首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Identification of the HtrA inhibitor JO146 previously enabled us to demonstrate an essential function for HtrA during the mid-replicative phase of the Chlamydia trachomatis developmental cycle. Here we extend our investigations to other members of the Chlamydia genus. C. trachomatis isolates with distinct replicative phase growth kinetics showed significant loss of viable infectious progeny after HtrA was inhibited during the replicative phase. Mid-replicative phase addition of JO146 was also significantly detrimental to Chlamydia pecorum, Chlamydia suis and Chlamydia cavie. These data combined indicate that HtrA has a conserved critical role during the replicative phase of the chlamydial developmental cycle.  相似文献   

2.
Chlamydia trachomatis high temperature requirement A (CtHtrA) is a serine protease that performs proteolytic and chaperone functions in pathogenic Chlamydiae; and is seen as a prospective drug target. This study details the strategies employed in optimizing the irreversible CtHtrA inhibitor JO146 [Boc-Val-Pro-ValP(OPh)2] for potency and selectivity. A series of adaptations both at the warhead and specificity residues P1 and P3 yielded 23 analogues, which were tested in human neutrophil elastase (HNE) and CtHtrA enzyme assays as well as Chlamydia cell culture assays. Trypsin and chymotrypsin inhibition assays were also conducted to measure off-target selectivity. Replacing the phosphonate moiety with α-ketobenzothiazole produced a reversible analogue with considerable CtHtrA inhibition and cell culture activity. Tertiary leucine at P3 (8a) yielded approximately 33-fold increase in CtHtrA inhibitory activity, with an IC50 = 0.68 ± 0.02 µM against HNE, while valine at P1 retained the best anti-chlamydial activity. This study provides a pathway for obtaining clinically relevant inhibitors.  相似文献   

3.
The precise strategies that intracellular pathogens use to exit host cells have a direct impact on their ability to disseminate within a host, transmit to new hosts, and engage or avoid immune responses. The obligate intracellular bacterium Chlamydia trachomatis exits the host cell by two distinct exit strategies, lysis and extrusion. The defining characteristics of extrusions, and advantages gained by Chlamydia within this unique double‐membrane structure, are not well understood. Here, we define extrusions as being largely devoid of host organelles, comprised mostly of Chlamydia elementary bodies, and containing phosphatidylserine on the outer surface of the extrusion membrane. Extrusions also served as transient, intracellular‐like niches for enhanced Chlamydia survival outside the host cell. In addition to enhanced extracellular survival, we report the key discovery that chlamydial extrusions are phagocytosed by primary bone marrow‐derived macrophages, after which they provide a protective microenvironment for Chlamydia. Extrusion‐derived Chlamydia staved off macrophage‐based killing and culminated in the release of infectious elementary bodies from the macrophage. Based on these findings, we propose a model in which C. trachomatis extrusions serve as “trojan horses” for bacteria, by exploiting macrophages as vehicles for dissemination, immune evasion, and potentially transmission.  相似文献   

4.
The obligate intracellular bacterium Chlamydia elicits a great burden on global public health. C. trachomatis is the leading bacterial cause of sexually transmitted infection and also the primary cause of preventable blindness in the world. An essential determinant for successful infection of host cells by Chlamydia is the bacterium''s ability to manipulate host cell signaling from within a novel, vacuolar compartment called the inclusion. From within the inclusion, Chlamydia acquire nutrients required for their 2-3 day developmental growth, and they additionally secrete a panel of effector proteins onto the cytosolic face of the vacuole membrane and into the host cytosol. Gaps in our understanding of Chlamydia biology, however, present significant challenges for visualizing and analyzing this intracellular compartment. Recently, a reverse-imaging strategy for visualizing the inclusion using GFP expressing host cells was described. This approach rationally exploits the intrinsic impermeability of the inclusion membrane to large molecules such as GFP. In this work, we describe how GFP- or mCherry-expressing host cells are generated for subsequent visualization of chlamydial inclusions. Furthermore, this method is shown to effectively substitute for costly antibody-based enumeration methods, can be used in tandem with other fluorescent labels, such as GFP-expressing Chlamydia, and can be exploited to derive key quantitative data about inclusion membrane growth from a range of Chlamydia species and strains.  相似文献   

5.
Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells’ antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection.  相似文献   

6.
Phosphatidylcholine is a constituent of Chlamydia trachomatis membranes that must be acquired from its mammalian host to support bacterial proliferation. The CLA1 (SR‐B1) receptor is a bi‐directional phosphatidylcholine/cholesterol transporter that is recruited to the inclusion of Chlamydia‐infected cells along with ABCA1. C. trachomatis growth was inhibited in a dose‐dependent manner by BLT‐1, a selective inhibitor of CLA1 function. Expression of a BLT‐1‐insensitive CLA1(C384S) mutant ameliorated the effect of the drug on chlamydial growth. CLA1 knockdown using shRNAs corroborated an important role for CLA1 in the growth of C. trachomatis. Trafficking of a fluorescent phosphatidylcholine analogue to Chlamydia was blocked by the inhibition of CLA1 or ABCA1 function, indicating a critical role for these transporters in phosphatidylcholine acquisition by this organism. Our analyses using a dual‐labelled fluorescent phosphatidylcholine analogue and mass spectrometry showed that the phosphatidylcholine associated with isolated Chlamydia was unmodified host phosphatidylcholine. These results indicate that C. trachomatis co‐opts host phospholipid transporters normally used to assemble lipoproteins to acquire host phosphatidylcholine essential for growth.  相似文献   

7.
The phylum Chlamydiae consists exclusively of obligate intracellular bacteria. Some of them are formidable pathogens of humans, while others occur as symbionts of amoebae. These genetically intractable bacteria possess a developmental cycle consisting of replicative reticulate bodies and infectious elementary bodies, which are believed to be physiologically inactive. Confocal Raman microspectroscopy was applied to differentiate between reticulate bodies and elementary bodies of Protochlamydia amoebophila and to demonstrate in situ the labelling of this amoeba symbiont after addition of isotope‐labelled phenylalanine. Unexpectedly, uptake of this amino acid was also observed for both developmental stages for up to 3 weeks, if incubated extracellularly with labelled phenylalanine, and P. amoebophila remained infective during this period. Furthermore, P. amoebophila energizes its membrane and performs protein synthesis outside of its host. Importantly, amino acid uptake and protein synthesis after extended extracellular incubation could also be demonstrated for the human pathogen Chlamydia trachomatis, which synthesizes stress‐related proteins under these conditions as shown by 2‐D gel electrophoresis and MALDI‐TOF/TOF mass spectrometry. These findings change our perception of chlamydial biology and reveal that host‐free analyses possess a previously not recognized potential for direct experimental access to these elusive microorganisms.  相似文献   

8.
Toxoplasma and Chlamydia trachomatis are obligate intracellular pathogens that have evolved analogous strategies to replicate within mammalian cells. Both pathogens are known to extensively remodel the cytoskeleton, and to recruit endocytic and exocytic organelles to their respective vacuoles. However, how important these activities are for infectivity by either pathogen remains elusive. Here, we have developed a novel co‐infection system to gain insights into the developmental cycles of Toxoplasma and C. trachomatis by infecting human cells with both pathogens, and examining their respective ability to replicate and scavenge nutrients. We hypothesize that the common strategies used by Toxoplasma and Chlamydia to achieve development results in direct competition of the two pathogens for the same pool of nutrients. We show that a single human cell can harbour Chlamydia and Toxoplasma. In co‐infected cells, Toxoplasma is able to divert the content of host organelles, such as cholesterol. Consequently, the infectious cycle of Toxoplasma progresses unimpeded. In contrast, Chlamydia's ability to scavenge selected nutrients is diminished, and the bacterium shifts to a stress‐induced persistent growth. Parasite killing engenders an ordered return to normal chlamydial development. We demonstrate that C. trachomatisenters a stress‐induced persistence phenotype as a direct result from being barred from its normal nutrient supplies as addition of excess nutrients, e.g. amino acids, leads to substantial recovery of Chlamydia growth and infectivity. Co‐infection of C. trachomatis with slow growing strains of Toxoplasma or a mutant impaired in nutrient acquisition does not restrict chlamydial development. Conversely, Toxoplasma growth is halted in cells infected with the highly virulent Chlamydia psittaci. This study illustrates the key role that cellular remodelling plays in the exploitation of host intracellular resources by Toxoplasma and Chlamydia. It further highlights the delicate balance between success and failure of infection by intracellular pathogens in a co‐infection system at the cellular level.  相似文献   

9.
Chlamydia psittaci is an obligate intracellular pathogen with a biphasic developmental life cycle. It is auxotrophic for a variety of essential metabolites and obtains amino acids from eukaryotic host cells. Chlamydia can develop inside host cells within chlamydial inclusions. A pathway secreting proteins from inclusions into the host cellular cytoplasm is the type III secretion system (T3SS). The T3SS is universal among several Gram-negative bacteria. Here, we show that CPSIT_0959 of C. psittaci is expressed midcycle and secreted into the infected cellular cytoplasm via the T3SS. Recombinant CPSIT_0959 possesses cysteine desulfurase and PLP-binding activity, which removes sulfur from cysteine to produce alanine, and helps chlamydial replication. Our study shows that CPSIT_0959 improve the infectivity of offspring elementary bodies and seems to promote the replication by its product. This phenomenon has inhibited by the PLP-dependent enzymes inhibitor. Moreover, CPSIT_0959 increased expression of Bim and tBid, and decreased the mitochondrial membrane potential of host mitochondria to induce apoptosis in the latecycle for release of offspring. These results demonstrate that CPSIT_0959 has cysteine desulfurase and PLP-binding activity and is likely to contribute to apoptosis of the infected cells via a mitochondria-mediated pathway to improve the infectivity of progeny.  相似文献   

10.
Chlamydia trachomatis is the main cause of sexually transmitted diseases worldwide. As obligate intracellular bacteria Chlamydia replicate in a membrane bound vacuole called inclusion and acquire nutrients for growth and replication from their host cells. However, like all intracellular bacteria, Chlamydia have to prevent eradication by the host's cell autonomous system. The chlamydial deubiquitinase Cdu1 is secreted into the inclusion membrane, facing the host cell cytosol where it deubiquitinates cellular proteins. Here we show that inactivation of Cdu1 causes a growth defect of C. trachomatis in primary cells. Moreover, ubiquitin and several autophagy receptors are recruited to the inclusion membrane of Cdu1‐deficient Chlamydia. Interestingly, the growth defect of cdu1 mutants is not rescued when autophagy is prevented. We find reduced recruitment of Golgi vesicles to the inclusion of Cdu1 mutants indicating that vesicular trafficking is altered in bacteria without active deubiquitinase (DUB). Our work elucidates an important role of Cdu1 in the functional preservation of the chlamydial inclusion surface.  相似文献   

11.
12.

Background  

The chlamydial developmental cycle involves the alternation between the metabolically inert elementary body (EB) and the replicating reticulate body (RB). The triggers that mediate the interchange between these particle types are unknown and yet this is crucial for understanding basic Chlamydia biology.  相似文献   

13.
Chlamydia are Gram negative, obligate intracellular bacterial organisms with different species causing a multitude of infections in both humans and animals. Chlamydia trachomatis is the causative agent of the sexually transmitted infection (STI) Chlamydia, the most commonly acquired bacterial STI in the United States. Chlamydial infections have also been epidemiologically linked to cervical cancer in women co-infected with the human papillomavirus (HPV). We have previously shown chlamydial infection results in centrosome amplification and multipolar spindle formation leading to chromosomal instability. Many studies indicate that centrosome abnormalities, spindle defects, and chromosome segregation errors can lead to cell transformation. We hypothesize that the presence of these defects within infected dividing cells identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation. Here we demonstrate that infection with Chlamydia trachomatis is able to transform 3T3 cells in soft agar resulting in anchorage independence and increased colony formation. Additionally, we show for the first time Chlamydia infects actively replicating cells in vivo. Infection of mice with Chlamydia results in significantly increased cell proliferation within the cervix, and in evidence of cervical dysplasia. Confocal examination of these infected tissues also revealed elements of chlamydial induced chromosome instability. These results contribute to a growing body of data implicating a role for Chlamydia in cervical cancer development and suggest a possible molecular mechanism for this effect.  相似文献   

14.
Urogenital infection with Chlamydia trachomatis can lead to development of an acute inflammatory arthritis, and this acute disease becomes chronic in some individuals. Research indicates that the organism is present in synovial tissue of patients with chronic disease in a persistent, rather than an actively growing, form. Importantly, metabolic and other characteristics of persistent Chlamydia differ from those of actively growing bacteria. Other studies suggest that Chlamydia pneumoniae can be found in a persistent state in the synovium and that it too may be involved in joint pathogenesis. These and other observations suggest a more complex role for the Chlamydiae in joint disease than previously recognized. This realization should engender a realignment of thinking among clinicians and researchers concerning both mechanisms of chlamydial pathogenesis in the synovium and design of new treatments for the disease.  相似文献   

15.
The antimicrobial activity of T cell-derived cytokines, especially interferon (IFN)-γ, against intracellular pathogens, such as Chlamydia trachomatis, involves the induction of 3 major biochemical processes: tryptophan catabolism, nitric oxide (NO) induction and intracellular iron (Fe) deprivation. Since the epithelial cell is the natural target of chlamydial infection, the presence of these antimicrobial systems in the cell would suggest that they may be involved in T cell control of intracellular multiplication of Chlamydia. However, the controversy over whether these 3 antimicrobial processes are present in both mice and humans has precluded the assessment of the relative contribution of each of the 3 mechanisms to chlamydial inhibition in the same epithelial cell from either mice or humans. In the present study, we identified a Chlamydia-susceptible human epithelial cell line, RT4, that possesses the 3 antimicrobial systems, and we examined the role of nitric oxide (NO) induction, and deprivation of tryptophan or Fe in cytokine-induced inhibition of chlamydiae. It was found that the 3 antimicrobial systems contributed to cytokine-mediated inhibition of the intracellular growth of Chlamydia. NO induction accounted for ~20% of the growth inhibition; tryptophan catabolism contributed approximately 30%; iron deprivation was least effective; but the combination of the 3 systems accounted for greater than 60% of the inhibition observed. These results indicate that immune control of chlamydial growth in human epithelial cells may involve multiple mechanisms that include NO induction, tryptophan catabolism and Fe deprivation.  相似文献   

16.
Chlamydia, like other intracellular bacteria, are auxotrophic for a variety of essential metabolites and obtain cholesterol and fatty acids from their eukaryotic host cell, however not many Chlamydia-specific enzymes have been identified that are involved in lipid metabolism. In silico analysis of one candidate Chlamydia trachomatis enzyme, annotated as a conserved putative hydrolase (CT149), identified two lipase/esterase GXSXG motifs, and a potential cholesterol recognition/interaction amino acid consensus (CRAC) sequence. His-tag purified recombinant CT149 exhibited ester hydrolysis activity in a nitrophenyl acetate-based cell-free assay system. When cholesteryl linoleate was used as substrate, ester hydrolysis occurred and production of cholesterol was detected by high performance liquid chromatography. Exogenous expression of transfected CT149 in HeLa cells resulted in a significant decrease of cytoplasmic cholesteryl esters within 48 h. These results demonstrate that CT149 has cholesterol esterase activity and is likely to contribute to the hydrolysis of eukaryotic cholesteryl esters during intracellular chlamydial growth.  相似文献   

17.
Using monospecific polyclonal antisera to different parts of Chlamydia trachomatis L2 outer membrane protein 2 (Omp2), we show that the protein is localized at the inner surface of the outer membrane. Omp2 becomes immunoaccessible when Chlamydia elementary bodies are treated with dithiothreitol, and protease digestions indicate that Omp2 has a possible two-domain structure.  相似文献   

18.
Chlamydia belong to the group of obligate intracellular bacteria that reside in a membrane bound vacuole during the entire intracellular phase of their life cycle. This vacuole called inclusion shields the bacteria from adverse influences in the cytosol of the host cell like the destructive machinery of the cell‐autonomous defence system. The inclusion thereby prevents the digestion and eradication in specialised compartments of the intact and viable cell called phagolysosomes or autophagolysosomes. It is becoming more and more evident that keeping the inclusion intact also prevents the onset of cell intrinsic cell death programmes that are activated upon damage of the inclusion and direct the cell to destruct itself and the pathogen inside. Chlamydia secrete numerous proteins into the inclusion membrane to protect and stabilise their unique niche inside the host cell. We will focus in this review on the diverse attack strategies of the host aiming at the destruction of the Chlamydia‐containing inclusion and will summarise the current knowledge on the protection mechanisms elaborated by the bacteria to maintain the integrity of their replication niche.  相似文献   

19.
Chlamydia spp. express a functional type III secretion system (T3SS) necessary for pathogenesis and intracellular growth. However, certain essential components of the secretion apparatus have diverged to such a degree as to preclude their identification by standard homology searches of primary protein sequences. One example is the needle subunit protein. Electron micrographs indicate that chlamydiae possess needle filaments, and yet database searches fail to identify a SctF homologue. We used a bioinformatics approach to identify a likely needle subunit protein for Chlamydia. Experimental evidence indicates that this protein, designated CdsF, has properties consistent with it being the major needle subunit protein. CdsF is concentrated in the outer membrane of elementary bodies and is surface exposed as a component of an extracellular needle-like projection. During infection CdsF is detectible by indirect immunofluorescence in the inclusion membrane with a punctuate distribution adjacent to membrane-associated reticulate bodies. Biochemical cross-linking studies revealed that, like other SctF proteins, CdsF is able to polymerize into multisubunit complexes. Furthermore, we identified two chaperones for CdsF, termed CdsE and CdsG, which have many characteristics of the Pseudomonas spp. needle chaperones PscE and PscG, respectively. In aggregate, our data are consistent with CdsF representing at least one component of the extended Chlamydia T3SS injectisome. The identification of this secretion system component is essential for studies involving ectopic reconstitution of the Chlamydia T3SS. Moreover, we anticipate that CdsF could serve as an efficacious target for anti-Chlamydia neutralizing antibodies.  相似文献   

20.
The effect of erythromycin (10 g/ml) on the morphology and developmental cycle of Chlamydia trachomatis HAR-13 was examined by electron microscopy. When the antibiotic was added later than 24 h post infection, the HAR-13 morphology or developmental cycle was not altered. Addition at 18 or 24 h post infection inhibited glycogen production, blocked the transformation of the reticulate body to elementary body, and produced ghost bodies and reticulate bodies twice the diameter of untreated reticulate bodies. When erythromycin was added within 12 h post infection, the conversion of the elementary body to reticulate body was inhibited. Erythromycin (10 g/ml) was bactericidal to strain HAR-13 throughout the developmental cycle.Abbreviations CXM cycloheximide media - IFU inclusion forming units - MEM minimal essential medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号