolic or apoplastic fraction. Infection with Psp caused significant increase in ROS levels since the beginning of experiment. Activity of the apoplastic enzymes also increased remarkably at the beginning of experiment in contrast to the cytosolic ones. Cytosolic SOD and guaiacol peroxidase (GPOD) activities achieved the maximum values 48 h after treatment. Additional forms of the examined enzymes after specific Psp infection were identified; however, they were not present after single Bc inoculation. Subsequent Bc infection resulted only in changes of H2O2 and SOD that occurred to be especially important during plant–pathogen interaction. Cultivar Korona of common bean is considered to be resistant to Psp and mobilises its system upon infection with these bacteria. We put forward a hypothesis that the extent of defence reaction was so great that subsequent infection did not trigger significant additional response.  相似文献   

12.
Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.  相似文献   

13.
Cyclamen purpurascens is considered suitable for horticultural breeding of cyclamens because it has an attractive fragrance that is not found in other wild species. To improve the commercial value of cyclamen flowers, this fragrance has been introduced into ornamental cultivars. However, variation in flower color is somewhat limited in these cultivars, and therefore understanding the genetic networks of flower coloration in C. purpurascens is required. We previously isolated DNA fragments of anthocyanin biosynthetic genes from C. purpurascens, broadening our understanding of the biosynthetic pathway of flavonols, which are co-pigments in flower coloration. In this study, we isolated complete open reading frames of flavonol synthase genes from C. purpurascens (CpurFLS1 and CpurFLS2) and analyzed the in planta functions of the genes by molecular complementation assay using the fls mutant of Arabidopsis thaliana. Expression patterns in several organs of C. purpurascens were also determined. The results strongly suggest that the CpurFLS genes participate in flavonol synthesis. We discuss the involvement of these two FLSs in flower coloration in C. purpurascens.  相似文献   

14.
15.

Key message

The split-hull phenotype caused by reduced lemma width and low lignin content is under control of SPH encoding a type-2 13-lipoxygenase and contributes to high dehulling efficiency.

Abstract

Rice hulls consist of two bract-like structures, the lemma and palea. The hull is an important organ that helps to protect seeds from environmental stress, determines seed shape, and ensures grain filling. Achieving optimal hull size and morphology is beneficial for seed development. We characterized the split-hull (sph) mutant in rice, which exhibits hull splitting in the interlocking part between lemma and palea and/or the folded part of the lemma during the grain filling stage. Morphological and chemical analysis revealed that reduction in the width of the lemma and lignin content of the hull in the sph mutant might be the cause of hull splitting. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene, sph (Os04g0447100), which encodes a type-2 13-lipoxygenase. SPH knockout and knockdown transgenic plants displayed the same split-hull phenotype as in the mutant. The sph mutant showed significantly higher linoleic and linolenic acid (substrates of lipoxygenase) contents in spikelets compared to the wild type. It is probably due to the genetic defect of SPH and subsequent decrease in lipoxygenase activity. In dehulling experiment, the sph mutant showed high dehulling efficiency even by a weak tearing force in a dehulling machine. Collectively, the results provide a basis for understanding of the functional role of lipoxygenase in structure and maintenance of hulls, and would facilitate breeding of easy-dehulling rice.
  相似文献   

16.

Key message

Map-based cloning identified a candidate gene for resistance to the anthracnose fungal pathogen Colletotrichum orbiculare in cucumber, which reveals a novel function for the highly conserved STAYGREEN family genes for host disease resistance in plants.

Abstract

Colletotrichum orbiculare is a hemibiotrophic fungal pathogen that causes anthracnose disease in cucumber and other cucurbit crops. No host resistance genes against the anthracnose pathogens have been cloned in crop plants. Here, we reported fine mapping and cloning of a resistance gene to the race 1 anthracnose pathogen in cucumber inbred lines Gy14 and WI 2757. Phenotypic and QTL analysis in multiple populations revealed that a single recessive gene, cla, was underlying anthracnose resistance in both lines, but WI2757 carried an additional minor-effect QTL. Fine mapping using 150 Gy14?×?9930 recombinant inbred lines and 1043 F2 individuals delimited the cla locus into a 32 kb region in cucumber Chromosome 5 with three predicted genes. Multiple lines of evidence suggested that the cucumber STAYGREEN (CsSGR) gene is a candidate for the anthracnose resistance locus. A single nucleotide mutation in the third exon of CsSGR resulted in the substitution of Glutamine in 9930 to Arginine in Gy14 in CsSGR protein which seems responsible for the differential anthracnose inoculation responses between Gy14 and 9930. Quantitative real-time PCR analysis indicated that CsSGR was significantly upregulated upon anthracnose pathogen inoculation in the susceptible 9930, while its expression was much lower in the resistant Gy14. Investigation of allelic diversities in natural cucumber populations revealed that the resistance allele in almost all improved cultivars or breeding lines of the U.S. origin was derived from PI 197087. This work reveals an unknown function for the highly conserved STAYGREEN (SGR) family genes for host disease resistance in plants.
  相似文献   

17.
Traditionally viewed as an Andean grain crop,Chenopodium quinoa Willd. includes domesticated populations that are not Andean, and Andean populations that are not domesticated. Comparative analysis of leaf morphology and allozyme frequencies have demonstrated that Andean populations, both domesticated(quinua) and free-living(ajara), represent an exceptionally homogeneous unit that is well differentiated from allied domesticates of coastal Chile(quingua) and freeliving populations of the Argentine lowlands(C. hircinum). This pattern of relationships indicates that Andean populations represent a monophyletic crop/weed system that has possibly developed through cyclic differentiation (natural vs. human selection) and introgressive hybridization. Relative levels of variation suggest that this complex originated in the southern Andes, possibly from wild types allied withC. hircinum, with subsequent dispersal north to Colombia and south to the Chilean coast. Coastal populations were apparently isolated from post-dispersal differentiation and homogenization that occurred in the Andes. Other data point toward a center of origin in the northern Andes with secondary centers of genetic diversity subsequently developing in the southern Andes and the plains of Argentina. Comparative linkage of South American taxa, all tetraploid, with North American tetraploids of the subsection will eventually clarify this problem. While the possibility of a direct phyletic connection betweenC. quinoa and the Mexican domesticate(C. berlandieri subsp. nuttalliae,) cannot be excluded, available evidence indicates that the latter represents an autonomous lineage that is associated with the basal tetraploid, C. b. subsp.berlandieri, through var.sinuatum, whereas South American taxa show possible affinities to either var. zschackei or var.berlandieri. An extinct domesticate of eastern North America,C. b. subsp.jonesianum, represents either another instance of independent domestication, possibly from subsp. b. var.zschackei, or a northeastern outlier of subsp.nuttalliae.  相似文献   

18.
The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.  相似文献   

19.
20.
In this contribution on the genus Cantharellus in Asia, C. subvaginatus is described from the Republic of Korea as a close relative to the Chinese C. vaginatus, which is here reported for the first time from India. Both species are here placed in Cantharellus subg. Cantharellus sect. Amethystini, together with the Indian C. pseudoformosus (syn.: C. umbonatus) and the Malayan C. subamethysteus. As such, Asia has suddenly become the continent with the highest diversity for Amethystini. Species delimitation in sect. Amethystini is molecularly supported by a combined phylogenetic analysis of rDNA sequences obtained for LSU and ITS and additionally suggests the existence of a still undescribed species in North America. Character variability is discussed for all known members of Amethystini, including atypical specimens of the North American C. lewisii that are morphologically more reminiscent of the South Korean C. subvaginatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号