首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The knowledge of the enthalpy and entropy of the helix-coil transition in DNA is necessary for the understanding of the stabilization of its native conformation in solution. Reported here is the transition temperature Tm, the transition enthalpy deltaH, determined with the help of an adiabatic scanning calorimeter, the transition entropy deltaS and the breadth of the helix-coil transition as a function of tetramethyl and tetraethyl ammonium chloride concentration.  相似文献   

2.
A recently developed differential scanning calorimeter has been used to characterize the thermotropic behavior of aqueous dispersions of liposomes containing sphingomyelin. Liposomes derived from sheep brain sphingomyelin exhibit a broad gel-liquid crystalline phase transition in the temperature range of 20-45 degrees C. The transition is characterized by maxima in the heat capacity function at 31.2 and 37.1 degrees C and a total enthalpy change of 7.2 +/-0.4 kcal/mol. Beef brain sphingomyelin liposomes behave similarly but exhibit heat capacity maxima at 30, 32, and 38 degrees C and a total enthalpy change of 6.9 kcal/mol. The thermotropic behavior of four pure synthetic sphingomyelins is reminiscent of multilamellar lecithin liposomes in that a single, sharp, main transition is observed. Results obtained for liposomes containing mixtures of different sphingomyelins are complex. A colyophilized mixture of N-palmitoylsphingosinephosphorylcholine, N-stearoylsphingosinephosphorylcholine, and N-lignocerylsphingosinephosphorylcholine in a 1 : 1 : 1 mol ratio exhibits a single transition with a Tm below that observed for the individual components. On the other hand a 1 : 1 mixture of N-stearoylsphingosinephosphorylcholine and 1-palmitoyl-2-oleylphosphatidylcholine exhibits three maxima in the heat capacity function. It is clear from these results that the thermotropic behavior of sphingomyelin-containing liposomes is a complex function of the exact composition. Furthermore, it appears that the behavior of the liposomes derived from natural sphingomyelins cannot be explained in terms of phase separation of the individual components.  相似文献   

3.
Transgenesis in mice by cytoplasmic injection of polylysine/DNA mixtures   总被引:4,自引:0,他引:4  
Pronuclear injection is currently the most often used method to make transgenic animals, but in some animal species it is temporally restrictive due to difficulty in visualizing pronuclei. However, the injection of construct DNA into the cytoplasm does not result in transgenesis. The production of transgenic mice by a cytoplasmic microinjection technique of polylysine complexed DNA into pronuclear stage zygotes is described. Transgenic mice were produced from cytoplasmic microinjection of mixtures of a 5.3 kb linearized DNA and poly-l-lysine (degree of polymerization=51). Effects on transgenic frequency of both the lysine to phosphate ratio of polylysine to DNA and DNA concentration were studied. About 12.8% of the pups born from zygotes cytoplasmically microinjected with a polylysine/DNA mixture having a lysine to phosphate ratio (L:P) of 11 microinjection positive control of DNA alone was 21.7%. No transgenic pups were born from microinjection of DNA alone into the cytoplasm. Complexes of polylysine/DNA were detected using agarose gel electrophoresis at the conditions which produced transgenic mice. The presence of polylysine with construct DNA altered thein vitro activities of restriction endonuclease and DNA ligase on the construct DNA. The production of transgenic animals using DNA and polylysine in the absence of any other signal protein suggests that a DNA/polylysine complex but not DNA alone can act as a substrate for transgenesis from the cytoplasm.  相似文献   

4.
The interaction between D ‐ and L ‐enantiomers of polylysine and potassium pectate was studied by means of CD, microcalorimetry, and osmometry. Upon binding with pectate, only poly(L ‐lysine) undergoes a coil to α‐helix transition, while poly(D ‐lysine) remains in the disordered state. This suggest that the energetics of the interaction is influenced by stereochemical constraints besides electrostatic forces. Experimental findings from microcalorimetry suggest that a contribution to the overall enthalpy of binding comes from the polysaccharidic moiety. Stoichiometry of the macromolecular complexes studied by osmometry gives a polylysine : pectate ratio of 3 : 1, in agreement with the respective degree of polymerization of the two polyelectrolytes. © 1999 John Wiley & Sons, Inc. Biopoly 50: 201–209, 1999  相似文献   

5.
We present an investigation of the helix–coil transition in a stable branched oligomer of DNA, known as an immobile DNA junction. This junction is composed of four 16-mer strands, which yield four double-helical arms, each containing 8 nucleotide pairs. Properties of the individual arms of this complex are modeled by four octameric duplexes. We have performed experiments using calorimetry, uv absorbance, and CD spectroscopy to characterize the melting transitions of the junction and each arm. By comparing our spectroscopic and calorimetric results on the junction and its component arms, we are able to conclude the following: (1) The calorimetric transition enthalpy for the overall junction complex is equal to the sum of the calorimetric transition enthalpies of the four constituent duplex arms. (2) The optical and the calorimetric measurements yield qualitatively similar, but not identical thermodynamic data. (3) The melting temperature of the junction is less dependent on concentration than the melting temperatures of the individual arms. We attribute this observation to the tetrameric nature of the junction. (4) The ratio of the calorimetric transition enthalpy of the junction and its corresponding van't Hoff value is close to unity. (5) The CD spectrum of the junction is equal quantitatively to the sum of the B-like CD spectra of the four constituent duplex arms.  相似文献   

6.
Circular dichroism spectroscopy has been used to investigate the influence of polylysine and polyarginine on the transition to a condensed state of DNA brought about by high concentrations of polyethyleneglycol and salt. From the dependence on DNA concentration of the CD signals, the anomalous CD of free DNA in polyethyleneglycol/salt solution was attributed to the intermolecular association of DNA molecules. The CD spectral changes in polyethyleneglycol/salt solution of the DNA - polylysine complex were indistinguishable from those of free DNA while the DNA-polyarginine complex suffered much smaller spectral changes as compared with free DNA, at low DNA concentrations where time-independent CD spectra were observed in polyethyleneglycol/salt solution for both the complexed and free DNA. The repression of the spectral change by the latter complex was more remarkable at higher ratios of polyarginine to DNA. The facts indicate that, whereas polylysine binding has little influence on the intermolecular structural transition of double-stranded DNA into a compact molecular configuration in polyethyleneglycol/salt solution, polyarginine binding has an effect of inhibiting the transition.  相似文献   

7.
A cationic amino acid copolymer (CP530) with a molar ratio of lysine, leucine, tryptophan and phenylalanine of 11:2:1:1 and a Mr of about 2300 was prepared and its inhibitory effects on the complement cascade was compared with those of polylysine with a Mr of about 3000. The effects of these two cationic peptides appeared to be at the early stage of complement activation. CP530 and polylysine inhibited the binding of C1q to insoluble IgG aggregates with a concentration required for 50% inhibition of 0.7 and 0.9 mM, respectively. Both compounds were also potent inhibitors of immune hemolysis (a concentration causing 50% inhibition, 0.5 and 3.5 μM respectively) as well as well as assembly of EAC cell intermediates required for formation of C3 and C5 convertases (a concentration for 50% inhibition of 1.0 μM for CP530 and 3.8 μM for polylysine). However, CP530 was shown to be distinctly more effective against the activation of C1r·Cls complex induced by insoluble IgG aggregate-bound C1q, requiring 0.15 mM for 50% inhibition compared to greater than 10 mM for polylysine. The 50% inhibition value for soluble IgG aggregate-induced activation of C1 in whole serum was 0.7 mM for CP530 and 5.0 mM for polylysine. The greater the inhibition of C1 activation by CP530 than that exerted by polylysine could be attributable to the presence of non-lysyl residues which provide the structural basis for specificity and potency.  相似文献   

8.
DNA toroids: stages in condensation.   总被引:8,自引:0,他引:8  
R Golan  L I Pietrasanta  W Hsieh  H G Hansma 《Biochemistry》1999,38(42):14069-14076
The effects of polylysine (PLL) and PLL-asialoorosomucoid (AsOR) on DNA condensation have been analyzed by AFM. Different types of condensed DNA structures were observed, which show a sequence of conformational changes as circular plasmid DNA molecules condense progressively. The structures range from circular molecules with the length of the plasmid DNA to small toroids and short rods with approximately 1/6 to 1/8 the contour length of the uncondensed circular DNA. Single plasmid molecules of 6800 base pairs (bp) condense into single toroids of approximately 110 nm diameter, measured center-to-center. The results are consistent with a model for DNA condensation in which circular DNA molecules fold several times into progressively shorter rods. Structures intermediate between toroids and rods suggest that at least some toroids may form by the opening up of rods as proposed by Dunlap et al. [(1997) Nucleic Acids Res. 25, 3095]. Toroids and rods formed at lysine:nucleotide ratios of 5:1 and 6:1. This high lysine:nucleotide ratio is discussed in relation to entropic considerations and the overcharging of macroions. PLL-AsOR is much more effective than PLL alone for condensing DNA, because several PLL molecules are attached to a single AsOR molecule, resulting in an increased cation density.  相似文献   

9.
Thermal denaturation and circular dichroism (CD) properties of poly(L -lysine)–DNA complexes vary greatly when these complexes are prepared differently, that is, whether by NaCl-gradient dialysis starting from 2.0 M NaCl or by direct mixing at low salt. These differing properties were investigated in more detail by examining complexes, made by direct mixing in the presence of various concentrations of NaCl, both before and after the NaCl was dialyzed out of the complex solution. The precipitation curves of DNA due to polylysine binding indicate that such binding is noncooperative at zero salt; from 0.1 up to 1.0 M NaCl they exhibit varying degrees of cooperatively. Starting from zero salt, as the NaCl concentration used for complex formation is increased, both the CD and the melting properties of the complexes are shifted from those of directly mixed at zero salt to those of reconstitution: in the CD spectra there is a gradual shift from a B → C transition to a B → ψ transition; thermal denaturation results show a gradual increase in the melting temperatures of both free DNA (tm) and polylysine-bound DNA (tm). The progressive shift from B → C to B → ψ suggests a close relationship between these two transitions. Large aggregates of the complexes do not warrant the appearance of ψ-type CD spectra: ψ-spectra have been obtained in the supernatants of polylysine–DNA complexes made and measured at 1.0 M NaCl while slightly perturbed CD spectra in B → C transition have been observed in turbid solutions of fully covered complexes made at very low salt. If the complexes are made at intermediate salts and dialyzed to a very low salt, although up to 60% of the DNA is still bound by polylysine, the CD spectra of the complexes are shifted back to the B-type CD characteristic of pure DNA.  相似文献   

10.
A 23-amino acid, bifunctional, integrin-targeted synthetic peptide was evaluated for ex vivo gene delivery to rabbit bone marrow stromal cells (BMSCs). The peptide (K)(16)GRGDSPC consists of an amino terminal domain of 16 lysines for electrostatic binding of DNA, and a 7-amino acid integrin-binding domain at the carboxyl terminal. PcDNA3-EGFP plasmids were transfected into BMSCs by (K)(16)GRGDSPC and the positive cells gave out a bright green fluorescence. High levels of gene delivery of pcDNA3-TGF-beta1 plasmids were obtained with 2 to 4 microg/ml DNA concentration, with (K)(16)GRGDSPC at an optimal peptide: DNA w/w ratio of 3:1, with a required exposure time of more than 4 h but shorter than 24 h for BMSC exposure to the peptide/DNA complexes with completely absent serum in the initial stage; with 100 microM chloroquine and at least 8 h exposure for BMSC exposure to chloroquine; with a fusogenic peptide at an optimal (K)(16)GRGDSPC/DNA/fusogenic peptide w/w ratio of 3:1:5; and with Lipofectamine 2000 at an optimal (K)(16)GRGDSPC/DNA/Lipofectamine 2000 w/w ratio of 3:1:2 at a constant DNA concentration of 2 microg/ml. Chloroquine, the fusogenic peptide and Lipofectamine 2000 all significantly promoted gene delivery, but chloroquine was more effective than the fusogenic peptide and had obvious synergistic effects with Lipofectamine 2000. Under optimal conditions, TGF-beta1 gene was transfected into BMSCs without observable toxicity, and the stable expression was examined by RT-PCR and Western blot analysis. The stable transgenic cells showed obvious bands. This novel synthetic peptide, providing a new way for the use of polylysine and RGD motif in DNA vector system, is potentially well suited to ex vivo gene delivery to BMSCs for experimental and clinical applications in the field of bone tissue engineering.  相似文献   

11.
H J Li  C Chang  M Weiskopf  B Brand  A Rotter 《Biopolymers》1974,13(4):649-667
Thermal denaturation and renaturation of directly mixed and reconstituted polylysine–DNA, directly mixed polylysine–nucleohistone complexes, and NaCl-treated nucleohistones in 2.5 × 10?4 M EDTA, pH 8.0 have been studied. At the same input ratio of polylysine to DNA, the percent of renaturation of free base pairs in a directly mixed polylysine–DNA complex is higher than that in a reconstituted complex. For a directly mixed complex, the renaturation of free base pairs is proportional to the fraction of DNA bound by polylysine or inversely proportional to the sizes of free DNA loops. A of large amount of renaturation of free base pairs has also been observed for 0.6 M and 1.6 M NaCl-treated nucleohistones. The binding of polylysine to nucleohistone enhances the renaturation of histone-bound base pairs. The percent of renaturation of polylysine–bound base pairs is high and is approximately independent of the extent of binding on DNA by polylysine. This is true in polylysine–DNA complexes prepared either by reconstitution or by directly mixing. It also applies for polylysine–nucleohistone complexes. The model where polylysine-bound base pairs collapse at Tm′ with two complementary strands still bound by polylysine is favored over the model where polylysine is dissociated from DNA during melting. The low renaturation of histone-bound base pairs in nucleo-histone indicates that either histones do not hold two complementary strands of DNA tightly or that histones are fully or partially dissociated from DNA when the nucleo-histone is fully denatured.  相似文献   

12.
Hajime Noguchi 《Biopolymers》1966,4(10):1105-1113
Water-insoluble films of poly-L -lysine, crosslinked with formaldehyde, were suspended in aqueous media and their relative lengths measured as a function of pH. A sharp transition of the polymer was observed in the pH range which corresponded with that observed in polylysine solutions by optical rotation or dilatometry. In NaBr and NaCl solutions the coiled form of the polylysine film shrinks with increasing salt concentration, but in NaHCO3 solution the extent of the contraction is larger, and the coil–helix transition of polylysine occurs at lower pH when NaHCO3 is added to the medium. If one assumes the formation of amino carbamate in this case, this phenomenon can be well explained. Urea does break up the hydrogen bonds in helical polylysine film, but not completely. This result is interesting compared with that obtained for poly(L -glutamic acid). After the coil–helix transition region was found by film experiments, the volume change associated with the coil-to-helix transition was measured and found to be about 1–l.5 ml. per amino residue after taking electrostatic interaction into consideration. This value is nearly same as that obtained for poly(L -glutamic acid). By contrast, the value for poly-γ-benzyl-L -glutamate was reported to be ?0.077 ml./mole of repeating unit. So it is still necessary to determine the magnitude and direction of the volume change for various kinds of polypeptides.  相似文献   

13.
The interaction between a positively charged peptide (poly-L-lysine) and model membranes containing charged lipids has been investigated. Conformational changes of the polypeptide as well as changes in the membrane lipid distribution were observed upon lipid-protein agglutination: 1. The strong binding of polylysine is shown directly by the use of spinlabelled polypeptide. Upon binding to phosphatidic acid a shift in the hyperfine coupling constant from 16.5 to 14.6 Oe is observed. The spectrum of the lipid-bound peptide is superimposed on the spectrum of polylysine in solution. Half of the lysine groups are bound to the charged membranes. A change in the conformation of polylysine from a random coil to a partially ordered configuration is suggested. 2. Spin labelling of the lipid component gives evidence concerning the molecular organization of a lipid mixture containing charged phosphatitid acid. Addition of polylysine induces the formation of crystalline patches of bound phosphatidic acid. 3. Excimer forming pyrene decanoic acid has been employed. Addition of positively charged polylysine (pH 9.0) to phosphatidic acid membranes increases the transition temperature of the lipid from Tt = 50 to Tt = 62 degrees C. Thus, a lipid segregation of lipid into regions of phosphatidic acid bound to the peptide which differ in their microviscosity from the surrounding membrane is induced. One lysine group binds one phosphatidic acid molecule, but only half of the phosphatidic acid is bound. 4. Direct evidence for charge induced domain formation in lipid mixtures containing phosphatidic acid is given by electron microscopy. Addition of polylysine leads to a change in the surface curvature of the bound charged lipid. The domain size is estimated from the electron micrographs. The number of domains present is dependent on both the ratio of charged to uncharged lipids as well as on the amount of polylysine added to the vesicles. The size of the domains is not dependent on membrane composition. However, the size seems to increase in a stepwise manner that is correlated with a multiple of the area covered by one polylysine molecule.  相似文献   

14.
Y Baba  A Kagemoto 《Biopolymers》1974,13(2):339-344
The thermal effect of magnesium ions on the helix–coil transition of DNA was studied calorimetrically by a modified differential scanning calorimeter (DSC). It was found that the transition temperature of DNA depends on both the DNA and magnesium ion concentrations. The dependence of the helix–coil transition of DNA on the mole ratio of magnesium ions to DNA(P) can be classified into two groups. When this mole ratio is less than 1, magnesium ions tend to stabilize the double-helix DNA, so that the transition temperature increases linearly and the heat of transition increases significantly with increasing mole ratio. When the mole ratio is more than 1, magnesium ions tend to destabilize the double-helix DNA, so that DNA precipitates when the temperature is raised above the transition temperature. In this case, both the transition temperature and the heat of transition decrease with increasing mole ratio.  相似文献   

15.
The atomic force microscope (AFM) was used to assay the extent of DNA condensation in approximately 100 different complexes of DNA with polylysine (PL) or PL covalently attached to the glycoproteins asialoorosomucoid (AsOR) or orosomucoid (OR). The best condensation of DNA was obtained with 10 kDa PL covalently attached to AsOR, at a lysine:nucleotide (Lys:nt) ratio of 5:1 or higher. These conditions produce large numbers of toroids and short rods with contour lengths of 300-400 nm. Some DNA condensation into shortened thickened structures was seen with 10 kDa PL attached to AsOR at Lys:nt ratios of 1.6:1 and 3:1. Some DNA condensation was also seen with 4 kDa PL at Lys:nt ratios of 3:1 and higher. Little DNA condensation was seen with PL alone or with PL convalently attached to OR at Lys:nt ratios up to 6:1. AsOR-PL enhanced gene expression in the mouse liver approximately 10- to 50-fold as compared with PL alone.  相似文献   

16.
To answer the intriguing question whether or not endothermic microbial growth exists, and in particular, to verify Heijnen and van Dijken's prediction (1992), acetotrophic methanogen, Methanosarcina barkeri, has been cultivated in a highly sensitive bench-scale calorimeter (an improved Bio-RC1 reaction calorimeter) in a pH auxostat fashion. A growth yield of 0.043 C-mol C-mol(-1) has been obtained and a cell density as high as 3 g L(-1) was attained. Heat uptake during growth has indeed been quantitatively measured with calorimetry, resulting in a heat yield of +145 kJ C-mol(-1). Thermodynamics of the growth of acetotrophic methanogens was analyzed in detail. The changes in Gibbs energy, enthalpy, and entropy during growth of M. barkeri were compared with some typical aerobic and anaerobic growth processes of different microorganisms on various substrates. In the growth of M. barkeri on acetate, the retarding effect of the positive enthalpy change on the driving force of growth is overcompensated by the large positive entropy change, resulting from converting one organic molecule (acetic acid) to two gaseous products, CH(4) and CO(2). Both the enthalpy and the entropy increases are due partially to the transition of these two products into the gaseous phase. The thermodynamic role of this phase transition for the growth process is analyzed. Microbial growth characterized by enthalpy increase and correspondingly by a large increase in entropy may be called enthalpy-retarded growth.  相似文献   

17.
The influence on the melting of calf thymus and plasmid DNA of cationic lipids of the type used in gene therapy was studied by ultraviolet spectrophotometry and differential scanning calorimetry. It was found that various membrane-forming cationic lipids are able to protect calf thymus DNA against denaturation at 100°C. After interaction with cationic lipids, the differential scanning calorimetry melting profile of both calf thymus and plasmid DNA revealed two major components, one corresponding to a thermolabile complex with transition temperature, Tm(labile), close to that of free DNA and a second corresponding to a thermostable complex with a transition temperature, Tm(stable), at 105 to 115°C. The parameter Tm(stable) did not depend on the charge ratio, R(±). Instead, the amount of thermostable DNA and the enthalpy ratio ΔH(stable)H(labile) depended upon R(±) and conditions of complex formation. In the case of O-ethyldioleoylphosphatidylcholine, the cationic lipid that was the main subject of the investigation, the maximal stabilization of DNA exceeded 90% between R(±) = 1.5 and 3.0. Several other lipids gave at least 75% protection in the range R(±) = 1.5 to 2.0. Centrifugal separation of the thermostable and thermolabile fractions revealed that almost all the transfection activity was present at the thermostable fraction. Electron microscopy of the thermostable complex demonstrated the presence of multilamellar membranes with a periodicity 6.0 to 6.5 nm. This periodic multilamellar structure was retained at temperatures as high as 130°C. It is concluded that constraint of the DNA molecules between oppositely charged membrane surfaces in the multilamellar complex is responsible for DNA stabilization.  相似文献   

18.
19.
Gene delivery mediated by polyplexes such as DNA complexed with polylysine conjugates is limited by the low efficiency of escape of DNA from the endosomes. One of the strategies which favors the transmembrane passage of polyplexes consists of adding anionic amphipathic peptides capable of destabilizing membranes in an acidic medium. Although less efficient than replication-defective adenoviruses, fusogenic peptides increase the expression of the reporter gene by a factor between 100 and 1000 depending on the cell line. However, the activity of a given peptide depends on the composition of the lipid bilayer. We were interested in developing a polyplex (glycoplex) formulation comprising a glycosylated polylysine, a fusogenic peptide and a plasmid which would be useful for efficient transfection (glycofection) of a large panel of cells, even in the presence of serum. We synthesized several peptides and tested their efficiency in combination with different glycoplex formulations. We found that glycofection with a quaternary complex (called one pot formulation) made of lactosylated-polylysine, polylysine, DNA, and the dimeric peptide (E5-WYGG)2-KA was less cell-type dependent than other peptide-based formulations. In addition, its efficiency was not affected by the presence of serum (up to 20%).  相似文献   

20.
The interaction of the nucleotide-binding subunit B with subunit F is essential in coupling of ion pumping and ATP synthesis in A1AO ATP synthases. Here we provide structural and thermodynamic insights on the nucleotide binding to the surface of subunits B and F of Methanosarcina mazei Gö1 A1AO ATP synthase, which initiated migration to its final binding pocket via two transitional intermediates on the surface of subunit B. NMR- and fluorescence spectroscopy as well as ITC data combined with molecular dynamics simulations of the nucleotide bound subunit B and nucleotide bound B-F complex in explicit solvent, suggests that subunit F is critical for the migration to and eventual occupancy of the final binding site by the nucleotide of subunit B. Rotation of the C-terminus and conformational changes in subunit B are initiated upon binding with subunit F causing a perturbation that leads to the migration of ATP from the transition site 1 through an intermediate transition site 2 to the final binding site 3. This mechanism is elucidated on the basis of change in binding affinity for the nucleotide at the specific sites on subunit B upon complexation with subunit F. The change in enthalpy is further explained based on the fluctuating local environment around the binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号