首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
DNA polymerases are desired that incorporate modified nucleotides into DNA with diminished pausing, premature termination and infidelity. Reported here is a simple in vitro assay to screen for DNA polymerases that accept modified nucleotides based on a set of primer extension reactions. In combination with the scintillation proximity assay (SPA[trade]), this allows rapid and simple screening of enzymes for their ability to elongate oligonucleotides in the presence of unnatural nucleotides. A proof of the concept is obtained using pseudo-thymidine (psiT), the C-nucleoside analog of thymidine, as the unnatural substrate. The conformational properties of psiT arising from the carbon-carbon bond between the sugar and the base make it an interesting probe for the importance of conformational restraints in the active site of polymerases during primer elongation. From a pool of commercially available thermostable polymerases, the assay identified Taq DNA polymerase as the most suitable enzyme for the PCR amplification of oligonucleotides containing psiT. Subsequent experiments analyzing PCR performance and fidelity of Taq DNA polymerase acting on psiT are presented. This is the first time that PCR has been performed with a C-nucleoside.  相似文献   

2.
DNA synthesis fidelities of two thermostable DNA polymerases, Thermus aquaticus (Taq) and Thermococcus litoralis (Tli, also known as Vent), and a non-thermostable enzyme, a modified T7 DNA polymerase (Sequenase), were determined by analyzing polymerase chain reaction (PCR) products using denaturing gradient gel electrophoresis (DGGE). The error rates were 4.4, 8.9, and 2.4 x 10(-5) errors/bp for modified T7, Taq, and Tli polymerase, respectively. Reducing the nucleotide triphosphate concentration for Tli polymerase during PCR did not alter the fidelity. The ability of DGGE to detect a mutant present at several percent in a wild type population is related to the polymerase fidelity. To examine the sensitivity of mutant detection, human genomic DNA containing a 1% fraction of a known base pair substitution mutant was PCR-amplified with the three enzymes using primers that flank the mutant sequence. The PCR products were analyzed by DGGE. The signal from the mutant present at 1% was visible in the samples amplified with modified T7 and Tli polymerase, but the higher error rate of Taq polymerase did not permit visualization of the signal in DNA amplified with Taq polymerase.  相似文献   

3.
Polymerase chain reaction (PCR) was performed with two polymerases. Thermus aquaticus DNA polymerase (Taq), and modified T7 DNA polymerase (Sequenase). Both polymerases were used to amplify the same portion of the human 18S rRNA gene. We report a PCR artifact, namely a deletion of 54 bp, when Taq polymerase was used to amplify a portion of the human 18S rRNA gene. PCR performed with Sequenase did not produce this artifact. The deletion eliminated a potentially stable hairpin loop. Our data are consistent with the following model for generation of the deletion: (i) the formation of an intrastrand hairpin, and (ii) polymerization across the base of the hairpin, thus deleting the nucleotide sequence in the hairpin. Furthermore, we show that the deletion occurs mainly during synthesis of the (-)DNA strand. Our observations suggest that similar artifacts may occur in other sequences containing stable secondary structures.  相似文献   

4.
The thermostable DNA polymerases have been used for amplification of DNA fragments since the invention of PCR. The constraint on the maximum size of the amplified fragments can be solved to certain level by the use of unbalanced mixtures of non-proofreading and proofreading thermostable DNA polymerases. In this study, we tested the use of a mixtures of N-terminal deletional variant of Taq polymerase—Klentaq278 and Tne polymerase from Thermotoga neapolitana. Klentaq278 and Tne polymerase genes were cloned and expressed in different expression vectors under tac promoter. The most efficient ratio of Klentaq278/Tne polymerase for amplification was 10: 1. The polymerase mixture of Klentaq278 and Tne polymerase is very effective in amplification of DNA fragments for up to 8 kb and is useful addition to a DNA polymerases used in long-range PCR.  相似文献   

5.
一种高特异性的改良降落PCR   总被引:3,自引:0,他引:3  
为提高基因组DNA中的基因PCR检出的特异性,设计了一种改良的降落PCR程序,并分别用TaqDNA聚合酶及高保真PfuDNA聚合酶进行实验。自盐藻Dunaliella bardawil中提取基因组DNA作为PCR模板,使用TaqDNA聚合酶及PfuDNA聚合酶,运用普通PCR和降落PCR程序,扩增胡萝眩素生物合成相关基因(cbr)上游启动子序列,并电泳比较PCR扩增产物的特异性。结果显示,使用普通Taq酶PCR,普通PCR程序产生200bp,500bp和1272bp长的三条带,而TD-PCR程序仅克隆出1272bp的特异带;利用高保真的PfuDNA聚合酶作PCR,在TD-PCR泳道中仅有1272bp一条带,而普通PCR除了1272bp的特异带外,还出现一条500bp的非特异带。无论使用普通Taq酶或高保真酶Pfu,改良的降落PCR程序均明显提高PCR的特异性,类似的降落PCR程序可望用于克隆用普通PCR难以克隆的基因片段,或在假阳性难以去除的情况下提高PCR的特异性。  相似文献   

6.
Replication slippage of DNA polymerases is a potential source of spontaneous genetic rearrangements in prokaryotic and eukaryotic cells. Here we show that different thermostable DNA polymerases undergo replication slippage in vitro, during single-round replication of a single-stranded DNA template carrying a hairpin structure. Low-fidelity polymerases, such as Thermus aquaticus (Taq), high-fidelity polymerases, such as Pyrococcus furiosus (Pfu) and a highly thermostable polymerase from Pyrococcus abyssi (Pyra exo(-)) undergo slippage. Thermococcus litoralis DNA polymerase (Vent) is also able to slip; however, slippage can be inhibited when its strand-displacement activity is induced. Moreover, DNA polymerases that have a constitutive strand-displacement activity, such as Bacillus stearothermophilus DNA polymerase (Bst), do not slip. Polymerases that slip during single-round replication generate hairpin deletions during PCR amplification, with the exception of Vent polymerase because its strand-displacement activity is induced under these conditions. We show that these hairpin deletions occurring during PCR are due to replication slippage, and not to a previously proposed process involving polymerization across the hairpin base.  相似文献   

7.
(S(C5'), R(P)) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.  相似文献   

8.
Two novel photolabile nucleotide triphosphate (NTP) analogues were synthesized through Sonogashira coupling and their enzymatic incorporation into DNA was evaluated with three different DNA polymerases (Taq, Vent exo- and T4) by polymerase chain reaction. Both nucleotide triphosphate analogues were recognized by these DNA polymerases as substrates for primer extension. Light irradiation of PCR products removed the photolabile group and released the amino and carboxyl moieties. Further site-specific dual-labeling for oligodeoxynucleotides (ODNs) and random labeling for a long DNA construct with fluorophores were successfully achieved with incorporation of the photolabile amine modified deoxyuridine triphosphate (dUnTP).  相似文献   

9.
We synthesized C5-modified analogs of 2′-deoxyuridine triphosphate and 2′-deoxycytidine triphosphate and investigated them as substrates for PCRs using Taq, Tth, Vent(exo-), KOD Dash and KOD(exo-) polymerases and pUC 18 plasmid DNA as a template. These assays were performed on two different amplifying regions of pUC18 with different T/C contents that are expected to have relatively high barriers for incorporation of either modified dU or dC. On the basis of 260 different assays (26 modified triphosphates × 5 DNA polymerases × 2 amplifying regions), it appears that generation of the full-length PCR product depends not only on the chemical structures of the substitution and the nature of the polymerase but also on whether the substitution is on dU or dC. Furthermore, the template sequence greatly affected generation of the PCR product, depending on the combination of the DNA polymerase and modified triphosphate. By examining primer extension reactions using primers and templates containing C5-modified dUs, we found that a modified dU at the 3′ end of the elongation strand greatly affects the catalytic efficiency of DNA polymerases, whereas a modified dU opposite the elongation site on the template strand has less of an influence on the catalytic efficiency.  相似文献   

10.
DNA polymerase from the archaeon Pyrococcus abyssi strain Orsay was expressed in Escherichia coli. The recombinant DNA polymerase (Pab) was purified to homogeneity by heat treatment followed by 5 steps of chromatography and characterized for PCR applications. Buffer optimization experiments indicated that Pab PCR performance and fidelity parameters were highest in the presence of 20 mM Tris-HCl, pH 9.0, 1.5 mM MgSO4, 25 mM KCl, 10 mM (NH4)2SO4 and 40 microM of each dNTP. Under these conditions, the error rate was 0.66.10(-6) mutations/nucleotide/duplication. Pab DNA polymerase, having a half life of 5 h at 100 degrees C, was demonstrated to be highly thermostable in PCR conditions compared to commercial Taq and Pfu DNA polymerases. These characteristics enable Pab to be one of the most efficient thermostable DNA polymerases described, exhibiting very high accuracy compared to other available commercial DNA polymerases and robust thermostable activity. This new DNA polymerase is currently on the market under the name Isis DNA Polymerase (Qbiogene Molecular Biology).  相似文献   

11.
12.
Thermostable DNA polymerases are an important tool in molecular biology. To exploit the archaeal repertoire of proteins involved in DNA replication for use in PCR, we elucidated the network of proteins implicated in this process in Archaeoglobus fulgidus. To this end, we performed extensive yeast two-hybrid screens using putative archaeal replication factors as starting points. This approach yielded a protein network involving 30 proteins potentially implicated in archaeal DNA replication including several novel factors. Based on these results, we were able to improve PCR reactions catalyzed by archaeal DNA polymerases by supplementing the reaction with predicted polymerase co-factors. In this approach we concentrated on the archaeal proliferating cell nuclear antigen (PCNA) homologue. This protein is known to encircle DNA as a ring in eukaryotes, tethering other proteins to DNA. Indeed, addition of A. fulgidus PCNA resulted in marked stimulation of PCR product generation. The PCNA-binding domain was determined, and a hybrid DNA polymerase was constructed by grafting this domain onto the classical PCR enzyme from Thermus aquaticus, Taq DNA polymerase. Addition of PCNA to PCR reactions catalyzed by the fusion protein greatly stimulated product generation, most likely by tethering the enzyme to DNA. This sliding clamp-induced increase of PCR performance implies a promising novel micromechanical principle for the development of PCR enzymes with enhanced processivity.  相似文献   

13.
In order to systematically analyze the effects of nucleoside modification of sugar moieties in DNA polymerase reactions, we synthesized 16 modified templates containing 2',4'-bridged nucleotides and three types of 2',4'-bridged nucleoside-5'-triphospates with different bridging structures. Among the five types of thermostable DNA polymerases used, Taq, Phusion HF, Vent(exo-), KOD Dash and KOD(exo-), the KOD Dash and KOD(exo-) DNA polymerases could smoothly read through the modified templates containing 2'-O,4'-C-methylene-linked nucleotides at intervals of a few nucleotides, even at standard enzyme concentrations for 5 min. Although the Vent(exo-) DNA polymerase also read through these modified templates, kinetic study indicates that the KOD(exo-) DNA polymerase was found to be far superior to the Vent(exo-) DNA polymerase in accurate incorporation of nucleotides. When either of the DNA polymerase was used, the presence of 2',4'-bridged nucleotides on a template strand substantially decreased the reaction rates of nucleotide incorporations. The modified templates containing sequences of seven successive 2',4'-bridged nucleotides could not be completely transcribed by any of the DNA polymerases used; yields of longer elongated products decreased in the order of steric bulkiness of the modified sugars. Successive incorporation of 2',4'-bridged nucleotides into extending strands using 2',4'-bridged nucleoside-5'-triphospates was much more difficult. These data indicate that the sugar modification would have a greater effect on the polymerase reaction when it is adjacent to the elongation terminus than when it is on the template as well, as in base modification.  相似文献   

14.
DNA polymerase from Thermococcus kodakaraensis KOD1 (previously Pyrococcus sp. KOD1) is one of the most efficient thermostable PCR enzymes exhibiting higher accuracy and elongation velocity than any other commercially available DNA polymerase [M. Takagi et al. (1997) Appl. Environ. Microbiol. 63, 4504-4510]. However, when long distance PCR (>5 kbp) was performed with KOD DNA polymerase, amplification efficiency (product yield) becomes lower because of its strong 3'-5' exonuclease activity for proof-reading. In order to improve a target length limitation in PCR, mutant DNA polymerases with decreased 3'-5' exonuclease activity were designed by substituting amino acid residues in conserved exonuclease motifs, Exo I (Asp141-Xaa-Glu), Exo II (Asn210-Xaa-Xaa-Xaa-Phe-Asp), and Exo III (Tyr311-Xaa-Xaa-Xaa-Asp). Exonuclease activity and amplification fidelity (error rate) of the DNA polymerases were altered by mutagenesis. However, long and accurate PCR by a single-type of mutant DNA polymerase was very difficult. The wild-type DNA polymerase (WT) and its exonuclease deficient mutant (N210D) were mixed in different ratio and their characteristics in PCR were examined. When the mixed enzyme (WT and N210D) was made at the ratio of 1:40, long PCR (15 kbp) at lower mutation frequency could be efficiently achieved.  相似文献   

15.
Mitochondrial dysfunction has reported in several diseases including diabetes, cancer, skeletal muscle disorders and neurodegenerative diseases such as Wolfram syndrome. Several different methods have evolved to study mtDNA damage including Southern blotting, 8-oxoG damage, or a comprehensive scanning of the mitochondrial genome by RFLP or TTGE analyses. However these approaches require large amounts of DNA or are labor intensive. The use of polymerase amplification of long DNA products (LRPCR) has been described by several groups and more recently summarized by Van Houten’s group. The underlying basis use of DNA polymerases capable of generating long DNA products and the rationale is that any lesion (strand breaks, base modifications, apurinic sites) will stop a thermostable DNA polymerase. In this method, band density of the PCR product is quantified either by Southern blotting or binding of a fluorescent dye. Although the latter approach still has some limited use in the study gene expression, it is semi-quantitative and realtime PCR analysis has largely supplanted it. Direct application of real-time PCR to LRPCR has been made difficult because of low processivity and polymerization rates of the DNA polymerases used and SYBR green inhibition of DNA amplification. We have modified the LRPCR protocol to use the commercially available PfuUltra? II Fusion HS DNA Polymerase for real-time determination of mitochondrial DNA amplification as a means to simplify and improve of the accuracy for quantification of mtDNA damage.  相似文献   

16.
In this study, we found that deoxyinosine triphosphate (dITP) could inhibit polymerase chain reaction (PCR) amplification of various family B-type DNA polymerases, and 0.93% dITP was spontaneously generated from deoxyadenosine triphosphate during PCR amplification. Thus, it was hypothesized that the generated dITP might have negative effect on PCR amplification of family B-type DNA polymerases. To overcome the inhibitory effect of dITP during PCR amplification, a dITP pyrophosphatase (dITPase) from Thermococcus onnurineus NA1 was applied to PCR amplification. Genomic analysis of the hyperthermophilic archaeon T. onnurineus NA1 revealed the presence of a 555-bp open reading frame with 48% similarity to HAM1-like dITPase from Methanocaldococcus jannaschii DSM2661 (NP_247195). The dITPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dITP, not deoxyuridine triphosphate. Addition of the purified protein to PCR reactions using DNA polymerases from T. onnurineus NA1 and Pyrococcus furiosus significantly increased product yield, overcoming the inhibitory effect of dITP. This study shows the first representation that removing dITP using a dITPase enhances the PCR amplification yield of family B-type DNA polymerase.  相似文献   

17.
The kinetics of DNA labeling during PCR using six fluorescent derivatives of 2′-deoxyuridine 5′-triphosphate has been studied. These compounds differ in their chemical structure, total electric charge and the length of the linker between a dye and the C5 position of a pyrimidine base. The efficiency of the incorporation of the fluorescent derivatives into a growing DNA chain by four commercially available Taq DNA polymerases with 5′→3′ exonuclease and hot start activity has been determined using real-time PCR with a TaqMan probe and the subsequent electrophoretic analysis of the reaction products. Modified deoxyuridines with a total positive or negative charge of the chromophore were practically not incorporated by Taq polymerases during PCR. The modified deoxyuridines with a neutral charge of the chromophore were effectively incorporated into DNA. The extended length of the linker between the pyrimidine base and the chromophore led to a lower PCR inhibition and a more effective inclusion of modified nucleotides in the growing DNA chain. This fact can be explained by the reduced steric effects that were caused by the dye. As a result, the most promising combinations of fluorescently labeled nucleotide and Taq polymerase have been chosen for further use in fluorescent DNA labeling.  相似文献   

18.
Universal TA cloning   总被引:1,自引:0,他引:1  
TA cloning is one of the simplest and most efficient methods for the cloning of PCR products. The procedure exploits the terminal transferase activity of certain thermophilic DNA polymerases, including Thermus aquaticus (Taq) polymerase. Taq polymerase has non-template dependent activity which preferentially adds a single adenosine to the 3'-ends of a double stranded DNA molecule, and thus most of the molecules PCR amplified by Taq polymerase possess single 3'-A overhangs. The use of a linearized "T-vector" which has single 3'-T overhangs on both ends allows direct, high-efficiency cloning of PCR products, facilitated by complementarity between the PCR product 3'-A overhangs and vector 3'-T overhangs. The TA cloning method can be easily modified so that the same T-vector can be used to clone any double-stranded DNA fragment, including PCR products amplified by any DNA polymerase, as well as all blunt- and sticky-ended DNA species. This technique is especially useful when compatible restriction sites are not available for the subcloning of DNA fragments from one vector to another. Directional cloning is made possible by appropriate hemi-phosphorylation of both the T-vectors and the inserts. With a single T-vector at hand, any DNA fragment can be cloned without compromising the cloning efficiency. The universal TA cloning method is thus both convenient and labor-saving.  相似文献   

19.
The known archaeal family B DNA polymerases are unable to participate in the PCR in the presence of uracil. Here, we report on a novel archaeal family B DNA polymerase from Nanoarchaeum equitans that can successfully utilize deaminated bases such as uracil and hypoxanthine and on its application to PCR. N. equitans family B DNA polymerase (Neq DNA polymerase) produced λ DNA fragments up to 10 kb with an approximately 2.2-fold-lower error rate (5.53 × 10−6) than Taq DNA polymerase (11.98 × 10−6). Uniquely, Neq DNA polymerase also amplified λ DNA fragments using dUTP (in place of dTTP) or dITP (partially replaced with dGTP). To increase PCR efficiency, Taq and Neq DNA polymerases were mixed in different ratios; a ratio of 10:1 efficiently facilitated long PCR (20 kb). In the presence of dUTP, the PCR efficiency of the enzyme mixture was two- to threefold higher than that of either Taq and Neq DNA polymerase alone. These results suggest that Neq DNA polymerase and Neq plus DNA polymerase (a mixture of Taq and Neq DNA polymerases) are useful in DNA amplification and PCR-based applications, particularly in clinical diagnoses using uracil-DNA glycosylase.  相似文献   

20.
Factors affecting PCR-mediated recombination   总被引:2,自引:0,他引:2  
In the past decade, polymerase chain reaction (PCR) has become an important tool for the identification of previously unknown microorganisms and the analysis of environmental microbial diversity. Several studies published during recent years, however, have demonstrated that products obtained after PCR using Taq or Vent DNA polymerases will contain hybrid molecules when several homologous target sequences such as multigene families, alleles, or RNA viruses are co-amplified. In this report, we examined the recombination frequency and the extent of template switching during PCR using Taq, Pfu and RTth/Vent DNA polymerases. As a test system we constructed a series of plasmids carrying between one and three frame shift mutations in the gene coding for the protease subtilisin or deletions of approximately 100 bp in the lacZ alpha. Highest recombination frequencies were observed when these mutants were co-amplified with Taq followed by RTth/Vent DNA polymerases. Pfu DNA polymerase displayed no discernable recombination activity under normal PCR conditions. Data also suggest that in vivo repair of heteroduplex DNA molecules in Escherichia coli by a RecA-independent mechanism, perhaps the mismatch repair, results in the formation of chimeric molecules. Using Bacillus subtilis as the host, however, can significantly diminish non-PCR RecA-independent in vivo recombination, owing to the fact that transforming DNA molecules enter B. subtilis as single strands. Combined, these results suggest that using Pfu DNA polymerase for amplification and B. subtilis as the host for transformation may significantly reduce chimera formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号